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Abstract. It is shown that in studies of space-time systems which are both stationary
and axisymmetric, no generality is lost by considering only cases where the stationary
and axisymmetric actions (or equivalently the two corresponding Killing vector fields)
commute.

1. Introduction

In discussions of the properties of stationary axisymmetric systems
(e.g. in the derivation of Papapetrou's Theorem [1, 2]) it is normally
assumed at the outset that the stationary and axisymmetric actions (or
equivalently the two corresponding Killing vector fields) commute.
Since it is perhaps not immediately obvious (particularly when curved
space-time is involved) that this is always justifiable, and since stationary
axisymmetric models are so widely used (not only in relativistic and
non-relativistic astrophysics, but also in many other branches of physics)
it seems worthwhile to demonstrate formally that such an assumption
never involves any loss of generality. This is the purport of the theorem
which is stated and proved here (which applies whenever the space is
sufficiently well behaved to have a continuous Riemann tensor).

The relevant basic properties of axisymmetry and stationary symme-
try actions are set out in the definitions and propositions of Sections 3
and 4 in terms of the mathematical framework in Section 2. The theorem
itself is given in Section 5.

2. Actions o n ^

Throughout the whole of this work, it is to be understood that Jί
(the subject of discussion) is a connected, C3 n-dimensional manifold on
which is defined a C2 Riemannian or pseudo-Riemannian metric and on
which further structure (e.g. a Maxwell field, or a field representing stellar
matter) may also have been specified. (In most of the physical appli-
cations one has in mind, n will be 3 or 4.)
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We shall start by recapitulating some standard notation.
The statement that M is a spacetime will mean that its metric has

hyperbolic-normal signature, i.e., more explicitly, that it is non-degenerate
with signature (n — 2). When this condition holds a submanifold or tangent
element will be said to be spacelίke if its induced metric is positive definite,
null if its induced metric is degenerate, and timelike otherwise.

If G is a Lie group, then a C 3 mapping π: G x Jί -• Jί will be referred
to as an action of G on Jί if the restricted mappings πg\Jί-*Jί defined
for each geG by πgm = π(g,m\ meJί satisfy the following axioms:

(1) πe is the identity mapping when e is the unit element of G,
(2) for any g, g' e G, π ^ = πgg..
The action π will be said to be effective if the converse of axiom (1)

is also true, i.e. if πg is the identity mapping only when g = e. For some
given moeJί the set of points / ( π , f n j Ξ { w e l : ( ] ^ e G : f n = π ^ 0 ) }
will be referred to as the surface of transitivity of π through mo; if
«/(n, ra0) — ra0 then m0 will be said to be a /ixed point of π.

<y# will be said to be invariant under an action π of G if for each
geG the mapping πg is an isometry which also preserves whatever
further structure (e.g. a Maxwell field or a stellar matter field) has been
specified on Jί. If Jt is invariant under an effective action G then G
will be said to be an invariance group of Jί.

Let π G : G x l - > J and πH: H x Jί -> ̂  be actions of G, H respec-
tively on Jί. πH will be said to be a subaction of πG if H is a subgroup
of G and πf = πG for all he H CG. πH will be said to commute with πG

if πGπf = πf πG for all g eG,he H. It can easily be shown that if (and
only if) πG and πn commute the law πG@πH(g,h,m) = πg

Jπ"m defines
an action πG © πH: G x H x ^# -> Jί of the direct product group Gx H
on .#. When it is well defined, i.e. when πG and πH commute, this action
π G φ π H will be described as the direct product of the subactions πG

and πH.

