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Abstract. The representation theory of the group generated by the Dirac matrices is
studied. It is shown that the Fierz transformation can be expressed in terms of Racah
coefficients of this group. A number of generalized Fierz transformations have been found.
Simple rules are given for calculating Fierz invariants and anti-invariants.

1. Introduction

When performing explicit calculations on four-fermion interactions
it is often expedient to apply the so-called Fierz transformation [1-3]
and to make use of the Fierz invariants and anti-invariants [4-7]. The
usual derivation of the explicit form of this transformation does not
provide much insight in the underlying principles and is somewhat
clumsy. Case [8] studied the Fierz identities in relation with the theory of
spinor representations of orthogonal groups. He found for every ortho-
gonal group the corresponding Fierz transformation using methods
which do not differ essentially from the conventional procedure.

In a certain sense the Fierz transformation resembles crossing
relations. Now it is well-known that the crossing matrix for isospin can be
expressed as a Racah coefficient of the relevant group SU(2) [9-12]. In
this paper we study the group generated by the Dirac matrices and apply
the well-known techniques of SU(2), embodying elements such as
Clebsch-Gordan coefficients (or Wigner coefficients), Racah coefficients,
irreducible tensor operators and Wigner-Eckart theorem. This is possible,
because this group is simply reducible. A crucial point will be the inter-
pretation of the Γ-matrices as tensor operators. We show that the Fierz
matrix is related to the Racah coefficients of the Dirac matrix group.
Furthermore several other generalized Fierz transformations are given
most of which do not seem to have been known before. The method with
which we obtain these results gives more insight in the nature of the Fierz
transformations and provides us with simple rules to calculate all kinds
of Fierz matrices and the corresponding invariants and anti-invariants.
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The above mentioned techniques can be applied to all finite groups
related to the spin representations of orthogonal and pseudo-orthogonal
groups [13, 14]. We shall call them Clifford groups. The quaternion
group is such a group and because it can be manipulated much easier
we shall often use this group as an illustration.

2. Dirac Matrix Group and Quaternion Group

a) Definition and General Properties

The Dirac matrix group is generated by the usual Dirac matrices
y°? y1? y2 and y3, which obey

with gμμ = (1, - 1, - 1, - 1).
We introduce y5 = y°y 1y 2y 3, for which we have (y5)2 = — 1 and

Hence
y = 2gab (a, b = 0, 1, 2, 3, 5) ,

with0 f l β = (l, -!,-!,-!, -1).
The group elements are then ±1, ±yfl, ±yayb (a<b).
It can be easily verified that this group has 32 elements which, when

no confusion arises, will be denoted by ±Γt (i = 1, 2, ..., 16).
The group has seventeen classes: (1), ( — 1), (yα, — yα) and (yαyb, — yαy fo)

There exists one faithful, four-dimensional irreducible representation,
whereas the sixteen remaining irreducible representations are all one-
dimensional. The one-dimensional irreducible representations will be
denoted by (lp) (p = l, ...,16) and the four-dimensional irreducible
representation by (4). (The symbol (lx) stands for the trivial representa-
tion.)

A unitary form of the four-dimensional representation is generated by

D<4)(y2) =

1 0 0 0

0 1 0 0

0 0 - 1 0

0 0 0 -U

0 0 0 -Γ

0 0 i 0

0 / 0 0

- i 0 0 0

0 0 0 Γ

0 0 1 0

0 - 1 0 0

L-l 0 0 0.

0 0 1 0 "

0 0 0 - 1

- 1 0 0 0

0 1 0 0 .
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By applying formula (5-84) of Ref. [15] it can be shown that all one-
dimensional representations are integer representations and the four-
dimensional irreducible representation is half-integer. With the help of
the character table we can reduce the Kronecker product of two arbitrary
irreducible representations. The results are

(g®(g = (U,

(4)®(4)= I (g.

These are the Clebsch-Gordan series of the Dirac matrix group. We see
that in a Kronecker product of two irreducible representations a certain
irreducible representation occurs once or not at all. As furthermore all
characters of the group are real we have to do with a so-called simply
reducible group [15,16].

