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Abstract. It is shown that a local quantized field with a manifestly covariant trans-
formation law under the Poincare group cannot have nonvanishing matrix elements be-
tween the vacuum and an irreducible subspace of zero mass and infinite spin.

1. Introduction

The zero-mass infinite spin representations of the Poincare group
&\ [1-3] do not seem to correspond to anything in nature and have
consequently received little attention from physicists. Nevertheless, it
might be instructive to know whether these "strange" representations
violate some fundamental principle, or if their exclusion from physical
theories is an independent postulate. The present paper deals with the
question whether they can appear in a local quantum field theory. This
seems to be a natural question since at least free fields can be constructed
corresponding to any of the other irreducible representations of &\
that satisfy the spectrum condition [4]. It is however clear, that if we
want to extend this construction to the case of infinite spin, we must allow
infinite dimensional representations of SL(2, C) in the transformation
law of the field. We modify the usual Wightman axioms [5] in accordance
with this fact.

It turns out, however, that this modification is not sufficient. The
generalized Wightman axioms, especially local commutativity and the
local (manifestly covariant) transformation law, will be shown to exclude
the "strange" representations in the following sense: The field operators
cannot have nonvanishing matrix elements between the vacuum and
states that transform according to an irreducible representation of zero
mass and infinite spin. In particular, there are no free fields corresponding
to these representations.
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2. The Zero-Mass Infinite Spin Representations of SP\

0>\ is the semi-direct product of the translation group IR4 and
(SL(2,C)1. The irreducible representations of interest here are defined
as follows [1,3]:

Let MQ be the mantle of the forward light cone and {Ap} a family of
Lorentz transformations with App = (1,0,0,1) = p e Mo

+ for all p e MQ.
Ap should depend continuously on p. The transformation K(p, A)
= ApΆΆ~ί-ιpleaves p invariant for all peMQ and A e SL(2,C) and is
thus an element of the "little group" of p. This group is isomorphic to the
covering group of the two dimensional Euclidean group and will be
denoted by $2- It consists of matrices of the form

z\ (eiφ/2 0

Let H be the Hubert space of complex valued L2-functions on the interval
[0,2π]. It is convenient to think of these functions as periodic with
period 2π. For each Ξ and α with 0 < S < o o , α = 0 or 1/2, there is an
irreducible unitary representation VΞ>a of S2

 o n H defined by

z\ cos(argz - 0) + ocφ)} f(θ -φ). (1)

VStΛ induces an irreducible unitary representation UΞ>α of 9% on the
Hubert space

J f = J Hθ(p°)δ(p2)d4p

defined by

(UsJa, A)Φ) (p) = e1*" F2>α(X(p, A)) Φ{A-χp) (2)

for a G IR4, A e SL(2, C), ΦeJΊf. The invariant scalar product is p a
= p°ao-p1a1-p2a2-p*a3.

In contrast to the finite spin case, the transformations Az 0 are here
not represented by the identity. A consequence of this is the following
lemma, which turns out to be important for our proof:

Lemma 1. Let Aλ denote the matrix I λe SL(2, <C), λ e IR- {0}.
\0 λ ]

Then Av->Aλ A - A^1 is an automorphism of S2- Moreover, the representa-
tion Λ\-+ V* a(Aλ - A Aχ1) is equivalent to Vλ2τr α, and thus not equivalent
to VΞ,a.

The lemma follows immediately from the fact that AλΆZfφ-Aχ1

— Aλ2Zt(p. Insertion of this into (1) proves the statement.
1 We assume the same correspondence between matrices in SL(2, <C) and Lorentz

transformations as in [5]. SL(2, C) operates on IR4 according to this correspondence.
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The 1-parameter group {AOφ \ φ e IR} is the group of rotations about
the x3-axis. Its infinitesimal generator represents the spin component
along this direction. In the representations VΞtΛ the spectrum of this
operator is unbounded, the eigenvalues being 0, ± 1 , ±2, . . . for α = 0
and +1/2, ± 3/2,... for α = 1/2. Hence the notation "infinite spin".

