
Commun. math. Phys. 17, 239—260 (1970)

An Operational Approach to Quantum Probability
E. B. D A VIES*

Massachusetts Institute of Technology, Cambridge, U.S.A.

J. T. LEWIS**

Institute for Advanced Study, Princeton, U.S.A.

Received March 24, 1969; in revised form January 10, 1970

Abstract. In order to provide a mathmatical framework for the process of making
repeated measurements on continuous observables in a statistical system we make a
mathematical definition of an instrument, a concept which generalises that of an observable
and that of an operation. It is then possible to develop such notions as joint and condi-
tional probabilities without any of the commutation conditions needed in the approach
via observables. One of the crucial notions is that of repeatability which we show is impli-
citly assumed in most of the axiomatic treatments of quantum mechanics, but whose
abandonment leads to a much more flexible approach to measurement theory.

§ 1. Introduction

It is well known that Kolmogorov's measure-theoretic formulation
of classical probability theory [1] can be expressed in a way which
emphasizes its similarities with von Neumann's Hubert space formula-
tion of quantum theory (see for example [2]); the 'observables' of prob-
ability theory are the random variables and the 'states' are the prob-
ability measures. Many attempts have been made to extend the statistical
interpretation of quantum theory by trying to construct analogues of
more complicated objects of probability theory, such as joint probability
distributions and conditional expectations. The difficulty with these
approaches is that it invariably turns out that the relevant objects exist
only in very special circumstances; joint distributions in the sense of
Urbanik [3] and Varadarajan [4] exist if and only if the observables
commute; a conditioning in the sense of Umegaki [5] and Nakamura
and Turumaru [6] exists if and only if the observable has discrete spec-
trum.
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An alternative approach to statistical concepts in quantum theory
is provided by von Neumann's ideas on repeated measurements [7].
Accepting that a measurement of an observable causes a transformation
of the state and that it is possible to perform a sequence of measurements
on a state, a major problem is the difficulty of determining the possible
transformations of states associated with the measurement of an obser-
vable. We show that von Neumann's repeatability hypothesis is too
restrictive and that this is connected with his difficulties over the conti-
nuous spectrum. At the same time we generalise to continuous ob-
servables the notion of operation, described for discrete observables by
Schwinger [8], for example, and introduced in the context of algebraic
quantum field theory by Haag and Kastler [9]. The theory is developed
at a level of generality which allows both the Kolmogorov theory and
the von Neumann theory to be considered as special cases.

We would like to thank M. Kac, E. Nelson, M. Gerzon, F. Holroyd,
R. Haag and the referee for helpful discussions, encouragement and
advice concerning the paper.

§ 2. Probabilistic Concepts in Quantum Theory

In the standard formulation of quantum theory a state is a positive
operator such that trace [ρ] is finite, on a complex Hubert space W.
An observable is a self-adjoint operator A on $f or, equivalently by the
spectral theorem, a projection-valued measure a( ) on the σ-field of
Borel subsets of the real line 1R, related to A by the formula A = J λa(dλ).

IR

The probability P(ρ, A, E) that in the state ρ the observable A should
take values in E is given by

P(ρ, A, E) = trace [ρα(£)]/trace [ρ] .

According to von Neumann [7, p. 220] an observable A can be measured
with absolute precision if and only if its spectrum is purely discrete;
for such observables it is straightforward to give an operationally moti-
vated account of conditioning and joint distributions within the von
Neumann theory.

Let A be a self-adjoint operator with purely discrete spectrum
{xί9x2, ...} and associated projections P 1 , P 2 , . . . s o that a(E)= Σ P;

XieE

for all £ g R For any eigenvalue xt it is conventionally supposed that
a measurement which gives the value xt transforms the state ρ into the
state PiQPi. If xt is non-degenerate this follows from the repeatability
hypothesis [7, p. 214] while if x( is degenerate some extra principle of
least interference [10-12] is also needed. From the elementary transfor-
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mations ρ—•Pj ρPj we can build up the transformation ρ->ρ*= ]Γ

which describes what happens when A is measured but the fractions in
which the various values xί9 x2,... occur are not separated [7, p. 347].
Nakamura and Umegaki [13] point out that the mapping ρ-»ρ* is a
conditional expectation in the sense of Umegaki [5] and hence is a
generalisation of the classical conditional expectation. In the same
spirit we can define the conditioning of the observable B = \ λb(d/).
Defining R

f
we have trace [ρfr* (F)] = trace [ρ*fc(F)] so F-> trace [ρί?*(F)]/trace[ρ]
is a probability measure on R We call b*( ) the observable conditioned
by the measurement of A. Notice that fr#( ) is a positive operator-valued
measure which is not projection-valued unless A and B commute, in
which case i?#( ) = b ( ) Thus the introduction of the concept of condi-
tioned observables requires an extension of the class of positive operator-
valued measures considered as observables.

