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Abstract. Conditions derived from positivity are given both above and below threshold
for the derivatives of the π π scattering amplitude.

1. Introduction

From the general assumptions of unitarity, crossing and analyticity
in a domain derivable from axiomatic field theory, it can be shown that
the π π scattering amplitudes satisfy twice subtracted dispersion rela-
tions [1]. Hence D and higher partial waves have the Froissart-Gribov
representation [2] so that if f^s) are the partial waves in the s channel
for even isotopic spin states where s is the centre-of-mass energy squared \

when 0 < s < 4. At(s, t) is the absorptive part of the scattering amplitude2

and for certain isotopic spin combinations 3 in the s channel it has the
expansion β

At{s, t) = Σ (2 / +1) α,(ί) P, 1 + — χ (1.2)
\ l ^J1 = 0

where the α^ί) ̂  0 from unitarity.
It follows from (1.2) that for t ^ 4 and 0 < s < 4,

(1.3)

* On leave of absence from the University of Kent at Canterbury.
1 We take units such that the mass of the pion is unity.
2 We will use the suffices s and t to indicate physical quantities in the s channel and t

channel respectively.
3 See Eq. (2.1).
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In previous papers [3, 4] it was shown that the condition (1.3) puts
strong constraints on the f^s) when 0 < 5 < 4 and in fact they are sufficient
to prove that the fis are solutions of a Stieltjes moment problem.

However, these results did not take into account the full content
of positivity which requires αj(s)^0 for all / or equivalently

j cos0f P,(cos0f) At(s91) d cosθ, ̂  0, / = 0,1,... 0 ̂  s ^ 4. (1.4)
- 1

In this article we consider the problem of finding the constraints
that this positivity places on the derivatives (dmT(s, t))/((d cosθs)

m) of the
π π scattering amplitude. Three types of constraints are considered.

i) Firstly conditions on the derivatives of T(s, t) at any angle when 5
is restricted to 0 ̂  s ^ 4, which are derived from At(s91) ^ 0.

ii) Secondly constraints on the quantities

1 , n, ra = 0,1,2...
dsn(doosθs)

m\cosθs=o

which ensure that & A ( t\

(δcosfl/ = ' >>>•••• v •

Although the conditions (1.5) are weaker than positivity, they are
already sufficient to obtain many of the consequences of the full posi-
tivity [5].

iii) Finally we derive constraints on the quantities

dnAt(s,t)\

(dcosθtγ\cosθt=0

with t in the physical region which are necessary for the full positivity
(1.4) This set of constraints can be extended to give a set of sufficient
conditions for (1.4) to hold.

These three different types of constraints may prove useful for the
parametrization of the π π amplitudes, as they can be used both above
and below threshold and thus may be directly inserted into dispersion
relations. Also it is easier to handle "crossing" when dealing with deri-
vatives of T(s, t) than when working with the partial wave amplitudes
ft(s) and it is therefore useful to have constraints on the former quantities.

2. Constraints on the Derivatives of the Scattering Amplitude T(s, t) at
any Angle for Fixed 5 below Threshold

We work below threshold, i.e., 0 < s < 4 , for ππ scattering in any
of the isospin combinations,

T(s, ί) = (1 + λβ) T^(s, t) + (2λβ) Γ(2)(s, t\λ^-l, (2.1)
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where T ( 7 ) is the amplitude for scattering in the s channel state with
total isospin /. These combinations are such that the absorptive part
in the t channel At(s, t) satisfies the conditions (1.4) [3].

For 0 < s < 4 there exists the fixed s dispersion relation,

T(s, t) = (polynomial of first degree in cos0s)

+ l f _i
π t'2 [ t fπ i f* \f-t t

Let

Then from (2.2) for m ^ 2,

μm(s,cos0s) ^

1 1

zo ^- 7-COSθ s)
m + 1 ( - Z —

where Γ 4 + 5 1

We consider the case when cos 0S ^ 0. Then defining χ'± = 1/
(±z — cosθs), we have that as z varies between oo and zθ9 χ+ varies
between 0 and χ% = l/(z0 — cos θs). Furthermore for any z ^ z 0 and when
cos0sΞ^O, χ+ ^ | χ_ | . We are now in a position to prove the following
result.

