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Abstract. We consider the theory of a non-localizable relativistic quantum field. Non-
localizability means that the field is not a tempered distribution, but increases strongly for
large momenta. Local commutativity can then not be satisfied. Instead we assume the
existence of Green's functions with the usual analyticity properties. We show that in such
a theory the S-matrix can be defined, and its elements can be expressed in terms of the fields
by the usual reduction formulae.

1. Introduction

It is well known that the fields of relativistic quantum field theory
[1,2] are not functions of the space-time variable x but must be con-
sidered as distributions, i.e. as linear functionals over a suitable space of
test functions. On the exact nature of the acceptable test functions we
have little or no physical information. For mathematical convenience
it is usually assumed that the fields are tempered distributions. This
assumption may, however, be too restrictive. In particular, there exist
indications that the so-called non-renormalizable theories do not fit into
this frame-work. Jaffe [3] showed that most of the theorems of axiomatic
field theory can be derived for a more general class of fields, with a non-
tempered behaviour for large momenta. The allowed increase for large
p, is, however, still not arbitrarily fast but is restricted by the condition
that the field must be defined in x-space on test functions with compact
support. Theories of this type are called "strictly localizable". Strict
localizability is necessary if one wants the fields to be locally commuting.

The axiom of local commutativity has, however, no direct physical
justification since the usually cited connection with causality is tenuous
at best. Close inspection shows that the physically relevant form of
causality (macrocausality), at least in its more acceptable formulations,
depends mainly on the asymptotic behaviour of the Wightman functions
in x-space, and practically not at all on their local properties. Translated
into p-space this means that the smoothness properties for finite p are
important, while the increase for large p is not. This increase is, then, of
little significance. It manifests itself only in a restriction of the allowed
test functions.
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It is therefore reasonable to consider more general cases than the
ones treated by Jaffe, e.g. fields which are, in p-space, only defined on test
functions with compact support. Such theories have been introduced in
1958 by Gύttinger [4] but have come to the general attention only
recently in connection with the work by Efimov and others on non-
polynomial Lagrangians1. Efimov constructs, starting from such a
Lagrangian, a perturbative expansion of the Green's functions, which
satisfies (hopefully) in every order the usual analyticity and unitarity
requirements. In certain cases the increase of these functions in p-space
turns out to be stronger than admitted by Jaffe. Nevertheless they define
a field theory via the GLZ theorem, whose validity (with some obvious
alterations in the formulation) in the present generalized case can easily
be ascertained. (For the exact formulation and a proof of this theorem
in the traditional tempered case we refer to an earlier paper by the present
author [6].) It becomes then important to know whether the reverse
of this theorem is true, i.e. whether something like the LSZ scattering
formalism can be established. Can the iS-matrix be defined, and if yes,
can its matrix elements be expressed in the usual way in terms of the given
Green's functions?

We shall show that the answer to these questions is yes. Assuming a
certain regularity condition (to be formulated later) in p-space, we shall
prove the cluster property, asymptotic conditions, and reduction
formulae for the ^-matrix.

As usual we consider the case of a single scalar hermitian field Λ(x).
This field shall satisfy the Wightman axioms with a particle spectrum
(mass m > 0) as formulated in Ref. [6], Postulates l)-4), with the following
exceptions. The distribution Λ(x) is only defined on the space Z [7], i.e.
on test functions whose Fourier transforms have compact support2.
The locality assumption (Postulate 4.d of [6]) can then no longer be
formulated. It is replaced by a regularity condition in p-space, which we
absorb in a new formulation of Postulate 6) stating the existence of re-
tarded products. This postulate becomes now essential. We demand the
existence of generalized retarded products (g.r.p.) as defined in [6], i.e.
operator valued invariant distributions Gμ(xu ...,xπ) satisfying certain
algebraic relations and symmetry properties. The support conditions
(Postulate 6.vi) are replaced by a regularity property, which we shall now
formulate.