The geometrical meaning of the transformations Az0 is perhaps
most easily seen if we write the corresponding Lorentz transformation
as the product of a rotation and a pure Lorentz transformation. Let
R{θ) denote a rotation about the x2-axis with rotation angle θ counted
positive from the xrdirection to the x3-direction. Put L(χ, φ) = R(φ)
- L(χ) R(φ)~x where L(χ) is a pure Lorentz transformation in the x1 -direc-
tion of velocity v/c = Artanhχ. It is sufficient to consider the case z e R
and in that case

where the parameters χ and φ are connected to each other and to z by
the equations

• u o sin(Psinhy = 2 =—
cos φ

3. Assumptions and Results

As mentioned in the introduction we will use slightly generalized
Wightman axioms:

1. The field operators A(σ,f) are defined for each test function
feSf and each σeK, where K is some linear space. The operators
A(σ,f) and their adjoints map a dense subset JfD of a separable2 Hubert
space Jίf into itself. They depend linearly on / and σ, and without loss of
generality we may assume the existence of an antilinear operator on
K, σκ>σ*, such that A(σ,f)* =^4(σ*,/), where v4(σ,/)* is the adjoint
operator and / the complex conjugate of /. The matrix elements
(Φ, A(σ,f)Ψ) with Φ, Ψe3tfD are continuous in /, i.e. they are distri-
butions.

2. Jf carries a continuous unitary representation U of 0>\. U satisfies
the spectrum condition: U(a, 1) = jeip'adEp with supρd£ p cF + (for-
ward light cone); the operators U(a, A) leave JίfD invariant, and there is
a unique invariant vacuum state Ω e J^D.

2 This assumption is in fact redundant. Using the separability of & and SL(2, <C)
and the continuity postulates, it is not difficult to prove that if an irreducible represen-
tation appears in a field theory at all, then it also appears in a field theory on a separable
Hubert space.
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3. Local commutativity (or anti-commutativity):

\A(σ, x) A(ρ, y)]τ = 0 for (x - y f < 0, σ, ρ e K.

4. Transformation law: There is a representation D of SL(2,(C) on
K such that

U(a, A) A(σ, x) U(a, A)'1 = A(D(A)σ, Λx + a).

5. Polynomials in the field operators generate a dense set in 2tf
when applied to the vacuum.

The last postulate is not significant since we are anyway only going
to consider vectors that are obtained by applying one field operator to
the vacuum. Let $" denote the subspace of such vectors:

«<oo, σ f e J£,/f e ί ^

(The bar denotes closure in the topology of Jf.) We intend to prove the
following theorem:

Theorem. The Hilbert space of a field theory satisfying axioms 1-4
contains no subspace J^ r r such that:

i) J^ r r is invariant under U(a, A) and the restriction U \ J#\rτ is an
irreducible representation of zero mass and infinite spin.

ii) EΪXXJ^' =t= {0}, where Eiτr denotes the projector on J firr.

The proof can be outlined as follows:
If UΞt(X is to appear as a subrepresentation of U9 then the representa-

tion D of iSL(2,(C) must contain VStΛ when restricted to S2. Since D is
not only defined on S2, but on Λλ as well, it is implied by Lemma 1 that
this restriction also contains all other representations Vλ2Sta,λΦ 0. Which
of these representations appears in U is determined by the two-point
function. The structure of the latter implied by analyticity in the extended
tube, which in turn is a consequence of the spectrum condition and
locality, is too restrictive to "filter out" one of these uncountably many
representations. We begin with an investigation of this structure.

4. Structure of the Two-Point Function

The representation of the translation group has the spectral decom-
position U(a, 1) = J eιpadEp. The support of dEp is a Lorentz invariant
subset of V+. We assume that U has zero mass components and decom-
pose dEp into three parts

dEp = Eoδ(p) + dEp
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where Eo is the projector on Ω, supp dE\ = MQ such that {0} is a null set
for dE\ and MQ is a null set for dE2

v. This decomposition is evidently
unique. We put E1 = J d£* and £ 2

 = J dE^. These projectors commute
with all U(a, A).

The object of interest is the distribution

WiQ(x -y) = (Ω, A{σ*9 x) E'Aiρ, y)Ω).

Its structure is described by the following lemma:

Lemma 2. The Fourier transform

be written as

where MσQ(p) is a polynomial in p for all σ, ρ e K. Mσρ(p) has the following
properties for p e Mo

+

i) Mσρ(p) defines a positive semidefinite sesquίlίnearform on K, i.e.
Mσρ{p) is linear in ρ, antilinear in σ, MσQ(p) = Mρσ(p) and Mσσ(p) ^ 0.

ii) MD(Λ)σtDiΛ)ρ(Λp) = Mσρ(p) and MσfD{Λ)ρ(p) is continuous in
AeSL(2,<C).