As already announced in our introduction we shall often use the
quaternion group as an illustration. Therefore we give here also the
similar properties of this group. The elements of the quaternion group
are ± 1, ±i, ±7 and ±k, with the multiplication rules i2 =j2 = k2 = —l
and ij = k, jk = i and ki =7. (So ij = —71 etc.) Alternatively the eight
elements will be denoted by ±Σl = ±1, ±Σ2 = ±i, ±Σ3 = ±j and
±Σ4= ±k. This group has five classes (1), (—1), (i, — i), (/, —7) and
(k, — k). There exists one faithful, two-dimensional irreducible represen-
tation

o)' ΣS \ι o)' Σ4"

The four remaining irreducible representations are one-dimensional. The
character table of the quaternion group is as follows

-» irreducible representation

class

1
1

-1
(ί,-0
(λ -j)
(/c, -k)

1 1 1 1 2
1 1 1 1 - 2
1 1 - 1 - 1 0
1 - 1 1 - 1 0
1 - 1 - 1 1 0

Here, just as in the case of the Dirac matrix group all one-dimensional
representations are integer representations, whereas the two-dimensional
irreducible representation is half-integer.



Fierz Transformations 325

The Clebsch-Gordan series are

(2)®(2)= I (g.

Once again the quaternion group is simply reducible.

b) Wigner Coefficients and 6j-Symbols

To reduce explicitly the Kronecker product of two irreducible
representations we need Wigner coefficients (Clebsch-Gordan coeffi-
cients). Because we have to do with simply reducible groups we can
apply formula (5-149) of Ref. [15] with κ:x = λίy κ2 = λ2 and κ3 = /13 to
calculate the absolute value of a Wigner coefficient. For fixed j^j2 andj3

the phase can be chosen for one arbitrary Wigner coefficient. Then the
phases of the other coefficients with the same Ί,^ and j3 can be found by
means of formula (5-149). In the case of the quaternion group the non-

12 2 1 \
trivial Wigner coefficients p are given in the following table

1
2

1
2

2
1
1
2

+ 1/1/2
-1/1/2

0
0

+ 1/1/2
+ 1/1/2

0
0

0
0

+ 1/1/2
-1/1/2

0
0

+ 1/1/2

+ 1/1/2

The matrix which transforms the given two-dimensional irreducible
representation into its complex conjugate form is

λΓκ i λ λ K ι - ι o

(See Ref. [15], formula (5-153)).

Now the 1 jm-symbols p

culated with formula (11 a) of Ref. [16]:

h h\t j
\v, v2 vj Ui ^ UU vj \λ2 vj U

23 Commun. math. Phys., Vol. 17

Now the Ijm-symbols p are also fixed and can easily be cal-

fi 7 7 \* / 7 7* 7 \ / 7 \* / 1 \* / 7 \*

h J2 73 \ Jί J2 73 \ / 7l \ / 72 \ / 73
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Putj1 =j2 = 2 and j3 = lp and take v1? v2 and v3 such that

12

The results are

/.,)=+,, P.L-, / M - * , p.
The 6j-symbols which turn out to be of interest in the following

sections have the form < p>. These can be calculated with
[2 2 1J

formula (27 a) of Ref. [16]. One finds

U

li

13

U

1
2
1
2
1
2
1
2

1
2
1

— 2
1
2
1
2

1
2
1
2
1

— 2
1
2

1
2

i
i

-ϊ

The Wigner coefficients, the 6j-symbols and the 1 jm-symbols for the
Dirac matrix group can be calculated in the same way.

c) Irreducible Tensor Operators and Wigner-Eckart Theorem

When studying the rotation group, SU(2) or SU(3) the irreducible
tensor operators play an important role. A set of operators 7^ are said
to be the components of an irreducible tensor operator of rank j if they
satisfy

. (1)

Here, D$m(R) is the matrix of the element R in the irreducible represen-
tation (/). Intuitively one finds that in the case of the quaternion group
the group elements Γf can also be interpreted as irreducible tensor
operators belonging to the one-dimensional representations of the group.
For instance, Σ2 belongs to the irreducible representation which we
labelled by (12):
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The correspondence between the Σt considered as tensor operators and
the one-dimensional representations is as follows

Loosely speaking the one-dimensional representations can be charac-
terized by a group element, which provides a kind of "natural" labelling.
An analogous correspondence for the Dirac matrix group can be given.