An operationally motivated definition of the joint distribution of A
and B can be given when A has purely discrete spectrum as above.
The map

FxE->c{FxE) = X Pib{F)Pi

x,eE

can be shown to extend to a unique positive operator-valued measure
on ΪR2, which we call the joint distribution of b(-) following α( ). This
measure has marginal distributions

c(IR x E) = a{E\ c(F x 1R) = b * (F).

In this connection we note that a joint distribution of α( ) and b( ) in
the sense of Varadarajan [4] exists if and only if A and B commute;
in this case b — b* and c is a projection-valued measure on 1R2 which
coincides with the joint distribution in Varadarajan's sense. It is con-
venient to introduce the notation

For each EQ1R the mapping Q-*${E)Q is a linear mapping sending
states into states and satisfying

(i) trace \β(E) ρ] = trace [ρα(£)]
(ii) for every countable disjoint family of Borel sets

[jEi ρ=
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The adjoint maps on the observables are given by

xτeE

for all bounded operators B. In terms of $ we have the formulae

b\F) = <

The constructions we have used above depend crucially on the assump-
tion that the spectrum of A is purely discrete. If we were not interested
in observables with continuous spectrum or were content to adopt von
Neumann's device [7, p. 220] of approximating continuous observables
with step-function operators having purely discrete spectrum we need
go no further. However, there is evidence for believing that notions of
conditioning are particularly interesting when the observable has con-
tinuous spectrum [14; 15]; moreover von Neumann himself was not
entirely satisfied with the step-function device and regarded it as a
temporary expedient [7, p. 223].

The basis of the measurement theory we have used up to this point,
and the source of the difficulties concerning the continuous spectrum,
is the repeatability hypothesis [7, p. 214].

(M.) If the physical quantity is measured twice in succession in a
system S then we get the same value each time.

To begin with we abandon this hypothesis completely. Given an
observable α( ) an arbitrary family $(-) of linear mappings which send
the states into themselves and which satisfy (i) and (ii) above is called an
instrument which determines the observable α( ) and it is used to define
a conditioning and a joint distribution.

We make essential use of the following facts. The space of self-adjoint
trace class operators on Jf7 forms a real Banach space V under the trace
norm [16] and the states form a positive norm closed cone K in V.
The Banach space F* dual to V can be identified with the space of
bounded self-adjoint operators on Jf7 and the dual cone K* is the set of
positive operators. The identity operator 1 defines a functional on V
such that for all states ρe K, <1, ρ) = ||ρ||. With this example in mind
we start the general theory.

§ 3. General Theory

A state space (or complete base norm space [17]) is a triple (F, K, τ)
consisting of a real Banach space F, a closed cone K which generates V
and a linear functional τ on F such that <τ, v} = \\v\\ for all veV; we
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also suppose that for all υ e V

\\v\\ = i n f i l l s || + \\v2\\ :v = v1-v2,v1e X , v2eK}.

V is endowed with a partial ordering by putting v g w if and only if
(w — v) e K. A linear functional φ on V is said to be positive if <φ, ι;) ̂  0
for all D G I Every positive linear functional on a state space is neces-
sarily continuous and the set of all positive linear functionals forms a
closed cone K* in the Banach dual space F* endowed with the weak*
topology. A linear mapping T: F-> V is said to be positive if T(K) Q K.
A positive linear mapping on a state space is necessarily bounded [18]
and the set of all positive linear mappings forms a closed cone if+ (F, F)
in the topological linear space J£(V,V) of all bounded linear mappings
of V into itself, endowed with the strong operator topology.

A state v is a non-zero element of K. An observable is a triple (X, si, a)
consisting of a set X with a σ-fϊeld si of subsets of X, and a mapping
α: si -> F* satisfying

(i) 0 g α(£) ̂  α(X) for all £ e ^
(ii) α(X) = τ;

(iii) for each countable family {£;} of pairwise disjoint sets in J</,
00 \ 00

| J £ f I = ^] α(£j), where the right-hand side converges in the weak*
ι = ι I i=ι

topology of F*. The Borel space (X, srf) is called the value space of the
observable. An instrument is a triple (X, j / , (f) consisting of a Borel space
(X, ^/) and a mapping <?: j^-> if+ (F, F) satisfying

(i) <τ? ̂ (X) t;> = <τ, v} for all i e F ;
(ii) for each countable family {Et} of pairwise disjoint sets in jtf,

1J Et I = ^ ^(£ί), where the right-hand side converges in the strong
: = i / i = i

operator topology. The instrument (observable) is said to be discrete
if its value space is discrete.

