Constraints on the Derivatives of the $\pi \pi$ Scattering Amplitude from Positivity

A. K. Common*
CERN-Geneva
and
F. J. Yndurain
Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain

Received March 27, 1970

Abstract

Conditions derived from positivity are given both above and below threshold for the derivatives of the $\pi \pi$ scattering amplitude.

1. Introduction

From the general assumptions of unitarity, crossing and analyticity in a domain derivable from axiomatic field theory, it can be shown that the $\pi \pi$ scattering amplitudes satisfy twice subtracted dispersion relations [1]. Hence D and higher partial waves have the Froissart-Gribov representation [2] so that if $f_{l}(s)$ are the partial waves in the s channel for even isotopic spin states where s is the centre-of-mass energy squared ${ }^{1}$,

$$
\begin{equation*}
f_{l}(s)=\frac{4}{\pi(4-s)} \int_{4}^{\infty} A_{t}(s, t) Q_{l}\left(\frac{2 t}{4-s}-1\right) d t ; l=2,4, \ldots \tag{1.1}
\end{equation*}
$$

when $0<s<4$. $A_{t}(s, t)$ is the absorptive part of the scattering amplitude ${ }^{2}$ and for certain isotopic spin combinations ${ }^{3}$ in the s channel it has the expansion

$$
\begin{equation*}
A_{t}(s, t)=\sum_{l=0}^{\infty}(2 l+1) \alpha_{l}(t) P_{l}\left(1+\frac{2 s}{t-4}\right) \tag{1.2}
\end{equation*}
$$

where the $\alpha_{l}(t) \geqq 0$ from unitarity.
It follows from (1.2) that for $t \geqq 4$ and $0<s<4$,

$$
\begin{equation*}
A_{t}(s, t) \geqq 0 \tag{1.3}
\end{equation*}
$$

[^0]In previous papers [3, 4] it was shown that the condition (1.3) puts strong constraints on the $f_{l}(s)$ when $0<s<4$ and in fact they are sufficient to prove that the f_{l} 's are solutions of a Stieltjes moment problem.

However, these results did not take into account the full content of positivity which requires $\alpha_{l}(s) \geqq 0$ for all l or equivalently

$$
\begin{equation*}
\int_{-1}^{+1} \cos \theta_{t} P_{l}\left(\cos \theta_{t}\right) A_{t}(s, t) d \cos \theta_{t} \geqq 0, l=0,1, \ldots ; 0 \leqq s \leqq 4 \tag{1.4}
\end{equation*}
$$

In this article we consider the problem of finding the constraints that this positivity places on the derivatives $\left(\partial^{m} T(s, t)\right) /\left(\left(\partial \cos \theta_{s}\right)^{m}\right)$ of the $\pi \pi$ scattering amplitude. Three types of constraints are considered.
i) Firstly conditions on the derivatives of $T(s, t)$ at any angle when s is restricted to $0 \leqq s \leqq 4$, which are derived from $A_{t}(s, t) \geqq 0$.
ii) Secondly constraints on the quantities

$$
\left.\frac{\partial^{n+m} T(s, t)}{\partial s^{n}\left(\partial \cos \theta_{s}\right)^{m}}\right|_{\cos \theta_{s}=0}, \quad n, m=0,1,2 \ldots
$$

which ensure that

$$
\begin{equation*}
\frac{\partial^{n} A_{t}(s, t)}{\left(\partial \cos \theta_{t}\right)^{n}} \geqq 0, \quad n=0,1,2, \ldots \tag{1.5}
\end{equation*}
$$

Although the conditions (1.5) are weaker than positivity, they are already sufficient to obtain many of the consequences of the full positivity [5].
iii) Finally we derive constraints on the quantities

$$
\left.\frac{\partial^{n} A_{t}(s, t)}{\left(\partial \cos \theta_{t}\right)^{n}}\right|_{\cos \theta_{t}=0}
$$

with t in the physical region which are necessary for the full positivity (1.4) This set of constraints can be extended to give a set of sufficient conditions for (1.4) to hold.