3. Axisymmetric Systems

For general mathematical purposes it is necessary to distinguish
axisymmetric spaces within the more general class of cyclicly symmetric
spaces, although as the comments at the end of this section make clear,
the distinction does not arise in ordinary astrophysical contexts. These
terms are defined as follows:

Definition ί. Jί will be said to be cyclicly symmetric (under the action
πc) if it is invariant under an effective action πc: SO(2) x Jί-^Jί of the
one parameter cyclic group 50(2). When these conditions are satisfied
π c will be said to be a cyclic symmetry action.
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Definition 2. Jί will be said to be axisymmetric (under the action πA

with axis JίA) if it is cyclicly symmetric under an effective action πA

such that there is an imbedded (n — 2)-surface JfA, called the axis of πA,
which is the fixed point set of πA. When these conditions are satisfied πA

will be said to be an axial symmetry action.
By considering the family of 2-surfaces swept out by the normals to

JfA under the maps πA as φeS0(2) varies (and, for Prop. 1, using
the fact that, since the Riemann tensor is continuous, a Killing vector
field which vanishes on an open subset must vanish everywhere in Jί)
one can readily prove :

Proposition 1. There is at most one action πA under which Jί is axi-
symmetric with a given axis JrA.

Proposition 2. // Jί is a spacetime, and is axisymmetric under an action
πΛ with axis JίA, then JfA is timelίke.

With the aid of the standard fixed point theorem for a 2-sphere one
can straightforwardly establish the following results:

Proposition 3. Let Jί be either (a) a positive definite metric space
with n^3 or (b) a space-time with n^4. Then if Jί is cyclicly symmetric
under an action πΛ with fixed points, it follows that Jί is axisymmetric
under πA.

Proposition 4. Let Jί be either (a) a positive definite metric space
with n^3 which is asymptotically Euclidean or (b) a spacetime with n^4
which is asymptotically Mίnkowskian ίmspacelίke directions. Then if Jί
is cyclicly symmetric under an action πA, it follows that πA has fixed
points, and hence (by Prop. 3) that Jί is axisymmetric under πA.

Owing to the absence of appropriate fixed point theorems for higher
dimensional spheres, it is not possible to generalise either of these two
propositions to higher values of n (e.g. it is easy to construct counter-
examples to the analogous statements for positive definite metric spaces
with n = 4 by using the Hopf fibration of the 3-sphere).

Nevertheless the cases which are covered are sufficient for direct
astrophysical applications. Thus Prop. 4 shows why, in ordinary astro-
physical problems, cases which are cyclicly symmetric without being
axisymmetric never arise.

4. Stationary Systems

The standard definition of the term stationary is as follows:

Definition 3. Jί will be said to be stationary (under an action πs)
if it is a spacetime and is invariant under an action πs:R(l) x Jί-^M,
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of the one parameter linear translation group R(l\ such that the trajecto-
ries are timelike curves. When these conditions are satisfied πs will be
said to be a stationary symmetry action.

This definition does not require that a stationary symmetry action
be effective. However, the stationary symmetry actions which occur in
ordinary physical and astrophysical problems always are effective since
stationary symmetry actions which are not effective (i.e. the cyclicly
stationary cases, which are exemplified by N.U.T. space [3] without
the Taub continuation) automatically involve large scale causality
violation (i.e. the existence of closed timelike lines.)

A stationary symmetry action π 5 gives rise to a one parameter family
of isometries πs

t\Jί->Jί, t E R(\), and the corresponding cross section
d/dt(πs

tm)\t = 0, meJίoϊ the tangent bundle T{Jί) is a timelike Killing
vector field which we shall denote, for brevity, by πs. Conversely any
timelike Killing vector field on Jt generates a unique stationary symmetry
action on Jt. This well known result may be stated briefly as:

Proposition 5. There is a canonical one-one correspondence (πs<->πs)
between stationary symmetry actions and timelike Killing vector fields on Jί.

5. Stationary-Axisymmetric Systems

The main result of this work is contained in the following statement:

Theorem. Let Jί be both stationary and axisymmetric. Then Jί is
invariant under an action of the form πs@πA: R(l) x 50(2) x Jί-^Jί of
the 2-parameter Abelian cylindrical group R(l) x £0(2) where πs is a
stationary symmetry action and πA an axial symmetry action which
commutes with πs.