Theorem ί. 7o et^rj; instrument $ on the value space (X, si) there is
a unique observable a( ) such that

for all ρeV and Eestf. Every observable α( ) on (X, s/) is determined in
such a way by at least one instrument.

Proof. For each Ee .stf the above formula defines a(E) as a positive
linear functional on F, that is as an element of X*. It is easy to verify
that E-+a(E) is a measure. On the other hand given any observable
α( ) on (X, si) choose any countable partition {£J of X into pairwise
disjoint Borel sets and any sequence {vt} of states such that <τ, vt} =1

17 Commun math Phys, Vol. 17
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for i = 1, 2,... It is easy to check that the formula

00

S{E)υ= £<α(£n£ ;),D>ί) i
ί=ί

defines an instrument $ whose associated observable is α( ).
We recall that a standard Borel space is a Borel space which is Borel

isomorphic to a Borel subset of some complete separable metric space.
Most of the value spaces which arise in physical applications are standard
Borel spaces and their properties have been studied extensively [19].

Theorem 2. Let $ and 3F be instruments on the standard Borel spaces
X and Y. Then there exists one and only one instrument $ on X x Y such
that <g(E xF) = £{E)#~(F) for all Borel subsets EQX and FQY.

Note. The instrument ^ is called the composition of $ following #"
and is denoted by S ° !F.

Proof. By the classification theorems for standard Borel spaces [19]
every standard Borel space is Borel isomorphic to some zero-dimensional
separable compact Hausdorff space, and so there is no loss of generality
in supposing that both X and Y are both zero-dimensional separable
compact Hausdorff spaces.

We denote by 8S(Z) the Banach space (under the supremum norm)
of all bounded real-valued Borel functions on Z, by C(Z) the space of
continuous real-valued functions on Z, and by s/ the dense sub-algebra
of C(Z) consisting of functions taking only a finite number of distinct
values.

As Z is compact and zero-dimensional, every / in can be written in
at least one way in the form

where the Borel sets ArQX and BrQ Y are all open and closed sets;
if / ^ 0 we can choose ocr ^ 0 for all r. It is easy to show that there is a
well-defined positive linear map T from jtftoJ£(V,V) given by the formula

From the definitions of the norms on the two spaces it follows that T
is- continuous with
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and so T has a unique extension to a positive continuous linear map
(which we also denote by T) from C(Z) to 5£(V, V). Now for each veV,
φ e V*, the formula

defines a bounded measure μφυ on Z with

\\μφj^\\τ\\ Ml NI^IMI N ,

and so the same formula defines a positive linear map

H with | | J Γ | | ^ 1

such that T extends T. We have to show that the image of SS(Z) under
T lies in Jίf (F, F).

Let {/„} be an increasing sequence of functions in <%(Z) having a
pointwise limit feS(Z), and let veV be such that (T'fn)veVQ F**
for all n; then as \(T' fn) v} is increasing and bounded in norm it converges
in norm to some v e V. Then for all φ e F *

= lim <φ, (T'fn) v} = (φ, ι/> ,
M~* 00

so that (T'/) v = vfeV. Therefore for each v e V the family of / in
such that (T f) ve V is a monotone family containing C(Z), and so is
equal to J>(Z). Thus Tmaps J>(Z) into jSf (F, F). We now define 0 on Z by

# ( G ) - T{χG) for each Borel set GQZ;

we see that ^ is an i f + ( F , F)-valued measure on Z such that for all
open and closed sets EQX and F QY

The validity of this formula for all Borel sets EQX and FQY now
follows from the monotone properties of S, $F and ^ .

The uniqueness of the map ^ having these properities follows from
the fact that the sets in Z of the form E x F generate the σ-field of all
Borel sets in Z.
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The structure we have described has a statistical interpretation in
terms of ensembles. It is also natural to interpret it in terms of filtering
operations performed on a beam consisting of non-interacting copies
of a system. A state υ corresponds to a beam and <τ, υ) is a measure
of the strength of the beam. An instrument δ measuring a physical quan-
tity taking values in X corresponds to a family of filters indexed by the
subsets in a family sί\ the filter corresponding to δ(E) allows a copy
of the system to pass if its observed value lies in E and in doing so trans-
forms the input state v into the output state δ(E) v. The various filters in
the family are related by the additivity condition: if Ex and E2 arc disjoint
the output state δ{E1uE2) v is the same as the mixture of δ{E^) υ and
δ(E2) υ. For each δ and υ the mapping £-»<τ, δ(E) t;>/<τ, v) is a prob-
ability measure on X; the right hand side is the ratio of the strength
of the output beam to the strength of the input, and hence can be inter-
preted as the probability that in the state ρ the physical quantity observed
takes values in E. Successive application of two families of filters corres-
ponds to the composition of the instruments.