These three different types of constraints may prove useful for the parametrization of the $\pi \pi$ amplitudes, as they can be used both above and below threshold and thus may be directly inserted into dispersion relations. Also it is easier to handle "crossing" when dealing with derivatives of $T(s, t)$ than when working with the partial wave amplitudes $f_{l}(s)$ and it is therefore useful to have constraints on the former quantities.

2. Constraints on the Derivatives of the Scattering Amplitude $T(s, t)$ at any Angle for Fixed \boldsymbol{s} below Threshold

We work below threshold, i.e., $0<s<4$, for $\pi \pi$ scattering in any of the isospin combinations,

$$
\begin{equation*}
T(s, t)=(1+\lambda / 3) T^{(0)}(s, t)+(2 \lambda / 3) T^{(2)}(s, t), \lambda \geqq-1 \tag{2.1}
\end{equation*}
$$

where $T^{(I)}$ is the amplitude for scattering in the s channel state with total isospin I. These combinations are such that the absorptive part in the t channel $A_{t}(s, t)$ satisfies the conditions (1.4) [3].

For $0<s<4$ there exists the fixed s dispersion relation,

$$
\left.T(s, t)=\text { (polynomial of first degree in } \cos \theta_{s}\right)
$$

$$
\begin{equation*}
+\frac{1}{\pi} \int_{4}^{\infty} \frac{1}{t^{\prime 2}}\left[\frac{t^{2}}{t^{\prime}-t}+\frac{(4-s-t)^{2}}{t^{\prime}-4+s+t}\right] A_{t}\left(s, t^{\prime}\right) d t^{\prime} \tag{2.2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\mu_{m}\left(s, \cos \theta_{s}\right)=\frac{\pi}{m!} \frac{\partial^{m} T(s, t)}{\left(\partial \cos \theta_{s}\right)^{m}} . \tag{2.3}
\end{equation*}
$$

Then from (2.2) for $m \geqq 2$,

$$
\begin{align*}
& \mu_{m}\left(s, \cos \theta_{s}\right) \tag{2.4}\\
& \quad=\int_{z_{0}}^{\infty}\left\{\frac{1}{\left(z-\cos \theta_{s}\right)^{m+1}}-\frac{1}{\left(-z-\cos \theta_{s}\right)^{m+1}}\right\} A_{t}[s,(z+1)(2-s / 2)] d z
\end{align*}
$$

where

$$
z_{0}=\left[\frac{4+s}{4-s}\right]
$$

We consider the case when $\cos \theta_{s} \geqq 0$. Then defining $\chi_{ \pm}^{\prime} \equiv 1 /$ $\left(\pm z-\cos \theta_{s}\right)$, we have that as z varies between ∞ and z_{0}, χ_{+}varies between 0 and $\chi_{+}^{0} \equiv 1 /\left(z_{0}-\cos \theta_{s}\right)$. Furthermore for any $z \geqq z_{0}$ and when $\cos \theta_{s} \geqq 0, \chi_{+} \geqq\left|\chi_{-}\right|$. We are now in a position to prove the following result.

Theorem 1.When $4>s>0$ and $\cos \theta_{s} \geqq 0$, then for any odd integer $m>2$,

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(\chi_{+}^{0}\right)^{2(n-j)} \mu_{m+2 j}\left(s, \cos \theta^{s}\right) /(m+2 j+1) \geqq 0, \quad n=0,1,2, \ldots \tag{2.5}
\end{equation*}
$$

and for any even integer $m \geqq 2$,

$$
\begin{equation*}
\sum_{j=0}^{n}\binom{n}{j}\left(\chi_{+}^{0}\right)^{2(n-j)} \mu_{m+2 j}\left(s, \cos \theta_{s}\right) \geqq 0 \quad n=0,1,2, \ldots \tag{2.6}
\end{equation*}
$$