1 The papers on this subject are too numerous to be quoted here. A full list of references
can be traced from the report on the Trieste meeting on renormalization theory of August
1969 [5], in particular the contributions by F. Constantinescu, G. F. Efimov, H. Lehmann,
A. Salam, B. Zumino.

2 Our proofs can be easily extended to the test spaces lying between Z and Sf that are
used in the literature.
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Remember that Gμ is characterized by a function σμ(I) on the set of
subsets / of {2,..., n} with values in the sign set { + , — }. The ordinary
retarded product R is a special case of a g.r.p. belonging to the choice

σ(I) = - for all /.
Let Φ, Ψ be two vectors in the Hubert space Jf of the theory, such

that the matrix element (Φ,Gμ(xu ...,xn)Ψ) exists. The Fourier trans-
form of this matrix element can be written as a distribution in the variables
Px H h pn = P, p2, , Pn- After integration with a test function in P we

obtain a distr ibution χ(p2, • ••> A,) We d e m a n d :

Condition R. χ(P2> •••>£«) α s defined above is analytic in the tube

(1)«SΓ = J(p2,...,pJ: ( Σ Imp^ G F M J ) , V / J .

For each compact K C JR
4( ϊ l"1) and /or a// a, β wiί/z l < a < o o , 0<jS<oo

ί/ẑ rβ exi5ί a positive constant c and non-negative integers ci9 such that

(2)
;=2

for {Pi} e SΓμ, {Rep,} e K, and a | £ Imp, g 1^ Imp i 0 ^ /!, V/.

p i 0 is the 0-component of the 4-vector pf, pf its space part.
The first part of this condition means that the "retarded" product Gμ

has the same p-space-analyticity as in the tempered case, even though
it has no support properties in x-space. The restriction (2) limits the
possible divergence of χ on approaching real points. It guarantees the
existence of the boundary value of χ as a distribution e 3)'.

Note that we make no assumptions on the behaviour of χ for large
pi9 real or imaginary. Here lies the difference between the non-localizable
and the localizable case. For our purposes it would even be sufficient to
assume analyticity of χ in the intersection of 2Γμ with a neighbourhood of
the real points, but we are here not concerned with finding optimal
conditions.

We do, of course, not propose to introduce Condition R a s a new
axiom in place of locality. This condition is too complicated and too far
removed from any direct physical interpretation to be acceptable as a
basic postulate. Instead we consider JR as a property that a given model
may or may not possess, and show that in the models possessing it a
S-matrix can be introduced as usual. The reverse is not true, i.e. R is
sufficient but not necessary for the existence of a scattering formalism.
In a theory of the GLZ type, i.e. a theory defined by a set of Green's
functions satisfying analyticity and unitarity, condition JR is fulfilled by
the Gμ defined through their Haag expansion (Eq. (81) of [6]), the
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expansion coefficients being suitably chosen boundary values of the
given Green's functions.

The time-ordered product T(x1, ...,xn) is defined as in [6] with the
help of a recursive relation connecting R and T. The vacuum expectation
values of Gμ, R, T, are called gμ, r, τ, respectively. The truncated part
τ Γ of τ (or of any other vacuum expectation value) is defined as usual via
a cluster expansion. gμ,r9... are the Fourier transforms of gμ9r,....
They are distributions in the Schwartz space &.

From condition R we deduce in the standard way [8] the existence
of the Green's functions H(p2,..., pn) of whom gμ and τ Γ are boundary
values:

Property P. Let S be the set

S= {(/>2,...,P*): ( Σ I m A ) 2 < 0 ;

* V / ' (3)

or Γ^Imp^Oλ and [ΣRepΛ 2<m\ for all ll .

Then there exists a function H(p2, •••,/?„), analytic in S, such that

= lim H(p2, . . . , p j , (4)
Imp,->0
(Pi) e fμ.