Let (X, δ) be an instrument which determines the observable (X, α)
and let (Y,^) be an instrument which determines the observable (Y, b),
where X and Y are standard Borel spaces, and let (Y x X, ^ ° δ) be the
composition of J* following δ. The F*-valued measure F-+δ(X)*b(F)
is an observable, which we call the observable b( ) conditioned by the
measurement of α( ) with the instrument δ. The probability measure
M-+<τ J(^Γ°^)(M)t;>/<τ Jι;> on Y x X is that of an observable c(M)
= (^°δ)(M)*τ which we call the joint distribution of J^ following S.
We have the following generalisation of the results of the previous section.

Theorem 3. Let $ and #" be instruments on the standard Borel spaces X
and Y with associated observables α( ) and b( ), respectively. Then the
joint distribution of ^ following $ is an observable c( ) on Y x X whose
marginal distributions satisfy

c{Y xE) = a(E), c(F x X) = δ(X)*b(F)

Proof. Existence of c( ) follows from Theorems 1 and 2. Since

(c(Y x E), > = <τ, (#" o S) (Y x E) v}

= <τ, .F(Y) £{E) v} = <τ, £{E) v) = <α(£), v}

and <c(£ x X), v} ^ <τ, &(F) δ(X) v}

the marginal distributions have the stated properties.
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It is clear that in general the compositions δ J^ and 3F ° S will have
quite different properties; when they happen to be equal we say that δ
and ^ are compatible. Generalising the repeatability hypothesis (M.)
to arbitrary value spaces we now say that any instrument (X, δ) is
weakly repeatable if

(R) <τ, δ{E) δ{F) v} = <τ, δ(Ec\F) v}

for all Borel subsets £, F Q X and all v e V. We say δ is repeatable if

(R') <?(£) ί ( F ) ϋ = ί ( £ n f ) ι ; for all Borel subsets E9 F Q X and all υeV.

The existence of repeatable instruments is doubtful even in the case of
standard quantum theory, but we can show quite generally that given
a non-discrete observable there exists an instrument which determines
it and which satisfies an approximate repeatability condition. Further
results of this type are contained in [14].

Let δ be an instrument on a separable metric space X with metric d.
Let E be a Borel subset of X and for each ε > 0 let Eε denote the Borel
set {XE X: d(x, E)<ε}. We say that δ is ε-repeatable if for all ve K and
for all Borel subsets E Q X we have

(ER) <τ, £{Eε) £{E) v} = <τ, δ{E) v} .

In order to formulate the existence theorem we make some defini-
tions concerning observables.

Let A be an observable on a Borel space X. We say that a Borel
subset E of X is of τ4-measure zero if (A(E), v) = 0 for all v e K. A state v
is said to be concentrated on EQX if (A(E\ v} = <τ, ι;>. if vt are con-
centrated on Et respectively (i= 1,2, ...), where {JS£}̂ 2= t is a sequence
of pairwise disjoint sets covering X\ then

and

(A(X\ vt} = <τ, uf> ,

so that

i),t;i> = 0 for all i*j.

In the Hilbert space case a projection-valued measure i o n a separable
metric space X is such that for each Borel set E which is not of ,4-measure
zero there is at least one state which is concentrated on E, namely
v — ξ®1 where ξ is a unit vector in the range of A(E). The example
A(E) = μ(E) 1 where 1 is the identity operator and μ is a probability
measure on X shows that this is not true in general.
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Theorem 4. Let A be an observable on a separable metric space X
which is such that for each Borel set E which is not of Λ-measure zero
there is at least one state υ concentrated on E. Then for each ε > 0 there
exists an ε-repeatable instrument which determines A.

00

Proof Given ε > 0 put X = (J En where {En} is a sequence of pair-

wise disjoint Borel subsets of X having diameters less than ε. Let {vn}
be a sequence of normalised states such that vn is concentrated on En

for all n for which En is not of ,4-measure zero. Put

for all v e K and every Borel subset E of X. Then

so that (? determines A. Furthermore

«> = Σ Σ

since the £ n have diameter less than ε, and so

§ 4. Classical Probability Theory

It is interesting to look in some detail at the particular case of the
Kolmogorov model of probability theory. Suppose the sample space
(Ω, Jί) is a standard Borel space and let V denote the space of real
bounded Borel measures on Ω. If we define K as the cone of positive
measures in V and τ as the functional <τ, μ}=μ(Ω) then (V,K,τ) is a
state space. There is a natural one-one embedding of the space 39 (Ω)
of bounded Borel functions on Ω into F* defined by

for all μeV. This embedding takes positive functions / to positive ele-
ments of F* and takes the function which is constantly one to the element
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τ of F*. Since F* is a very abstract space we restrict our interest to the
measurable observables, which we define as those taking their values
in SS(Ω).