A more rigorous treatment of irreducible tensor operators of finite
groups will be postponed to a forthcoming publication.

For matrix elements of irreducible tensors belonging to a simply
reducible group the Wigner-Eckart theorem holds (see formula (67) of
Ref. [16]). In our notation we have

<2a)

Here, <j|| TJ | |/> is the so-called reduced matrix element. Wigner wrote
this as

<j\\TJ\\j'y, (2b)
M m

with the convention

m J f \_γ(J J f \( J \*
M m') μ\μ M my \μ my

By means of these relations the reduced matrix elements <21| Σt \\ 2) can
easily be calculated and we find

<2 1| ^112) = +1/2,

<2| |Σ 2 | |2>=-i |/2,

<2 | |Σ 4 | | 2>=+i l/2 .

The question arises what the irreducible tensor operator corre-
sponding to the two-dimensional irreducible representation of the
quaternion group looks like. When we have found this tensor operator,
all possibilities for irreducible tensor operators are exhausted, because
the quaternion group does not have any other irreducible representation.
The Wigner-Eckart theorem allows us to construct an explicit matrix
representation of this tensor operator by applying formula (2b) and
using the Wigner coefficients given in the table in Section 2b.
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Calculations show that the general form of the tensor operator of
rank 2 is

• o
0

0

0

-£5
- 0

" 0

0

0

0

0

-~ξs

0

0

0

0

0

~~S6

0

0

0

0

~<=6

0

0

0

0

0

0
_ί

0

0

0

0

£7
0

0

0

0

0

ξs
0

0

0

0

0

0

~S8

0

-£2
ξ3
0

0

0

_ K

0

0

-£4
0

0

ξi
0

0

-£4
0

0-

0"

ξ2ξ3
0

0

0 _

Here the ξt are, up to factors, the reduced matrix elements <j|| T2 ||/>.
The above matrix representation is in the reducible vector space of the
direct sum (11)®(12)Θ(13)®(14)Θ(2) (the rows and columns are
numbered with (/, m) = (119 1), (12, 1), (13, 1), (14, 1), (2,1) and (2,2)).

In this case an explicit matrix representation for R in formula (1) is
given by

R(Σ.) = D^^

Analogous calculations can be done for the Dirac matrix group.

3. Fierz Transformations

a) Field Theoretic Definition

In field theory one defines in the following way a transformation of
coupling constants. The interaction hamiltonians

5

and

(3 a)

(3b)

(with summation convention for α)

are equivalent, if there is a relationship Q\ = Σ Lικgκ among the coupling
constants gt and g\. κ
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The Γj aΓj are Lorentz invariant combinations of Γ- matrices as
defined e.g. in Refs. [1] and [2]. (When it does not give rise to confusion,
here and in the following sections we shall simply use Γt to denote the
four-dimensional irreducible representation D(4)(Γf).) A trivial property
of the matrix L is L2 = 1. It can be understood easily, that an equivalent
definition is given by

The F- matrix is the transposed L- matrix and has the form

1 1

-2 0

0 - 2

4 2

Ll -1

1 1

2 - 4

0 6

0 - 2 - 4

1-1 U

(5)

We now want to study this transformation with the methods developed in
group theory and the techniques referred to in Section 2.

In order to cast the problem in a more appropriate form we define
an "elementary" Fierz transformation

16

(6)

Here the Lorentz structure has been dropped and the summation runs
over the sixteen elements 1, / and γaγb (a < b). We may confine ourselves
to these group elements, because +Γt gives the same contribution as
— Γi in the above formula.

With the aid of the properties Tr Γt = 0 for all Γt φ 1 and Γf1 = ±Γt

it can be shown that

Fik = iVTr^/V1/^-1) = ̂ TrCΓΛΓΛ) . (7)

It is obvious that F is a hermitian and also a unitary operator

F = F+=F~i. (8)

As the quaternion group has similar properties as the Dirac matrix
group (ΎrΣi = 0 for all 2^4=1 and Γf 1 = ±Σt) an analogous trans-
formation can be defined in this case

(9)
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Explicit calculation gives

p —
2

1 -1 -1 -ί

-1 1 -1 -1

-1 -1 1 -1

-1 -1 -1 1

(10)

(11)

b) Invariants of the Elementary Fίerz Transformation

A Fierz invariant (c.q. anti-invariant) is a form

(12)

which does not change (c.q. changes sign) under a Fierz transformation.
In general we have

Σ Xi&a (ψcΓkψb) .