τ Γ / (Rep 2 , . . . 5 Rep M )= lim H{p2,...9pJ9 (5)
I m p > 0

the limit in (5) has to be taken from the set /Re £ pt, Im £ pλ ^ 0
I. V I 1 J

where the ,
for all

The prime in g'μ, τ
τ> means dropping of the ^-factor from momentum

conservation:

2. The Cluster Property

The truncated Wightman function Wτ(xl9 ...,*„) is said to possess
the cluster property if the expression

ψ(a2,...,an) = $dxί ...dxnW
τ(x1,...,xn)φ(xί,x2 + a2,...,xn + an) (7)

is a tempered test function for all φeZ. Here x + a = (x°, x + a). The
cluster property for gμ and ττ is defined analogously.

By transforming (7) into p-space we see that

-" dpn0W
τ'(j)2, ...,pn)φ(p2, ...,pn) (8)

has to lie in the space 2 of C°°-functions with compact support if φ e Sϋ.
Wτ> is defined as in (6).
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In this section we shall show that g'μ, τ
τ\ Wτ> possess the cluster

property (8). In the proof we shall not use condition R but only its weaker
corollary, the property P.

We need the following lemma.

Lemma 1. Let H(k2,..., kn), k} = Pj + iqj9 be analytic in 3~μ and satisfy
the inequalities (2). Let 0<R<oo, and 8Γ* = &'lln{\qj\ <R, V/}. Let D
be any derivation of arbitrary order in the space components kj9 and
KcRHn~X) a compact.

Then there exists a differential operator D° in the energy components
kj0, and a function F(kj) which is analytic in &~μ and continuous in
qj = 0, {pj} G K, such that

in 3~μ.
 3 J

For the sake of simplicity we give the proof for the special case
^ = ̂ ~+, the forward tube. The general case can be treated in exactly the
same way.

Let knO = iqnO9qnO>R9 be chosen once and for all. The 4-vector
(fcn0, kn) is in ̂ + if \qn\ <R. For (fe2, ...,kn)e3Γ^ we define

. . . , * „ - ! , £ * „ ) (10)

with an integration path lying in 3Γ*. G is evidently analytic, and

oκn0

For qj satisfying the restrictions of condition (2) we obtain

\G\ ̂  f did |£Γ| ύ c "Π \qj0\-Cjld\ζ\ \lmζ\-c».
2

We can choose an integration path pointing first in a real direction, then
in a purely imaginary direction. Then

\G\ίc'nfi\qj0n-\qn0Γ»+1. (12)
2

Iteration of this procedure gives

(13)

where F is analytic in &~+ and bounded when approaching real points,
and D° is a differential operator in the kj0 of sufficiently high order. The
same result can be derived for DH, the order of D° of course depending
onD.
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The lemma follows then because boundedness of DF implies the
continuity of F.

We can now prove the cluster property for gμ. For φ(p2,...,pn)e 3f9

D as in Lemma 1, we have

,..-, Pn) = ί dpj μ j j

= Σ C« ί dPjO DJ'μ
DD

In the third line we have used Lemma 1, and the fourth line is obtained
through integration by parts. F is continuous, hence the integrals in the
last line exist and are continuous in pj. Because oίφeS) they are of com-
pact support, and thus the cluster property is proved.

The 4(n — 1) dimensional p-space can be covered by a finite number
of open sets, in each of which ττ> coincides with a g.r.f. g'μ [8]. Hence we
can write φ as a sum φ = ]Γ φμ9 such that τ τ ' = g'μ in supp φμ. The cluster

μ

property of ΐ follows then immediately from the cluster property of g'μ.
Wτ can be written as a linear combination of generalized retarded

functions multiplied with bounded C00-functions [9,10], and therefore
has the cluster property.

3. The Asymptotic Conditions

The traditional proofs of the Haag-Ruelle asymptotic condition all
suffer from one of two drawbacks. Either they work with regularized
fields [11,12], and this leads to difficulties in the formulation of the
reduction formulae, or they use representation theorems for tempered
distributions [2,13] which do not hold in our non-tempered case. We
shall therefore give a new proof which avoids these difficulties. It has at
the same time the advantage of being applicable to the case of non-
factorizing multi-particle wave functions. For ease of notation we shall
nevertheless only consider the factorizable case. The generalization is
straightforward.