Proof. Consider first the case when m is odd. The left-hand side of (2.5) is equal to

$$
\begin{align*}
& \sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(\chi_{+}^{0}\right)^{2(n-j)} \frac{\left\{\chi_{+}^{m+2 j+1}-\chi_{-}^{m+2 j+1}\right\}}{(m+2 j+1)} A_{t}[s,(z+1)(2-s / 2)] d z \\
& \int_{z_{0}}^{\infty} \sum_{j=0}^{n}\binom{n}{j}(-1)^{j}\left(\chi_{+}^{0}\right)^{2(n-j)}\left\{\int_{0}^{\chi+} \chi^{m+2 j} d \chi+(-1)^{m+2 j} \int_{0}^{\mid \chi-1} \chi^{m+2 j} d \chi\right\} A_{t}[s,(z+1)(2-s / 2)] d z \\
& \int_{z_{0}}^{\infty}\left\{\int_{0}^{\chi+} \chi^{m}\left[\left(\chi_{+}^{0}\right)^{2}-\chi^{2}\right]^{n} d \chi+(-1)^{m+2 j} \int_{0}^{|x-|} \chi^{m}\left[\left(\chi_{+}^{0}\right)^{2}-\chi^{2}\right]^{n} d \chi\right\} A_{t}[s,(z+1)(2-s / 2)] d z \tag{2.7}
\end{align*}
$$

Since $\chi_{+}^{0} \geqq \chi_{+} \geqq\left|\chi_{-}\right|$when $\cos \theta_{s} \geqq 0$, the above quantity is positive for odd m so that (2.5) is proved. Similarly it can be proved that (2.6) is true for all even m.

Corollary. When $\cos \theta_{s} \leqq 0$, the inequality (2.5) is reversed and (2.6) holds as it is.

The second result is an immediate consequence of the fact that $\mu_{m}\left(s, \cos \theta_{s}\right) \geqq 0$ for even m when $\cos \theta_{s} \leqq 0$, while the first follows from the relation

$$
\begin{equation*}
\mu_{m}\left(s, \cos \theta_{s}\right)=-\mu_{m}\left(s,-\cos \theta_{s}\right) \tag{2.8}
\end{equation*}
$$

when m is odd.
Although conditions (2.5) and (2.6) on the $\mu_{n}\left(s, \cos \theta_{s}\right)$ are very stringent, they are only necessary but not sufficient conditions for $A_{t}[s,(z+1)$ $\times(2-s / 2)] \geqq 0$. However, when $\cos \theta_{s}=0$ they coincide with the conditions of Ref. [4] on the quantities $\mu_{m} \equiv \mu_{s}(s, 0)$ and are then also sufficient to ensure the positivity of A_{t}.

3. Constraints on the Derivatives of $\boldsymbol{T}(\boldsymbol{s}, \boldsymbol{t})$ with Respect to \boldsymbol{s}

We will in this Section obtain sets of conditions on the quantities $\left.\partial^{m+j} T s, t\right) / \partial^{m} s\left(\partial \cos \theta_{s}\right)^{j}$ which ensure that Martin's positivity

$$
\begin{equation*}
\frac{\partial^{n} A_{t}(s, t)}{\partial s^{n}} \geqq 0, \quad n=0,1,2, \ldots \tag{3.1}
\end{equation*}
$$

holds for $0<s<4$.
In fact we will consider only the case when $\cos \theta_{s}=0$, as it is only then that simple conditions can be obtained even for the first condition of (3.1), viz., $A_{t} \geqq 0$ to hold. Taking (2.4) for $\cos \theta_{s}=0$ and defining for even $m \geqq 2$,

$$
\begin{equation*}
k_{m}(s)=\frac{1}{4}(4-s)^{-m} \mu_{m}(s, 0) \tag{3.2}
\end{equation*}
$$

we obtain the representation

$$
\begin{equation*}
k_{m}^{(s)}=\int_{4}^{\infty} d t A_{t}(s, t)(2 t-4+s)^{-m-1} \tag{3.3}
\end{equation*}
$$

where the change of variables $z \rightarrow t$ has been made and we take this to be also the definition of $k_{m}(s)$ for m odd and $\geqq 3$.