A random variable is defined as a Borel map α:Ω—>X where (X, si)
is a Borel space, often the real line. We define the associated measurable
observable (X, si, a) by putting a(E) = χa-1E for all Eesi. This observable
is multiplicative in the sense that a(E) a(F) = a(E n F) for all E,F esi,
and indeed this property characterises the observables associated with
random variables, provided (X, si) is a standard Borel space. For any
normalised state (probability law) μ o n Ω the image law is defined in the
Kolmogorov model as the probability measure D o n I given by v(E)
= μ(a~ιE) for all Eesi; in our notation this is just <α(E), μ) which
is precisely the distribution of the observable α( ) in the state μ.

We next examine the instruments. If (X, si) is a value space we define
a kernel P as a positive real valued function such that P(M, E, w) is
defined for all M e Jl, E e si and weΩ, such that

(i) P(Ω,X,w) = l for all weΩ;
(ii) E->P(M, £, w) is σ-additive for all M e Jί and w e Ω;
(iii) M-+P(M, E, w) is σ-additive for a\\ Ee si and weΩ;
(iv) w-^P(M, £, w) is Borel for all M e Ji and £ e si.

Theorem 5. // P is a kernel the formula

defines an instrument $ on the value space X. We call such instruments
measurable their observables are also always measurable.

Proof. By (iv) the integral is well defined and by (iii) the map
M->{£{E)μ) (M) is a measure, so £{E)μeV for all μe V and Eesi.
By (ii) E-±£{E) is σ-additive and by (i) <τ, £{X) μ> = <τ, μ) for all μeV.
If for each Eesi we define a(E)e@{Ω) by α(£) = P(Ω,£, w) then α( )
is a measurable observable and for alive V

<τ, «?(£) μ> - j P(Ω, £, w) μ(dw) = <α(£), μ>

so «(•) is the observable determined by S.
We say that $ is fαctorisαble if it is measurable for a kernel P can

be written in the form P(M,E,w) = A(E,w) B(M,w) where A and £
are functions satisfying

(i) E->A(E, w) is σ-additive for all w e Ω;
(ii) M-+B(M, w) is σ-additive for all w e Ω;
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(iii) w->A(E, w) is Borel for all E e si\
(iv) w-»B(M, w) is Borel for all M e Jί\
(v) A{X, w) = £(β, w) - 1 for all weΩ.

Theorem 6. Lei $ be a factorisable instrument and let a( ) be its
associated observable. Then there exists a positive linear map T: &(Ω)-±έ%{Ω)
satisfying

(i) T ( l ) = l ;
(ii) if φn is an increasing bounded sequence in &(Ω) converging point-

wise to φ then T(φn) converges pointwise to T(φ). $ is determined by the
equation

valid for all μ e V, μ e s$ and φ e

Proof. For each Eestf we define a{E)e@{Ω) by a(E) (w) = A(E, w).
Then for all μ e V and E e J /

Ω

- J A(E,w)B(Ω,w)μ(dw)
Ω

= $A(E,w)μ(dw)
Ω

so α( ) is the observable determined by g. For φe$(Ω) we define
i b y

so that T(χM)(w)^B(M, w).It is easy to show that T is a linear map
from 3S(Ω) to SS{Ω) satisfying (i) and (ii). Finally

<φ? £{E) μ) = J φ(σ) { J P{dσ9 E9 w) μ(dw)
Ω lΩ
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In accordance with Moy [20] we now say that a linear map
T: &(Ω)-+έ$(Ω) is a conditional expectation if it satisfies (i) and (ii) above
and also (iii) for all φ, ψ e 3S(Ω\ T(φ T(ψ)) = (Tφ) (Tψ). Moy shows that
it is possible to construct a conditional expectation given a sub-σ-ίield
of Jί and also a particular probability measure on Ω. The following
theorem shows that random variables and conditional expectations are
closely related to repeatable decomposible instruments.

Theorem 7. Let $ be a decomposible instrument on the standard Borel
space (X, si). Then $ is weakly repeatable if and only if its observable
a(-) is determined by a random variable a.Ω-tX and T(χa-iE) — χa-ιE for
all Eesi. $ is repeatable if and only if its observable is determined by a
random variable α:Ω-»X and

for all φe^{Ω) and all Eesi.