If we want this to be an invariant (c.q. anti-invariant) we shall have to
require

with λ = + 1 for an invariant and λ = — 1 for an anti-invariant. Therefore
the coefficients x{ have to satisfy Σ Fkix{ = λxk, i. e. the xt are the com-

i

ponents of the eigenvectors of the matrix F whereas the x's are the
corresponding eigenvalues. Because F is a hermitian matrix, whose
square equals 1, all eigenvalues are + 1 or — 1 and all eigenvectors exist.

Theorem. The Fierz invariants and anti-invariants are given by
Σήlp}(ψa^iΨb)(ψc^iΨd)^ where χ\lp} are the characters of the one-dimen-

sional representations of the Dirac matrix group. Odd representations ( l p )
give rise to an invariant, even representations to an anti-invariant.

Proof. We shall interpret (^>ar^b) in the following way. Up to now
ψa,ψb, ... have been arbitrary spinors. However, it is sufficient to prove
the theorem for the case where φfl, ψb, ... are basis spinors. Then we have

The characters of the one-dimensional representations are the represen-
tations
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The expression

Σ tfp\ψaΓiψj(
i = l

becomes in the new notation

The summation may be extended over the whole group, because it is clear
that FI and — Γt give equal contributions to the sum. We then get

ReG

We now apply formula (5-149) of Ref. [15] and a number of symmetry
relations

R e G

4 * p *
a c L o a

4 4 l p \*/4 4 1,

c 1 ) b d 1

4 4 l \ * / 4 4 1

c l fc 1

with / = — (— l)(lp) = ± 1, depending on the odd or even character of the
one-dimensional representation (lp).

Hence in usual notation

Σ ήlp\ψaΓiΨb) (ψcΓiΨd) = λ Σ χ?p}(ψaΓiψJ (ψcΓiψb) . (14)

c) Elementary Fierz Matrix and 6j-Symbols

The Fierz matrix Fίk was defined by

16

Once again we choose basis spinors for ψa, etc. Because these spinors
belong to the four-dimensional irreducible representation we shall
denote them by |4, α) = ψa. In this section the Γt will be considered as
irreducible tensor operators of rank (l r ) as explained in Section 2 c. Then
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the above definition takes the form

16

t\49dy= Σ Fk i<4,a|rk |4,d><4,c|rk 4, ft> . (15)

We shall need two lemma's to derive the relationship between the Fierz
Γ4 4

matrix Fki and the όj-symbol <

Lemma I. Let Γ? = ηt 1 (1 is the 4 x 4-unit matrix), where ηt = + 1
and let Γl transform as an irreducible tensor operator of rank (1^). Then we
have

.̂ = (-1)^). (16)

Proof. In Section 3 b we proved the following relation

16
V F χ(ij) = _ ( _ ι y i j ) ^ i j ) ? (17)

where ^fc=T6Tr(^^c^^c)
Because Γt is an irreducible tensor operator of rank (1J we have

or
r rL k L ι

On the other hand

hence

If we substitute this expression in formula (17) we obtain

16

fc = l

Now take i = j :
16

k = l

hence ηi = (— l)(lι).

Lemma II. Lβί Γt transform as an irreducible tensor operator of rank
(l f) and let the reduced matrix element of Γt in the four-dimensional
irreducible representation be <41| Γt \\ 4). Then the following relation holds

(20)
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Proof. Consider £ (Γt)ab (Γ ĉ - ηtδac, or
b

b

We now apply the Wigner-Eckart theorem:

Σίa 1; 4V6 1, 4
4Λ4 1 b \4 1 cb

By using properties of Wigner coefficients we get

/1 ; 4 4 \ / l f 4 4W 4 W 4 W 1, W 4 W 4

a .w.rA1 b α'/U *>" c'/ W «/ U' W U V W ί»"/\c c'

Hence x(-l)2 ( 4 ) + 0 ' )<4||Γ ί | |4>' = ,Λ..