Differentiating with respect s,

$$
\begin{equation*}
k_{m}^{(1)}(s)=\int_{4}^{\infty} d t A_{m}^{(1)}(s, t)(2 t-4+s)^{-m-1}-(m+1) \int_{4}^{\infty} d t A_{t}(s, t)(2 t-4+s)^{-m-2} \tag{3.4}
\end{equation*}
$$

where $k_{m}^{(1)} \equiv \frac{\partial k_{m}}{\partial s}$ and $A_{m}^{(1)} \equiv \frac{\delta}{\partial s} A_{t}(s, t)$. Hence we see that the quantity $h_{m}^{(1)} \equiv k_{m}^{(1)}+(m+1) k_{m+1}$ has the representation

$$
\begin{equation*}
h_{m}^{(1)}(s)=\int_{4}^{\infty} d t A_{t}^{(1)}(s, t)(2 t-4+s)^{-m-1} \tag{3.5}
\end{equation*}
$$

Quite generally we will have

$$
\begin{align*}
h_{m}^{(n)}(s) \equiv & k_{m}^{(n)}(s)-\sum_{l=1}^{n} \frac{\Gamma(n+1) \Gamma(m+l+1)(-1)^{l}}{\Gamma(n-l+1) \Gamma(l+1) \Gamma(m+1)} h_{l+m}^{(n-l)}(s) \\
& =\int_{4}^{\infty} A_{t}^{(n)}(s, t)(2 t-4+s)^{-m-1} d t . \tag{3.6}
\end{align*}
$$

By a straightforward application of the methods of Refs. [2,6], the following theorem may be proved.

Theorem 2. A set of necessary and sufficient conditions for (3.1) to be true is that the quantities $h_{m}^{(n)}(s)$ defined in (3.6) satisfy for $m \geqq 2$

$$
\begin{equation*}
\sum_{j=0}^{l}\binom{l}{\mathrm{j}}(-1)^{j} h_{m+2 j}^{(n)}(4+s)^{2(l-j)} \geqq 0 \quad n=0,1, \ldots ; \quad 0<s<4 \tag{3.7}
\end{equation*}
$$

We want to write the conditions (3.7) as constraints on the quantities

$$
\begin{equation*}
\frac{\partial^{n} \mu_{m}(s, 0)}{\partial s^{n}}=\left.\frac{\partial^{m+n} T(s, t)}{\partial s^{n}\left(\partial \cos \theta_{s}\right)^{m}}\right|_{\cos \theta_{s}=0} \tag{3.8}
\end{equation*}
$$

However, they have the unpleasant feature of depending on $k_{m}^{(n)}(s)$ for both odd and even values of m. But it is only for even values of m that we can use (3.2) to get $k_{m}^{(n)}(s)$ in terms of the $\partial^{n} \mu_{m}(s, 0) / \partial s^{n}$.

To obtain $k_{m}(s)$ as defined by (3.3) for odd m from its value for even m, we can use a very accurate method of interpolation which has been discussed by one of us in Section 5 of the second paper of Ref. [3]. Similar results are true for the quantities $k_{m}^{(n)}(s)$. Using these values the conditions (3.7) can be tested to a high degree of accuracy.

4. Constraints for Physical \boldsymbol{t}

So far we have not derived constraints which give the full positivity conditions (1.4) and this is what we will do now. These conditions are equivalent to having the expansion

$$
\begin{equation*}
A_{t}(s, t)=\sum_{l=0}^{\infty}(2 l+1) \alpha_{l}(t) P_{l}\left(\cos \theta_{t}\right) \tag{4.1}
\end{equation*}
$$

for $t \geqq 4$, where $\alpha_{l}(t)=\operatorname{Im} f_{l}(t)$ are positive. This expansion can be compared with the Taylor's series expansion,

$$
\begin{equation*}
A_{t}(s, t)=\left.\sum_{l=0}^{\infty} \frac{\left[\cos \theta_{t}-1\right]^{n}}{n!} \frac{\partial^{n} A_{t}(s, t)}{\left(\partial \cos \theta_{t}\right)^{n}}\right|_{\cos \theta_{t}=1} \tag{4.2}
\end{equation*}
$$

Since [7]

$$
\begin{equation*}
\left.\frac{d^{n} P_{l}(x)}{d x^{n}}\right|_{x=1}=\frac{(l+n)!}{2^{n} n!(l-n)!} \tag{4.3}
\end{equation*}
$$

we get

$$
\begin{equation*}
\left.\frac{\partial^{n} A_{t}(s, t)}{\left(\partial \cos \theta_{t}\right)^{n}}\right]_{\cos \theta_{t}=1}=\frac{1}{2^{n} n!} \sum_{l=0}^{\infty}(2 l+1) \frac{(l+n)!}{(l-n)!} \alpha_{l}(s) \tag{4.4}
\end{equation*}
$$