Theorem 1. When 4 > s > 0 and cos 0S ^ 0, then for any odd integer m > 2,

Σ W ( - l ) % ϊ ) 2 ( w - J V w + 2 J fecosθs)/(m + 2; + l ) ^ 0 , n = 0,1,2,. . . (2.5)
7 = 0 \J/
and for any even integer m ^ 2,

« = 0, l ,2, . . . . (2.6)Σ ( ) ( X + )
j=o\J/

Proof Consider first the case when m is odd. The left-hand side of
(2.5) is equal to

n /n\ fγm+2j+l _

o

1 Σ (n)(-W+)2in-j)\Xiχm+2Jdχ+(-ψ+2jX~\
>.o j=o \J/ I o o

( 2 7 )
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Since χ°+ ^χ+ ^\χ~\ when cos0 s^O, the above quantity is positive for
odd m so that (2.5) is proved. Similarly it can be proved that (2.6) is true
for all even m.

Corollary. When cos0 s:gθ, the inequality (2.5) is reversed and (2.6)
holds as it is.

The second result is an immediate consequence of the fact that
μm(s, cos0 s)^O for even m when cos0 s^O, while the first follows from
the relation

μm(s, cos 0S) = - μm(s, - cos 0S) (2.8)

when m is odd.
Although conditions (2.5) and (2.6) on the μn(s, cos 0S) are very stringent,

they are only necessary but not sufficient conditions for At[s9(z + ΐ)
x (2 — s/2)]^0. However, when cos0s = O they coincide with the con-
ditions of Ref. [4] on the quantities μm = μs(s, 0) and are then also
sufficient to ensure the positivity of At.

3. Constraints on the Derivatives of T(s, i) with Respect to s

We will in this Section obtain sets of conditions on the quantities
dm+jTs,t)/dms(d cos θs)

j which ensure that Martin's positivity

_ V , .* vr, A , ~ , . . . V*"^/

holds for 0 < 5 < 4.
In fact we will consider only the case when cos θs = 0, as it is only

then that simple conditions can be obtained even for the first condition
of (3.1), viz., At^0 to hold. Taking (2.4) for cos0s = O and defining for
even m ^ 2,

^ ( cΛ -i. (Λ cΛ Ή 11 (ςr (Y\ CX O\

we obtain the representation

- 1 , (3.3)

where the change of variables z-+t has been made and we take this
to be also the definition of km(s) for m odd and ^ 3.

Differentiating with respect 5,

4 (3.4)
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where k{^ = m and A ^ = — - A(s, ί) Hence we see that the quantity
OS OS

= fc(m) + (m +1) ^m+1 h a s the representation

~i. (3.5)
4

Quite generally we will have

1)Γ(m+1) " ί + m ( S )

00

- J A\n)(s, t) (2 ί - 4 + s)- w ~ 1 ί ί ί .
4

By a straightforward application of the methods of Refs. [2, 6], the
following theorem may be proved.

Theorem 2. A set of necessary and sufficient conditions for (3.1) to
be true is that the quantities h$(s) defined in (3.6) satisfy for m ^ 2

4 ( j ) ( ) ^ + 2 j ( ) - Λ ; 0<5<4

We want to write the conditions (3.7) as constraints on the quantities

d"μm(s,O) dm+nT(s,t)
dsn dsn(dcosθs)

m (3.8)
cos θs = 0

However, they have the unpleasant feature of depending on fc^(s) for
both odd and even values of m. But it is only for even values of m that we
can use (3.2) to get k^(s) in terms of the dnμm(s, O)/ds\

To obtain km(s) as defined by (3.3) for odd m from its value for even m,
we can use a very accurate method of interpolation which has been
discussed by one of us in Section 5 of the second paper of Ref. [3].
Similar results are true for the quantities fe^(s). Using these values the
conditions (3.7) can be tested to a high degree of accuracy.