1 . \ 4 4 + 1 / 4 \ * / 4

i j ' ^U «/ U

Therefore / ,

l \*
By using Lemma I and multiplying by l we find

We now return to the elementary Fierz transformation. Applying the
Wigner-Eckart theorem to formula (15) gives

!' !•
Substituting the result of Lemma II provides us with

la If 4Vc If 4V l Λ * _ i ζ la lk 4Vc lk 4V

U 1 ftJU 1 d)(ί lj ~i/Ul4 1 dJU 1

and applying orthogonality relations gives

α 1; 4\(c 1 4 \ / 4 1 d\/4 ί k b
1, d/U l t 4 / l c 1 4
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It follows with formula (18) of Ref. [16] that

Γ4 4 <2ι>
Along the same lines it can be shown that in the case of the quaternion
group an analogous relationship exists

(2
2 2 1, Γ (

d) Derivation of Ordinary Fierz Transformation

In the previous section we derived for the elementary Fierz trans-
formation the formula

a lt 4\fc 1. 4W l f \* _ Y (a l f c 4\lc lk

4 1 b)\4 1 d j ( l i j = ̂ Fkί\4 1 d)\4 1

In the case of the ordinary Fierz transformation (cf. Section 3 a) we had
to do with sums of this kind of terms, e.g.

(a 1,. 4Wc l t 4W 1, \*

1(4 1 b)(4 1 d)(l lΓ<
fc= TFIK yL^ A IK LJ \A -j

v k c K \' -*- d \4

Here / and K were sets of indices. Up to now / and K stood for the usual
5, F, T, A and P, denoting scalar, vector, tensor, axial vector and pseudo
scalar respectively. The symbol ηt was already defined in Section 3 c with
(Γί)

2 = ^y ί l. Once again using the orthogonality relation for Wigner
coefficients we derive

1. 4 \ / c l 4W4 1 d\!4 lk b\

or

^=-Σ{! 4 %, * 6 X . (23 a)
i e / 1 4 4 Ij'1 '*'

As a consequence of lemma I this can also be written as

4

It is to be remarked that it does not matter which k E K is chosen.
Starting with a table for όj-symbols of the Dirac matrix group the
5 x 5-Fierz matrix of field theory (see Section 3 a) is recovered.
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We can cast the derived formula for FIK in a much simpler form. To
this end we shall introduce an elementary Fierz transformation for upper
and lower indices

ΨaΓkΨd) (ψcΓ
kψb) . (24)

k

Hence

k. (25)

fik = TV

Thus we have

f ί k = h?k} (26)

In the above derivation we made use of the tensorial character of Γkk

The ordinary Fierz transformation can also be written as

i e l

e) Some General Properties

Apart from the Fierz transformation discussed in Sections 3 a and 3 d
we shall show that there are more Fierz-like transformations, which are
intermediate with respect to the Lorentz group (see Section 4 a). By this
we shall mean that it is possible to find sets of indices different from those
mentioned in the previous section, such that

F - V f - ± V y( lk)
rIK — 2L Jik — 4 Zj Λ i

i e J iel

is independent of the choice of k e K and furthermore that the matrix
FIK possesses all the characteristic properties of the usual Fierz matrix.

Before giving examples of generalized matrices FIK we shall prove
some general properties, which hold for the ordinary Fierz matrix as
well as for the other ones.

Theorem A. // the sets I and K are chosen such that FIK = £ fik,
kεK is independent of the choice of /c, then ί e /

ΣFικFκj = δu (28)
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Proof. Let

iel

and

FKJ = Σ fk'p
k'eK

It follows that

zL FIK^KJ — 2^ X Σ fikfk'j -
K K iel k'eK

Here fe has to be taken from the set K, but the choice may be different for
the various terms in the last summation. Therefore we take in each term
k = k'. Hence

Σ FIKFKJ = Σ Σ Σ A* fk'j = Σ Σ fik' fk'j = Σ ̂  = δu >
K K iel k' eK iel al lk' iel

for Σ $ij = 0 if and only if / φ J.
iel

Therefore we have Σ FIKFKJ = <57J or F2 — 1.
K

In this proof the property that FIK = Σ fik *s independent of the
choice of k e K is essential. ί e /

Of course in order to give a physical meaning to the transformation
matrix FIK it is necessary to have F2 = 1.

Theorem B. TTze Fierz matrix FIK can be symmetrized by rescaling.