Then since

$$
(l+n)!/(l-n)!=(l+n)(l+n-1) \ldots(l-n+2)(l-n+1)
$$

and

$$
(l+n)(l-n+1)=l(l+1)-n(n-1),
$$

we see that each coefficient of α_{l} in (4.4) is proportional to the same polynomial in $l(l+1)$. Defining the quantities $\beta_{n}(s)$ to be the left-hand side of (4.4), then

$$
\begin{equation*}
\left.\beta_{n}(s) \equiv \frac{\partial^{n} A_{t}(s, t)}{\left(\partial \cos \theta_{t}\right)^{n}}\right|_{\cos \theta_{t}=1}=\frac{1}{2^{n} n!} \sum_{l=0}^{\infty}(2 l+1) \alpha_{l}(s)\left\{\prod_{m=0}^{n}[l(l+1)-m(m-1)]\right\} . \tag{4.5}
\end{equation*}
$$

We now define $g_{n}(s)$ to be

$$
\begin{equation*}
g_{n}(s) \equiv \sum_{l=0}^{\infty}(2 l+1)[l(l+1)]^{n} \alpha_{l}(s) \tag{4.6}
\end{equation*}
$$

The $\beta_{n}(s)$ may be obtained from the $g_{n}(s)$ and conversely by a nonsingular linear transformation of the form

$$
\begin{array}{cc}
\beta_{n}(s)=a_{n, n} g_{n}(s)+a_{n, n-1} g_{n-1}(s)+\cdots+a_{n, 0} g_{0}(s) \\
\beta_{n-1}(s)= & a_{n-1, n-1} g_{n-1}(s)+\cdots+a_{n-1,0} g_{0}(s) \tag{4.7}\\
\vdots & \\
\vdots & \\
\beta_{0}(s) & \\
& \\
& +a_{0,0} g_{0}(s)
\end{array}
$$

where the coefficients $a_{n, m}$ can be determined from (4.5).
From (4.6) we notice that the $g_{n}(s)$ may be written in the form

$$
\begin{equation*}
g_{n}(s)=\int_{0}^{\infty} u^{n} d \phi(u), \quad n=0,1,2, \ldots \tag{4.8}
\end{equation*}
$$

where $\phi(u)$ is a bounded non-decreasing function of u with points of increase at $u=l(l+1)$ where $l=0,1,2, \ldots$. The following theorem is then
an immediate consequence of Theorem (1.3) given in Ref. [6] for sequences with such representations.

Theorem 3. A necessary set of conditions for $A_{t}(s, t)$ to have the expansion (4.1) with $\alpha_{l} \geqq 0$ for all l is that the $g_{n}(s)$ defined by (4.5) and (4.7) satisfy

$$
\left|\begin{array}{ccc}
g_{m}(s) g_{m+1}(s) & \ldots & g_{m+n}(s) \tag{4.9}\\
g_{m+}{ }^{1}(s) & \vdots \\
\vdots & & \vdots \\
\vdots & & \vdots \\
g_{m+n}(s) & \cdots \cdots \cdots & g_{m+2 n}(s)
\end{array}\right| \geqq 0 ; \quad m, n=0,1,2, \ldots
$$

By using the inverse of the transformation (4.7) the conditions (4.9) can be written in terms of the derivatives of $A_{t}(s, t)$ in the forward direction. For example we get taking $m=0$ and $n=1$ that

$$
\begin{equation*}
2 \beta_{0}(s) \beta_{2}(s)+\beta_{0}(s) \beta_{1}(s)-\left[\beta_{1}(s)\right]^{2} \geqq 0 \tag{4.10}
\end{equation*}
$$

The conditions (4.9) are also sufficient for the $g_{n}(s)$ to have the representation (4.8) with $\phi(u)$ bounded and non-decreasing but other conditions have to be added to ensure that $\phi(u)$ has only points of increase at $u=l(l+1)$ with $l=0,1,2, \ldots$ so that $g_{n}(s)$ has the representation (4.6) and $\beta_{n}(s)$ the corresponding representation (4.5) These extra conditions are given by the following theorem [8].