Proof <τ, g(E) g(F) μ) - <α(£), g(F) μ>

while <τ, g{EnF) μ) = (a(EnF), μ}

so g is weakly repeatable if and only if

a{F)-T(a(E)) =

for all E,Fe si. This equation is equivalent to

T{a(E)) = a{E) and a(EnF) = a(E) a{F)

for all E,F e si. Since X is a standard Borel space the second condition
is equivalent to α( ) being determined by a random variable a:Ω-+X.
Similarly repeatability is equivalent to the condition

a(EπF) T(φ) = a(F) T{a(E) T(φ)}

for all E,F esi and all φeJ(Ω), which is itself equivalent to the pair
of conditions

for all E, F e si and φ e
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Corollary 8. S is repeatable if a is determined by a random variable
a.Ω-^X and T is a conditional expectation associated with a sub-σ-field
of Jί containing the σ-field a~lί

§ 5. Conditional Expectations on von Neumann Algebras

Conditional expectations on von Neumann algebras have been
studied extensively in [5, 6, 13] as generalisations of Moy's conditional
expectation and it is evident that they are closely connected with the
probabilistic interpretation of quantum mechanics. We now show how
to make this precise in the appropriate probability theory.

Let si be a von Neumann algebra on a Hubert space 2/e and let V
be the space of self-adjoint ultraweakly continuous linear functionals
on sd. Let K be the cone of positive linear functionals in V and let τ
be the linear functional τ(v) = v{ί). Then (F, K, τ) is a state space, K is
just the set of normal positive linear functionals on stf and F* may be
identified with the set of self-adjoint elements of J/ ? [21].

A normal conditional expectation on j / is a self-adjoint positive
linear map T\si-* sί such that

(i)

(ii) If {Bn} is a monotone net of elements of stf converging ultra-
weakly to Bes/ then {T(B)} converges monotonely and ultraweakly
to T(B).

(iii) For all £, C e j / , T(T(B) C) = T(B) T{C) = T(BT(Q).

If T is a normal conditional expectation then T2 = T and & =
is equal to {B e stf: T(B) = B} and is a von Neumann subalgebra of J/ .
Let P be a projection-valued measure on any Borel space X whose
range is contained in J / and call

{B e sd: BP{E) - P{E) B for all Borel sets E}

the relative commutant of P( ) in sd.

Theorem 9. Let T be a normal conditional expectation on sd whose
range is the relative commutant of P( ) in s/. Then the equation

<(?(£) φ, B} = <P(£) T(B), φ)

where φ e V and B e s$ defines an instrument $ on X. $ is repeatable,
P( ) is the observable determined by S, and T is the adjoint of the linear
map £{X):V->V.
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Proof. For each φe K and E Q X the right hand side defines a normal
positive linear functional of B so there exists ψe K such that

(P(E)T(B\φ} <φ,B>

for all Bestf. Defining ${E) φ = ψ one easily verifies that $ is an instru-
ment. The observable A determined by i is given by

), φ) =

for all φe F so Λ(E) = P(E) for all £ ς i . If E, FQX and φ e V and

φ9 B) = <^(F) φ,

so ^(£) ̂ (F) - ί ( £ n f ) . Finally for all φ e F and β e d

, φ} = (g{X) φ9 B) = <P(X) T(B), φ>

In the special case s$ — £?{ffl\ V is the space of self-adjoint trace
class operators on ffl. if P is a projection-valued measure on the discrete
space X then the formula

Γ(B)= £P X BP X

xeX

defines a normal conditional expectation on J5f (Jf) whose range is the
commutant of { P X : X G I } . The corresponding instrument S, defined by

XGE

is easily seen to satisfy the following axioms.

(SR 1) SxSyv = δxygyv for all x j e l a n d ϋ e K

(SR 2) If <τ, ̂ x^> = <τ, z;> then ^ i ; - v.

(SR 3) If B e K* and <5, Sxυ> = 0 for all x e X and all υ e K then
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A discrete instrument which satisfies these conditions is said to be
strongly repeatable, and we note that, unlike the axioms for conditional
expectations, each of these axioms has a direct physical interpretation.
(SR 1) is the repeatability hypothesis. (SR 2) is a principle of minimum
disturbance, similar to that discussed by Luders and others [10-12].
(SR 3) is a non-degeneracy condition and would be violated if for example
the range of the instrument lay in a super-selection sector.

Theorem 10. Let V be the space of self-adjoint trace class operators
on a Hilbert space jtf and let X be a discrete value space. Then the formula

XEE

sets up a one-one correspondence between the discrete projection-valued
measuresP onX and the strongly repeatable instruments8 on V. In partic-
ular a strongly repeatable instrument is uniquely determined by its
observable, which is a projection-valued measure.