We use the notations of [6], in particular the following. Let G be
the set

p0^0}. (15)

The space of test functions eQ) with support in G is called ^.
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To / G ̂  we associate the operator

Af(t) = J d4pe-^-f*(p) Λ(p), (16)

where

p±=p0±ω(p), ω(p) = \/p2 + m2. (17)

Let

Φ(t) = A}1(t)...A%(t)\0}. (18)

The Haag-Ruelle asymptotic condition states that

limΦ(ί) = Φ o u t t i n (19)
ί->±oo

with
ΦQX = Aψ; ...A%\0}9 (20)

Aex being free fields. The relation (19) holds also in the more general case
in which some of the Af occur as annihilation operators, i.e. without *.
For the sake of simplicity we shall only consider the special case given
in (19).

Our proof follows the general outlines of Ruelle's procedure. We
show that

\Φ(t)\2~\tΓ3 (21)

for |ί|->oo. In order to do this we develop the Wightman functions
occurring in {Φ{t\ Φ(t)) in cluster sums. We obtain a sum of products of
terms of the form

= [
J i

vv " 1 1 1 y.wr j~ J 1 1 t*""2/ιv ) J \ίΊ> 5 nu ί'JOλ

xWτ(pu...,qι),

where / e 3} and kj^n. We have to find the asymptotic behaviour of
this expression.

The Pi-integration can be carried out with the help of the ^-factor in
Wτ (if k = 0 we do the same for q^):

X(t) = j d3p2 ...d3pkd
3

qi...d
3

qι Exp {ίtE(pp qh)} ψ(pj9 qh) (23)

where u i k i

E(PPqh) = ω(ΣPj + Σ«*) + Σ<*>(Pj)~ Σ ω ( « ^ ) ' ( 2 4 )
\2 1/2 1

ψ(Ppqh) = idp20 ... dpk0dq10 ... dql0 Wτ'(p2, ...,qt)
I k I

x/-:(
2 1

According to the results of the preceding section ψ is a function from 3f.
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We need to know the manifold Jt on which E is stationary. M is
determined by the conditions

dE ΣPj + Σ9H , Pi n

~ ^ = — - H — - = 0 ,

CE y.Pi+y^h qg Λ

r*— = 0 .

These conditions are equivalent to

k I

2 1

for / = 2,..., k # = 1,..., /. For k φ I ("regular case") (27) is only satisfied
for Pi = qg = 0, i.e. Jί consists of a single point. For k = I ("singular case")
(27) is solved by px = —qg = p, p an arbitrary 3-vector. In this case Jί
is a 3-dimensional plane.

In the regular case we introduce suitable linear combinations uu...,ur

(r = 3(fe + / — 1)) of the components of the pt, qg as new variables. In the
singular case we take the 3 components of

and again suitable linear combinations uu ..., ur (r = 3(fe + / — 2)) of the
ρh qg, which are chosen such that they parametrize the orthogonal
complement of Jί and vanish on M. The meaning of the word "suitable"
will become apparent later.

In both cases we can develop E into a power series in the u{:

E(u) = Eo + E\u\ E\u) = E2(u) + Eh(u). (29)

Here u stands for the r-tuplet {wj, and E0 = (k- ϊ)m. E2 is a non-degen-
erate quadratic form whose coefficients depend in the singular case on
p, and

Eh(u) = O(\u\3)9 (30)

\u\2 = Σuf.
In the singular case we define an expression X(t, p) by integrating

in (23) only over the wf. The estimates which we are going to find will turn
out to be uniform in p, and will not be invalidated by the final p-integra-
tion. We can therefore neglect the p-dependence of E2 and Eh.