4. Constraints for Physical t

So far we have not derived constraints which give the full positivity
conditions (1.4) and this is what we will do now. These conditions are
equivalent to having the expansion

At(s, t)= £ ( 2 1 + 1)^(0^(008^) (4.1)
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for ί^4, where ocι(t) = Imfι(t) are positive. This expansion can be com-
pared with the Taylor's series expansion,

d " A ^ \ (4 2)
( )

Since [7]
dnP,(x) I

dx" J x = 1 2nn\{l-ή)\
we get

Then since

and

we see that each coefficient of αz in (4.4) is proportional to the same
polynomial in /(/ +1). Defining the quantities βn(s) to be the left-hand
side of (4.4), then

2 ^ {Π
c o s 6 > t = l Z W ! Z = 0 lm = O

(4.5)
We now define gn(s) to be

flf.(s)= Σ ( 2 / + l)[/(/ + l)]"α l(s). (4.6)

The j5π(s) may be obtained from the gn(s) and conversely by a non-
singular linear transformation of the form

(4.7)

where the coefficients anm can be determined from (4.5).
From (4.6) we notice that the #M(s) may be written in the form

gn(s)=]undφ(u% n = 0,1,2,.... (4.8)
o

where φ(u) is a bounded non-decreasing function of u with points of
increase at u = 1(1 +1) where / = 0,1,2,.... The following theorem is then
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an immediate consequence of Theorem (1.3) given in Ref. [6] for sequences
with such representations.

Theorem 3. A necessary set of conditions for At(s, t) to have the ex-
pansion (4.1) with oίi ̂  0 for all I is that the gn(s) defined by (4.5) and (4.7)
satisfy

+ 2n(S)

rc = 0,1,2, . . . (4.9)

By using the inverse of the transformation (4.7) the conditions (4.9)
can be written in terms of the derivatives of At(s, t) in the forward direction.
For example we get taking m = 0 and n — \ that

2βo(s) β2(s) + βo(s) βΛs) - ίβ1(s)']2 ^ 0. (4.10)

The conditions (4.9) are also sufficient for the gn(s) to have the re-
presentation (4.8) with φ(u) bounded and non-decreasing but other
conditions have to be added to ensure that φ(u) has only points of
increase at u = l(l + ΐ) with / = 0,1,2,... so that gn(s) has the represen-
tation (4.6) and βn(s) the corresponding representation (4.5) These extra
conditions are given by the following theorem [8].

Theorem 4. Let

~ 4 " ' *~ m (4.11)
nl (2m)\(m-n)\

and suppose that the gn(s) satisfy the conditions (4.9) and are such that
00

the series £ Cngn(s) converges absolutely. Then gn(s) has the represen-
n = 0

tation (4.6) if and only if the sum of this series is —g0.

Proof We have the representation (4.8) for gn(s) since conditions
(4.9) are satisfied and we have to prove that φ(u) increases only at the
points u = (I +1). Now

n=0 « = 0

(-π2f ml

(4.12)

= 2]dφ(u)sin2

o
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where we have used the absolute convergence of the series to invert the
order of summation and integration. The last integral vanishes if and
only if dφ(u) is different from zero only when u = 1(1 + 1) with / = 0,1,...,
so the theorem is proved.

We have thus obtained sufficient conditions for gn(s) to have the
representation (4.6). That they are not necessary is easily seen from the
fact that the existence of the gn(s) for all n = 0,1,2,..., does not imply

00

the absolute convergence of the series £ Cngn(s). Finally from unitarity
n = 0

we have the requirement that αz(s) is smaller than unity. We have been
unable to obtain either necessary or sufficient conditions on the deriva-
tives of At(s, t) for this to be so.
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