Proof. Given xeX let FXQK be the set {veK:£xv = υ}. Then Fx

is convex and closed in the trace-norm topology and we show that it
is extreme in the sense that if v1,v2eK and there exists a such that
0 < α < 1 and av1 + (1 — cήv2 e Fx then vλ, v2 eFx.

Since $ is an instrument

O ^ τ , ^ ) ^ , ^ ) , (ΐ=l,2),

and as

α<τ, Sxvxy + (1 - α) <τ, £xv2} = <τ, ixv) = <τ, v}

we have

<τ, δxΌύ = <τ,ϋ f>, (ί = 1 , 2 ) ,

and by (SR 2)

If Σ anζn®In G Fx then ξn® 1n e Fx for all n since Fx is extremal. Also if
ξi®ξieFx(i= 1, 2) then (ξx + ξ2)®{ξ1 + ξ2ΓeFx since

It follows that the set Lx= {ξe 3Ί? :ξ(g)ξe Fx} is a closed subspace of
Jf and Fx={veK:Pxv = vPx = v}.
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If x,y are distinct points of X then Lx±Ly. For let ηx,ηy be two
unit vectors, ηx e Lx and ηy e Ly, and let

be the bounded sesquilinear form o n J f x J ί This form determines a
bounded self-adjoint operator S on Jf; in fact S satisfies

Since

we have

On the other hand,

^ <τ5 <f (X) ( ^ ® ^ ) > - <τ, ̂ y(x)J/y>

so that <τ, ̂ c(^®^ y )> = 0 and ^ ( ^ ( 8 ) ^ = 0 which entails ( 5 ^ , ^ ) = 0
By the spectral properties of S it follows that (ηx, ηy) = 0.

Let Q be the projection onto the orthogonal complement of @ Lx

xeX

then if v is any state in K and x e l w e have by (SR 1)

so δxv e F x and PΛ(<fxι;) = (<£» P x = ^xt;. It follows that Qδxυ = 0 and so
<β? 4^> = trace(β<?xι;) = 0 for all x e X, υ e K and from (SR 3) it follows
that β = 0. Hence

xeX

It remains to determine explicitly the form of the map v-*δxv. The
set GXQK given by Gx={veK\δxυ = 0} is again a closed convex ex-
tremal set and so there exists a closed subspace Kx of Jf given by
Kx={ξe3V:δx(ξ<&ξ) = 0}. Let β x be the projection onto Kx; then
G x = { u e K : Qxv = υQx= υ}. We showed above that Kx2Ly for all y φ x ,
and as KxnLx = 0 so KX = LL

X. Now let ^ , ^ 2 be unit vectors, ξxeLx
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and ξ2 e Lλ

x; for any aί, α2 in C we have

and so

Hence δx{{ccιξ1 + oc2ξ2)(χ)(α1ξ1 + α2£2)~} = y{ξ1®ξ1) for some y e R It
follows by polarization that for each α l 5 α2, jS1? /?2 e<C there exists y e(C
such that

where (α 1 ?α 2), (β1,β2)-^y is given by a self-adjoint operator T on (C2.
Since 0 ^ trace(δxυ)^ tracer for all u e K , so O ^ T ^ l . Since (T(l,0),
(1,0))= 1 and (Γ(0, 1), (0, l)) = 0, so (1,0) and (0, 1) are eigenvectors of
Tand

Thus for

and hence for all states ve K

Sxv=PxvPx.

It follows that for all states υ and sets E Q X

xeE xeE

We now consider instruments whose value space is not discrete.
Since it is known that if ^ is a maximal Abelian von Neuman algebra
on a Hubert space Jf with no discrete part, there does not exist any normal
conditional expectation on S£{ffi) whose range is the commutant of 3d,
we cannot expect to be able to construct repeatable observables with
continuous value space in this model. As all discussions of this difficulty
have implicitly assumed repeatability most of the results obtained have
been essentially negative. We will show elsewhere [14] that by abandoning
strict repeatability it is possible to construct explicitly interesting families
of instruments on continuous value spaces which have strong properties
close to the repeatability property.
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§ 6. Material Implication

At various times von Neumann considered alternative verbal formula-
tions of the relation of material implication in a physical setting. In this
section we translate three such formulations into mathematical terms
and examine some of their properties.

Birkhoff and von Neumann (p. 109 of [22]) pointed out that in a
theory in which the mathematical representative of an experimental
proposition is a closed subspace of a Hubert space the following condi-
tions on two experimental propositions are equivalent:

(i) For any statistical ensemble of systems, the probability of P is
at most the probability of Q.

(ii) P implies Q - that is whenever one can predict P with certainty,
one can predict Q with certainty.