Proof. The two-point function Wσρ(x — y) = (ί2, ̂ 4(σ*, x) Λ(ρ, y)Ω) is
a tempered distribution because of positivity and according to [6] it is
the boundary value of an analytic function

where the Pι

σρ are polynomials and the Fι

σρ are analytic in the cut plane
<C-1R+. By the method of Lemma 1 in [7] it is then easy to prove that
the Fourier transform WσQ is of the form

with polynomials QaQ and Lorentz invariant distributions G{

σρ. Because
ι

Q ρ

of positivity and the spectrum condition, the Gι

σρ are measures with
support in V+. Each G^ρ can be written uniquely as

G'σβ(p) = <tβδ{p) + b'ββθ(p°) δ(p2) + H^ip) (4)

where M$ is a null set for Hι

σβ(p). The corresponding decomposition
of Wσρ can also be achieved with the projectors Eo, Eί and E2:

Waa{x -y) = (fl, A(σ*, x) E0A(ρ, y)Ω) + (Ω, A(σ*, x) E,A(Q, y)Ω)

+ {Ω,A(σ*,x)E2A(ρ,y)Ω).
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Comparison of (3), (4), and (5) then shows that W^ρ has the desired form.
Property i) follows from the properties of the scalar product in Jf and
ii) from the transformation law and continuity of the representation U.

5. Reconstruction of J ^ = Ex 2tf'

^ =E±Jff is the space of zero-mass states in jff". It is invariant
under U and our aim is to show that the restriction U\2tf1 = U1 does
not contain a UStU as a subrepresentation. As a first step, we reconstruct
Jtf[ in a concrete form with the aid of W*ρ.

Let p and Λp be as in Section 2 and Nt = {σeK\ Mσσ(p) = 0}. Because
of Lemma 2 i) we can define a scalar product on the quotient space

where [τ]i denotes the rest class τ + iVi. We complete K1 to a Hubert
space K± and define a representation V1 of <̂ 2

 o n this space by

By Lemma 2 ii) Vx is well defined, unitary and continuous. On the
Hubert space

it induces a unitary representation of 0>\:

φM Λ)Φ) (p) = έ*'aVMp Λ A-Λ\

αelR4, ) ?

It is straightforward to verify that this representation is unitarily equiv-
alent to l^. The corresponding isomorphism Jtf[ -> J^x orders E1A(σ,f)Ω
to the function (pt->f(p) \_D(Λ^σ\^ e $x.

6. Proof of the Theorem

According to the considerations above, Ux is determined by the
representation Vx of S2. The statement of our theorem is thus equivalent
to the statement that none of the representations VΞtΛ can appear as a
subrepresentation of V1

3. We now proceed to prove this latter statement.

Lemma 3. i) Let degMσρ denote the degree of the polynomial MσQ(p).
Ifσ,ρe K{n) = {τeK\ degMττ ^ ή}, then degMσρ ^ n.

3 By subrepresentation we mean the restriction of a representation to an invariant
subspace.
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ii) The spaces Jf^ = Linear span of {E1A(σJ)Ω\σeKin\fe^}
are invariant under Ul9 and every irreducible subrepresentation of Uί is
unitarily equivalent to a subrepresentation of one of the restrictions

Proof. The first part of the lemma follows from the Cauchy-Schwarz
inequality

\Mσρ(p)\2^Mσσ(p)Mββ(p)

for all p e Mo

+, which implies

degM σ ρ S V2(degMσσ + degM ρ ρ).