This theorem implies that by introducing Γ7 = rcf^Tj instead of Γ/
and F7jK = (ft/%)~^ Σ /ίfc mstea(i °f FIK we βe^

i e l . k e K

(ψaflψb) (ψcf'ψd) = X FIK(ψaΓκψd) (ϊpcf
κψb) , (29)

X

where
FIK = FKI. (30)

Here W j denotes the number of elements of the set /.

Corollary. Because of the symmetric (hermitian) character of FIK, this
matrix has a complete set of eigenvectors, which can be chosen orthogonal.
From Theorem A and B it follows that the Fierz matrix FIK has a complete
set of eigenvectors with eigenvalues ± 1 (i.e. invariants and anti-invariants).

Theorem C. Let

^> = rf (3D
and

X£J}= Σ ^lj) (32)
k ' e X
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Then

and

ΣFικX(κi]=-(-^li)^lj) (34)
K

The proofs of Theorems B and C are easy and will be omitted here.
Theorem C is very useful for writing down Fierz invariants and anti-
invariants.

4. Applications

a) Dirac Matrix Group

In Section 3 d we saw already that by choosing S, K, T, A and P for
the sets / and K we recovered the ordinary Fierz matrix of formula (5).
The Fierz invariants and anti-invariants can be calculated by using
Theorem C and the table of characters of the Dirac matrix group. The
invariants are found to be

(1, 0, 2, 0, 1) and (1, 2, 0, 2, - 1) , (35 a)

whereas the anti-invariants are

(1,4, -6, -4, !),(!, -2,0, -2,- 1) and (1, -4, -6,4, 1) . (35b)

The way in which we found these eigenvectors is much less laborious
than the usual procedure of solving the characteristic equation of the
5 x 5-Fierz matrix. Of course, because of the degeneracy of the eigenvalues
the eigenvectors are not uniquely determined and therefore linear
combinations of the above eigenvectors belonging to the same eigenvalue
are eigenvectors as well.

As was already mentioned in Section 3 e there are more possible sets
of indices 7l5 ..., /„ which give rise to a Fierz-like transformation. Because
the Γ- matrices not only play a role in the wave equation invariant under
the group 0(3, 1), but also in the wave equation invariant under 0(4, 1)
(Ref. [13, 17]) it goes without saying that we should also try the sets

(α, b = 0, 1, 2, 3, 5 and a < b). We call Iλ the scalar S, I2 the vector V and
/3 the tensor T. Indeed it appears that with this choice of the It £ fik

is independent of the element fe e K. ίel



338 E. de Vries and A. J. van Zanten :

5 -3 1

10 2 -2

The corresponding Fierz matrix takes the form

1 1 Γ

"« 4 '-

(cf. Ref. [8], formula (150)).
There is one invariant

(1,1,2)
and two anti-invariants

(1,5,-10) and (1,-3,-2).

(37)

(38 a)

(38 b)

The question arises immediately if we can find still other Fierz trans-
formations. The following sets of y-matrices turned out to generate an
8 x 8-Fierz matrix

S = {!}, Vl = {y0}, Vt = {y1, y2, y3}, T, - {y V, y°y2, y°y3}, (39)

Tt = {/y2, /y3, y2y3}, Al = {y°y5}, Λ = {yV, y2y5, y3y5}, P - {y5}.

The corresponding Fierz matrix is

1 1 1 1 1 1

1 1 - 1 - 1 1-1

3 - 3 - 1 1-1 3
3 - 3 i _ι _ι _31

1 -1

3 3

1 -1

1 1

1 -1

1 -3

1 3

3 - 1 3
1-1 1 1 - 1 - 1

1 1 - 1 - 3 -1 -3

-1 1 1 - 1 - 1 1

(40)

(41 a)

The invariants of this generalized Fierz transformation are given by

(1, -1, 1,1,1,1, -1, 1), (1,1,1, -1,1,1,1, -1),

(1,1, - 1,1,1, -1, 1, 1) and (1, -1, 3, 3, - 3, -1, 3, -1)

and the anti-invariants by

(1,1, -3,3, -3,1, -3, -1), (1,1,3, -3, -3, -1, -3,1),

(1, -1, -1, -1,1, -!,-!,-!) and (1, -1, -3, -3, -3,1,3,1).
(41 b)