In an unfinished manuscript written about 1937 and reviewed by
Taub in [23] von Neumann described the relation of "implication"
(PSQ) as follows:

(iii) P fg Q means this: If a measurement of P on S (the physical system)
has shown P to be true, then an immediately subsequent measurement
of Q on S will certainly show Q to be true.

The three notions of material implication can be formulated in our
notation as follows:

Let <?, J^ ... be instruments on a two-point space X = {0,1}; then (i),
the most commonly used of the three, becomes

S-*ι& if and only if <τ,<?(l) υ) ^ <τ,#"(l) v) for all veK

and (ii) becomes

<f-*2 jF i fandonlyif <τ, J^(l) υ> = <τ, v> for all v

for which <τ, $(1) υ) = <τ, u>, while (iii) becomes

g-**y ifandonlyif (τ,^(l)£(l)v} = (τ,ξ(l)v} forallt eX.

In the beam model of probability which we used to motivate our defini-
tions we saw that there was a correspondence between physical qualities
and observables and between pieces of apparatus and instruments. Now
material implication is usually conceived of as a relation between physical
qualities rather than between pieces of apparatus, and so ->3 is suspect
on the grounds that it refers to the instrument ξ, whereas ->x and -»2

refer only to the observables which the instruments determine. There
are other objections to ->3 in the general situation; there are two proper-
ties of material implication as it occurs in ordinary discourse which are
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extremely important:

(MT1) # - - + /
(MI 2) ((δ -* JF) and {3F -» ̂ )) entails (δ -+ ^).

It is clear that -*ί and -»2 satisfy (MI 1) and (MI 2); in general there
is no reason why ->3 should satisfy either condition although we do
have the following

Theorem 11. Let δ,^^ be instruments on a two-point value space.
Then

(i) if ^ satisfies (SR 1) then J^-+ 3 J^;
(ii) if 3? satisfies (SR 2) ί/zeπ < f - > 3 ^ whenever S-*^ and SF-*^.

Proof, (i) Suppose J^ satisfies (SR 1) then &(\)^(X) v = J^(l) i; for
all t; so that

(ii) Suppose 3F satisfies (SR 2) and that £-+^^ and ^ - > 3 ^ . Then
< τ , ^ ( l K ( l ) υ > = <τ,<?(l)ι;> for all D G X , and by (SR 2) ^(ί)δ(l)v
= S{\) v for all i; e X. But <τ, ̂ (1) #"(1) w> = <τ, #"(1) w> for all weK.
Put w - δ(\) v so that <τ, <&(1) #"(1) ^(1) u> = <τ? #"(1) (f(l) ϋ> and hence
<τ, ^(1) ^(1) ϋ> - <τ, (f (1) ϋ> for all v.

However, for strongly repeatable instruments we see that —»2

 a ^d ->3

are equivalent:

Theorem 12. Let δ, ̂  be instruments on a two-point space.

(i) // δ satisfies (SR 1) then {δ-+2&) entails {£ ->3 #").
(ii) // δ satisfies (SR 2) ί/ẑ π (<?-»3 J^) enίαi/s (^->2 #")..

Proof, (i) Suppose <ί satisfies (SR 1) and S-*2<Ψ. Then, by (SR 1),
for all v e K <τ, δ(l) δ(ί)} = <τ, ̂ (1) ι;> and since δ -+2 ^
<τ, 3Fi\) S{\) v) = <τ, <f (1) t;> for all ϋ.

(ii) Suppose δ satisfies (SR 2) and (?->3ϊF. Then if υ is such that
<τ, (f (1) v) = <τ, ϋ> we have δ(l) υ = v by (SR 2); but since δ->3 & we
have

> for all t;

and so <τ, $F(X) v) = <τ, v} whenever <τ, δ{l) v} = (τ, ι;).
In standard quantum theory where the observables are taken to be

projection-valued measures the three forms of implication which we
have considered are equivalent on the strongly repeatable instruments
which are uniquely determined by the 'yes-no' observables. If we admit
arbitrary positive-operator-valued measures we are left with the problem
of choosing between three inequivalent candidates for material implica-
tion. The verbal description of —^ fails to do justice to the conceptual
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content of the relation as it occirs in ordinary discourse. We have
seen that ->3 is unsatisfactory except when it is equivalent to ->2 We
propose therefore to adopt ->2. This agrees with the choice of Pool [24].

Mackey [2] assumes that the set of 'yes-no' observables is an ortho-
complemented lattice. The set of ςyes-no' observables in our sense is a
lattice if and only if K* can be identified with the self-adjoint part of a
commutative C*-algebra (this follows from the work of Kakutani [25]
on M-spaces). However in quantum theory this never happens. It is
also interesting to note that in our setting Mackey's relation of dis-
jointness, ό, does not have the properties one would desire and seems
not to be a useful notion.
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