The unitary factor eitEo is irrelevant for our purposes and will be
dropped. We have then to estimate expressions of the form

F(t) = J dru ψ{u) Exp {itE'{u)} . (31)
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F can be written in the form

F(t) = $dλeitλG(λ), (32)

G(λ) = J dru δ(E'(u) - λ) ψ(u). (33)

G has a compact support. The asymptotic behaviour of F depends
on the local singularities of G. These we shall now determine.

Define

Hi(x) =
α ^ O ,

(34)

We shall use the notation Ha in relations which hold for both H\ and
Hi. All Ha occurring in an equation have to carry the same upper index.

Ha(x) is (α — 1) times continuously differentiable. We have

~ Ha(E'(u) -λ) = H^E - λ), (35)
oλ

r

a(E'-λ) (36)7 dλa"
for all α ̂  0, and

^ Ha(E\u) -λ)=- {-^., VHa(E' - A)) . (37)

Here V= gradM, and (...,...) is the scalar product in the Rr.
We define

E(u) = VE\u) = E, (u) + Eh(u), (38)

£ x homogeneous of first degree, Eh = O(|M|2).

We substitute (36) into the definition (33), use (37) and integrate
(α + 1) times by part:

= l<ruHa(E'-λ)Ψa(u), (39)

E

Here (F, F)ψ = φ divF + (F, gradφ).
Assume λ > 0. We use #£ in (39). E'9 and therefore //^E' - λ) vanish

in w = 0. But ψa is C00 outside the origin, hence G(λ) exists. The same type
of argument shows that any arbitrarily high derivative of G exists. We
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have only to choose α large enough and use (35). Substitution of Hi
into (39) yields the same result for λ < 0. Thus we obtain a first result:
G(λ) is infinitely differentiable everywhere except in λ = 0.

In the origin ψa has a singularity of order 2α + 2. We can expand ipα

as follows:

ψM = Σ Ψi(u) + ψζ(u)9 (41)
μ=-2α-2

with ψ% homogeneous of degree μ and C00 outside 0, ψf continuous. The
first term in this expansion is

ψ-2"-\u) = v(0) ( F, - j jy + 1 (42)

in evident notation. The integral (39) can be taken over a sphere of radius
ρ < oo, which contains the support of ψ. We obtain for the contribution
GR of ψa to this integral

dβG
—f- = I d*uH^β{E'-λ)xpξ. (43)

This exists and is continuous in λ = 0 for β ̂  α, i.e. GΛ is α times continu-
ously differentiable. Hence GR can be made arbitrarily regular by choosing
a sufficiently high α. We shall therefore drop the φf-term.

Ha can be expanded as follows:

κ (E Y
Ha(E'-λ)= Σ Hχ_v(E2-λ)^-+HΪ(λ,u), (44)

v = 0 V *

with K ^ a -1, and Hf (0, u) = O(\u\2x+K+1). It is easy to see that

for 2 = 0. The contribution of if* to G is, then, K + r times differentiable.
It can be made arbitrarily regular through the choice of K (and α) and
can therefore again be dropped.

Finally we develop the product ψ^(EhY into a series of homogeneous
terms:

ΨμΛEhY= Σ < * , ( « ) + V θ ) (45)
σ = μ+3v

with vί.μ.v homogeneous of degree σ, ψfμv = O(|w|M). The last term can
again be dropped for sufficiently high M.
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The remaining contributions to G are

Gβ.μ.v.,W= J druH0L.v(E2-

The most singular term comes from

as given by (42).
The βth derivative

.σ = ί

exists in λ = 0 for 2yβ < r -f 2α — 2v + σ. Hence Gα^> v > σ is

189

(46)

(47)

(48)

(49)

times differentiable, where [x] is the largest integer with
Because of σ ̂  μ 4- 3 v and μ ^ - 2 α - 2 we have

(50)

The smallest β belongs to v = 0, μ= — 2α, σ = — 2α, and is — — 1 .

Thus G(λ) is times continuously differentiable.