Theorem 4. Let

$$
\begin{equation*}
C_{n}=\frac{4^{n}}{n!} \sum_{m=n}^{\infty}\left(-\pi^{2}\right)^{m} \frac{m!}{(2 m)!(m-n)!} \tag{4.11}
\end{equation*}
$$

and suppose that the $g_{n}(s)$ satisfy the conditions (4.9) and are such that the series $\sum_{n=0}^{\infty} C_{n} g_{n}(s)$ converges absolutely. Then $g_{n}(s)$ has the representation (4.6) if and only if the sum of this series is $-g_{0}$.

Proof. We have the representation (4.8) for $g_{n}(s)$ since conditions (4.9) are satisfied and we have to prove that $\phi(u)$ increases only at the points $u=(l+1)$. Now

$$
\begin{align*}
\sum_{n=0}^{\infty} C_{n} g_{n}(s) & =\sum_{n=0}^{\infty} C_{n} \int_{0}^{\infty} d \phi(u) u^{n} \\
& =\sum_{n=0}^{\infty} \frac{4^{n}}{n!}\left\{\sum_{m=n}^{\infty} \frac{\left(-\pi^{2}\right)^{m}}{(2 m)!} \frac{m!}{(m-n)!} \int_{0}^{\infty} d \phi(u) u^{n}\right\} \tag{4.12}\\
& =\int_{0}^{\infty} d \phi(u)\left\{\sum_{m=0}^{\infty} \frac{\left(-\pi^{2}\right)^{m}}{(2 m)!}(1+4 u)^{m}\right\} \\
& =2 \int_{0}^{\infty} d \phi(u) \sin ^{2} \frac{\pi}{2}[\sqrt{1+4 u}-1]-g_{0}
\end{align*}
$$

where we have used the absolute convergence of the series to invert the order of summation and integration. The last integral vanishes if and only if $d \phi(u)$ is different from zero only when $u=l(l+1)$ with $l=0,1, \ldots$, so the theorem is proved.

We have thus obtained sufficient conditions for $g_{n}(s)$ to have the representation (4.6). That they are not necessary is easily seen from the fact that the existence of the $g_{n}(s)$ for all $n=0,1,2, \ldots$, does not imply the absolute convergence of the series $\sum_{n=0}^{\infty} C_{n} g_{n}(s)$. Finally from unitarity we have the requirement that $\alpha_{l}(s)$ is smaller than unity. We have been unable to obtain either necessary or sufficient conditions on the derivatives of $A_{t}(s, t)$ for this to be so.

Acknowledgements. One of us (F. J. Y.) would like to acknowledge the hospitality extended to him at CERN where most of this work was done.

References

1. Jin, Y. S., Martin, A.: Phys. Rev. 135, B 1375 (1964).
2. Froissart, M.: Proceedings of La Jolla Conference (1961), unpublished.

Gribov, V. N.: Soviet Phys. J.E.T.P. 15, 873 (1962).
Martin, A.: Phys. Letters 1, 72 (1962).
3. Common, A. K.: Nuovo Cimento 63 A, 863 (1969), and 65 A, 581 (1970).
4. Yndurain, F. J.: Nuovo Cimento 64 A, 225 (1969).
5. Martin, A.: Nuovo Cimento 42, 930 and 44, 1219 (1966).
6. See also, Shohat, J. A., Tamarkin, J. D.: The problem of moments. Am. Math. Soc., Monographs (1943).
7. Whittaker, E. T., Watson, G. N.: Modern analysis, fourth edition, p. 312. Cambridge: University Press 1952.
8. To prove this theorem we have followed closely the methods of Wintner, A.: Duke Math. J. 12, 23 (1945).
A. K. Common
F. J. Yndurain

CERN, Theoretical Physics Division
CH-1211 Genf 23

[^0]: * On leave of absence from the University of Kent at Canterbury.
 ${ }^{1}$ We take units such that the mass of the pion is unity.
 ${ }^{2}$ We will use the suffices s and t to indicate physical quantities in the s channel and t channel respectively.
 ${ }^{3}$ See Eq. (2.1).