Since Kin) is invariant under D by Lemma 2 ii), the vectors E1A(σ,f)Ω
with σeK{n) generate a subspace Jίf$n)CJ#Ί which is invariant under
U(a, Λ). Let 30fn be an irreducible subspace of ^ . If U1 \ Jί$n) does not
contain a subrepresentation that is equivalent to Uγ \ J^1"", then Jί^n)

and J^n are orthogonal. Since (J Jt$n) is dense in f̂1? this is not possible
n

for all n. This proves part ii) of the lemma.
Now let Aλ be as in Lemma 1 and put MσQ(λ) = MσQ(Aλp). Since

Aλp = (λ2,0,0, λ2), this is a polynomial in λ by Lemma 2 i). Because of
Lemma 3 we may even assume that the degree of the polynomials
MσQ(λ) does not exceed some fixed number 2L, say, for all σ,ρeK. In
analogy to the construction of Kγ we form Hubert spaces Kλ by com-
pleting the pre-Hilbert spaces Kλ = K/Nλ9 where Nλ = {σ \ Mσσ(λ) = 0}
and the scalar product is

with [ τ ] λ = τ + Nλ. Kλ=zl is identical to the previously defined Kx.
Since S2 not only leaves p invariant, but Aλp = λ2p as well, we have

by Lemma 2 ii) a unitary representation Vλ of S2 on Kλ if we define

Vλ(Λ)lσ-]λ = lD(Λ)σ-]λ. (6)

Furthermore, Lemma 2 ii) also implies that the correspondence
ί^^J[D(Aλ)σ^λ defines a unitary mapping KX^K^ An immediate
consequence is the following lemma:

Lemma 4. Vί(A) is unitarily equivalent to Vλ(Aλ A A^1).

As a last preparatory step we embed the spaces Kλ into a common
Hubert space. We define a scalar product on K:
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It is not necessarily positive definite, but this can be corrected as usual
by forming the quotient space K/N with N = {σ e K | (σ, σ) = 0}. We
denote the rest classes by [τ] and the completion of K/N by K.

If mσ ^ 2L is the degree of the polynomial Mσσ(λ\ we have by the
Lagrange interpolation formula

m<τ F (λ)

KΛλ)= Σ ,, "ΓlΛvΓM" ( v ) '
v = = 0 (Λ< - v ) Λ n σ ( v )

n

where Fn(x) = H (x- μ). Because Mσσ(λ) ^ 0 for all λ, it follows that
μ = 0

0 £ Mσσ(λ) S I max F | f I M ) ' Σ M,» = cλ (σ, σ)
\oίχ*μZ2L- (λ-κ)Fμ(κ) J v = o

with cA < oo.
It follows that Mσρ(λ) defines a bounded nonnegative sesquilinear-

form on K, i.e. there exist bounded, positive semidefinite operators Mλ

on K such that

The matrix elements of Mλ between states of the form [τ] are thus poly-
2L

nomials in λ of degree ^ 2 L and ([σ], [ρ]) = ^ (M,Mv[ρ]). Since
v = 0

Mλ is bounded and since the limit of a pointwise convergent sequence
of polynomials of degree ^ 2L is also a polynomial, this remains true
for arbitrary vectors in K.

Applying Lemma 2 ii) once more, we become a unitary representation
V of $2 on K such that V(Λ) commutes with all Mλ9 if we define

V(Λ) [σ] = \D(A)σ\ .

The spaces KerMλ and their orthogonal complements (KerMJ1 are
invariant under V(Λ)9 and we claim that the restriction F | (KerMJ1

is unitarily equivalent to Vλ as defined by (6). This is easily seen if we note
that since Mλ is bounded we can use it to define a new scalar product on
(KQΐMλ)

1:(φ,ψ)λ = (φ, Mλψ). V remains unitary because V(Λ) and Mλ

commute and the mapping K^-^KerMJ1 given by

where Pλ is the projector on (KerMJ1, is now obviously unitary. This
mapping is an intertwining operator between V and Vλ.

Assume now that K± contains an irreducible subspace Kψ such that
Vx I Kιlr = FS j α. If the same is true for Kλ, then V1 must also contain
Vλ2Ξ>a by Lemmas 1 and 4. Since inequivalent irreducible representations
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correspond to orthogonal subspaces and because Kί is separable (other-
wise Jtifi _would not be separable) this is only possible for countably
many λ. K^r is thus orthogonal to almost all (KerMJ1, i.e. K^rC KerMλ

for almost every λ. But φ e KerMA means (φ, Mλφ) = 0, and since this is
continuous in λ (even a polynomial), it cannot vanish almost everywhere

2L
unless it vanishes identically. Because (φ, φ) = ]Γ (φ, Mvφ) we conclude

v = 0

that _φ = 0. Therefore, K^r = {0}, a contradiction to the hypothesis
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