The yth derivative (γ > βavσ) of Gα^ ) V > σ is

Glμ,v,σ = $druHa_v_y(E2-λ)ψlμ>v. (51)

For A > 0 we use H1. The substitution w = ]/λ v yields

This integral exists for λ>0. The limit A->0 exists if r + 2(α — v — y)
+ <τ < 0. In this case we can develop the integral into a power series in ]/X
and obtain

(53)

For r + 2(α - v ~ obtain

0
+ logλ Σ dχl/5 + o(ι/I log;.) (54)
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whence
ΓN „ NN

A 1/TΊ
j (55)

+ Oψλ \ogλ).

A similar expansion, with λ replaced by |A|, holds for λ < 0.
The most singular term is

G-. -2*o. -2«W = Ψ(O) J d'u Ha(E2 -

= φ(0) J" dru δ(E2 — λ) + boundary terms .

The last equality is obtained by reversing the operations which lead from
(33) to (39). The boundary terms from the partial integrations are in-
finitely differentiable in λ = 0 and are therefore irrelevant.

If E2 is positive definit, i.e. E2 = X uf = u2 for suitably chosen para-
meters uh then

J druδ(E2-λ) = constθ(λ)λ(r-2)/2 (57)

for λ < R. There is no logarithmic term. An analogous calculation for
indefinite E2 yields a logarithm in the leading term, but with a coefficient
which does not depend on the sign of λ.

Gathering all the information obtained until now, we see that we
can write G in the form (for r even)

G(λ) = έΓ |A |λ*-Mαlogμ| + θ(λ) Σ c + r / 2 + log!Xd^λ
[ Lo i

+θ(-λ) [ Σ C; W"2+logiλi Σ d; μικ/2]} (58)

r+N-l\

| 2 ) + S(λ)

with 5 e £f and N arbitrarily large. The coefficient α vanishes for definite
£ 2 The factor e~ | λ | has been introduced to get a good behaviour at
infinity. In the singular case the coefficients α, etc., are functions e@)
of p, and thus integrable.

Analogous formulae hold for the derivatives of G. In particular, we
have for the O-term in (58):

^ λ ^ - e ) f o r β < β 0 . (59)
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It is important to note that the ψj, and hence the α, c*? d*, vanish if ψ
vanishes in a neighborhood of M. In this case G is in &>.

We come now back to the asymptotic behaviour of F(t) as defined by
(32). The contribution of s(λ) is strongly decreasing. For the 0-terms we

u f r + N-l
have, for q<qo = —^ :

|ί«F0(ί)| £fdλe-Wθ(\λ\*°-*log\λ\)<ao. (60)

The contributions of the remaining terms can be calculated explicitly, e.g.

] dλeitλe~λλa\ogλ
o

= (1 - it)-χ-4J dρ <ryioge - log(l - fί) J dρ e~*A (61)
lo o J

( - 0 " 1 " " J dρe~βρa-logt Γ1 ~α + const, ί"1"""
o

for large ί.
The logarithms from the two α-terms (for λ ^ 0 and λ ^ 0 respectively)

cancel. Thus we obtain finally

(62)

For orfrf fe + / we are in the regular case r = 3(k + l — ϊ):

|F( ί) |^c | ίΓ* ( f c + i - 1 ) . (63)

For even k + / we may possibly be in the singular case, i.e. r ^ 3 (k + / — 2):

) . (64)

If φ vanishes in a neighborhood of Jt, then f is strongly decreasing at
infinity.

With (62) and (63) we can prove the estimate (21) at once. The Haag-
Ruelle-condition follows then exactly as in the traditional proofs.

Let Φ(s) be defined by (18), with non-overlapping /•. The vector
Af(t) AJ(t) Φ(s) is poly normally bounded in s and t. This can be seen by
expanding its squared norm in a cluster sum as was done in Eq. (22) and
by noticing that Wτ is in suppf a finite derivative of a continuous
function [14]. Hence Hepp's proof [15] of the LSZ asymptotic condition
is applicable to our case.
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4. The Reduction Formulae

In this section we shall make full use of condition R, not only of its
corollary P.