We cannot give a quite rigorous justification for the existence of the
above mentioned 8 x 8-Fierz matrix and a number of other generalized
Fierz matrices, to be mentioned below. However, we might interpret the
transformation of Eq. (40) by the following reasoning, Let us take an
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arbitrary time-like four-vector kμ. Without loss of generality we can
suppose it to have the form (/c, 0, 0, 0). Every Lorentz vector, tensor and
axial vector can now be split into a longitudinal and a transverse part
with respect to kμ. E.g. for the vector-vector interaction

V=(ϊpay
μψb)(ψcyμιpd)

we obtain for the longitudinal part

The transverse part Vt is given by Vt = V— Vλ.
Similarly we have

and

1 - 5

With the special choice made above we get

vt = 0/v/1 Ψb) (ψcyι Ψd) + (ψay
2Ψb)

etc

Hence it is understandable that for our special choice oϊkμ,Vt is repre-
sented by {y0}, Vt by {y1, y2, y3} etc. as in formula (39). A similar reasoning
can be set up when the vector kμ is space-like, e.g. (0,0,0, fe). In this
context it is to be noted that in the explicit form of fik the symbols 7°,
y1, y2 and y3 play exactly the same role.

In the applications in the beginning of this section we remarked that
the groups 0(3, 1) and O(4, 1) were of significance. In this last application
it seems that we have to do with the little group belonging to the vector
kμ. This little group is isomorphic with the groups 0(2, 1) or 0(3).

As already mentioned still other Fierz transformations can be found
by studying the tensors belonging to different subgroups of 0(4,1). In
this way we find generalized Fierz transformations, which will be listed
below together with the transformations already discussed.
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Group Order Index sets

0(4,1) 3x3 {!}, {/},{//}• (36)

0(3,1) 5x5 {l},{y"U/Y},{/yMy5}. (42)

0(2, 1) or 0(3) 8x8 {!}, {7°}, {y1,/, y3}, {γY,yV,rV}, (39)

6x6 {I},{γ°,75},{/,y2,y3}, (43)

or 0(2)® 0(2, 1) {yV, y°y2, y °y3, ,/y5, y2/, y3y5},

{7V,yV,yVM/V}.
0(1,1)®0(2) 9x9 {IHyVUv'ΛW}, (44)

or 0(2)® 0(2) {yV,vV,rV>vVUyV},

0(1,1) or 0(2) 12x12 {!}, {y0}, {y1}, {y2, T

3}, {yV}, (45)

{y°y 2,y°y 3},{y 1y 2,y 1y 3},{y 2y 3},{y°y 5},

Apart from these transformations still another exists of order 2 x 2
apparently not connected with a subgroup of O(4, 1) in which the index
sets are

{!}, {yV/V}. (46)
This Fierz matrix is

'-TLL I
with the invariant

(1,3) (48 a)
and anti-invariant

(1, -5). (48 b)

It is not known to us whether it is possible to interpret this trans-
formation in the same way as the previous ones.

b) Quaternion Group

Along the same lines a number of Fierz transformations connected
with the quaternion group can be obtained. Starting with the elementary
Fierz transformation of Section 3 a we find a Fierz transformation of
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order 2 x 2 generated by the index sets {ΣJ, {Σ2, Σ3, Σ4}:

with invariant

and anti-invariant

2 [3 -1

(1,1)

(1.-3).

Furthermore the index sets {Σ^, {Σ2}, {Σ3,Σ4} give

1 1 Γ

1 1 -1

2 - 2 0

with invariants

and anti-invariant
(1,-1,2) and (1,1,0)

(1,-1,-2).
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(49)

(50 a)

(50b)

(51)

(52 a)

(52 b)

The first of these transformations has to do with O(3). In essence the
same transformation is given by formulae (154 a) and (154b) of Ref. [8]
and formulae (28,16) and (28, 17) of Ref. [18].

The second transformation is connected with the little group 0(2).

The authors are indebted to Professor Dr. H. J. Groenewold for many discussions and
to Professor Dr. A. F. Yano for reading the manuscript. One of us (E. de V.) has carried
out this work as a scientific staff member of the Stichting F.O.M. (Foundation for Fun-
damental Research of Matter) which is financially supported by the Netherlands Organi-
zation for Pure Scientific Research (Z.W.O.).
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