Let χ(p2, > ,Pn) be the distribution defined in condition R. For the
sake of simplicity we consider the special case that Gμ is the ordinary
retarded product R. Let fj(p) e Q), and define

" -,Pn), (65)

(66)

χn is regular in 3~_. According to Lemma 1 it can be written

S (67)*«(/>) = - S r
°Po

with χ regular in &~3 and continuous in Imp = 0, N sufficiently large.
Integration by parts yields

y(ί)= ΣtΊdpψι(p)x(p)e~itp+> (68)

with ψι e Θ. Take any term of this sum. Let suppψt C {\po\ < κ}? 0 < κ < oo.
The p0-integration in (68) can then be extended over the compact inter-
vall — κ S p0 ^ κ. Define

Ψ is as a function of p0 (for realp and t) regular in the complex plane with
the exception of a cut contained in —κ<po<κ.

For real p0 define

Ψ± (Po, P? ί) = lim Ψ(p0 ± is, p, t), (70)
ε-*0

so that
Ψι(p)e-itpo = ψ-(p91) - Ψ+(p, t). (71)

We introduce an auxiliary function σ(q) e £&, with σ(q) = 1 in \q\ ^ κ.
The Fourier transform of σ is called σ. We can write Ψ+ in the form

(72)
i e "* I

+ dq Lψι(^P) — ψι\P)σw']('
J Po - q J

But y-itq
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i.e. the first term in (72) vanishes for t >0. For |po | g κ the quotient in
the second term is, considered as a function of q, a test function with
compact support. The second term is the Fourier transform of this test
function, hence strongly decreasing. Thus the Ψ+-contribution to Y
decreases strongly for £->αo.

Both χ(p) and Ψ~(p,t) are regular in Imp o <0. Therefore, we can
deform the p0-integration path in

κ

— κ

into a semicircle of radius κ in the lower half-plane. On this path we
have Ψ~ = Ψ. The path is a compact set in the cut p0-plane, and on
such a set we have, for any positive integer iV:

Po-q dqN

dqe
2 « | r * * dqN po-<

(73)

1 dN ψι(q, P)

dqN <oo

uniformly in p. This means that Ψ decreases strongly on the deformed
integration path, hence the *F~~-part of Y decreases strongly for ί-*oo,
and hence also Y(t) itself.

As a side remark we note that the factor e~itω(p) was of no con-
sequence in these estimations. It could be replaced by a factor e~

it{UyP\
a arbitrary, without affecting the result. In this way we see that the
retarded function r'{x1 — x2,..., xγ — xn) decreases strongly in the
directions (xx — x3) φ V+ for a j'^ 2. This property replaces the support
condition of the localizable case.

From the above estimate and some straightforward generalizations
we obtain with the help of the algebraic relations between the retarded
products among themselves and with the T-products [6] the following
facts (fe2) :

limf dp I I/*(p l l)Λ(p 1,...,pJβ-^- = 0 , (74)
ί->oo

\im{\dp,J*(pn)R(pu ...,pn)e-ί'»--tR(p1, ...,pn_1),Af(t)-]} = 0 (75)

if " - -•
lim <j I Y[ldpjf*(Pj)e ιtPj\\ T(qu ...,qm,pί9 . . . , p j

1

-T(ql9...9qJ\ Ylίdpjff(pj)e~itpr]f(p1,...,pn)\ = 0 . (76)

ί-* -oo
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With the help of these relations we can easily transcribe the proofs of the
LSZ reduction formulae based on the Haag-Ruelle asymptotic condition
[6] or the LSZ asymptotic condition [15] for our case. The proof [15]
that the amputated ττ are, for non-overlapping momenta, continuous
in the variables pj in a neighborhood of the mass shell, also carries over
to our case with some obvious modifications.

The result is, that the LSZ reduction formulae hold in exactly the
same form as in localizable theories.
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