This result can be derived immediately from the rather more elaborate
proposition which follows. This proposition and its proof are given in
detail because the situation is slightly less straightforward than the
theorem as stated above might suggest, due to the fact that it is not
necessarily true that a given axial symmetry action commutes with a
given stationary symmetry action.

Proposition 6. Let Jί be stationary under an action πB and axisymmetric
under an action πA with axis JίA. Then Jί is stationary under an action
πs which commutes with πA, and either πs can be chosen to coincide with
πB or else Jί is invariant under an effective action π:Gx Jί->Jί, (con-
taining πA, π c , πs as subactions), of a 4 or higher dimensional group G,
with 3 or higher dimensional surfaces of transitivity almost everywhere.
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Proof. Let us describe the elements φeS0(2) by a circular co-
ordinate running from 0 to 2π in the usual way, so that φ — 0 is the
unit element and φ = π is the element corresponding to half a complete
rotation.

The trajectories of πA must be imbedded circles except on JίA and since
Jί is connected and πA is effective it follows that for any meJί,mφ JίA

the point πAm sweeps out the corresponding circle once and once only as φ
runs from 0 to 2π. Now consider the effect of the map πA : T(Jί)-* T{Jί)
(induced on the tangent space T(Jί) by πA\Jt-±Ji) on a vector
ξ e T(m0) where m0 e JίA. Such a vector ξ can be uniquely expressed
in the form ξ = ξ" + ξ 1 where £" is parallel and ξ 1 orthogonal to JίA.
Clearly πAξ" = ξ" for all φeS0(2) whereas it follows from the preceeding
remarks, that πAξL must sweep out a circle (in the 2-plane of T(ra0)
orthogonal to JfA) once and once only as φ varies from 0 to 2π, and
hence that πAξλ = - ξ1. Hence ξ + π ^ is tangent to Λ^.

Now since ^ is invariant under πΛ and since πc is a timelike Killing
vector field, it follows that πAπB is a timelike Killing vector field for all
φeSO(2) and moreover it must have the same time orientation as πB

since 50(2) is connected.
Let us temporarily make the supposition that πB is not everywhere

tangent to JίA, or more specifically that there exists a point m0 e JίA

such that πB{m0)
L is non zero. Then πAπB(m0\ πA

/2π
B(m0) and πB(m0)

are three non vanishing and independent vectors and hence πAπB,
πA

/2π
B, and πB are three independent Killing vector fields which are

independent not only of each other but also of the Killing vector field
d/dφπA(rn)\φ = 0, meJί, which generates πA, since this latter field vanishes
at m0. It follows that these four Killing vector fields together must
generate an action π of a group G of 4 or higher dimensions and that the
surface of transitivity of π through m0 is of three or higher dimensions.
Hence from general properties of group actions, the surfaces of transitivity
must be of three or higher dimensions almost everywhere on Ji.

Now (independently of the above supposition) consider the vector
field, πs say, defined as πs =l/2(πB+ πAπB). Since πB and πAπB are
timelike Killing vector fields and since they have the same time orienta-
tion, it follows that π s is also a timelike Killing vector field, and hence
generates a canonically determined stationary symmetry action π s say
(by Prop. 5).

Any mapping πf, teR(l) transforms the action πA into an action
πϊ(πA):S0(2)xΛf-+JΪ according to the rule πf(πΛ)(φ,m) = πfπAπs_tm,
φ e 50(2), meJί and since Ji is invariant under πf and since πA is an
axisymmetry action, it follows that πf(πΛ) is also an axisymmetry action.
Moreover πf leaves ,j\fA invariant since it follows from our earlier working
that π s is tangent to JfA, and hence the axisymmetry action πf (πA) has
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the same axis JfA as the original axisymmetry action πΛ. It follows
(by Prop. 1) that πf (πA) — πΛ, which implies (since this is true for all t)
that π 5 commutes with πA.

At this point we have already gone far enough to establish the main
theorem. To complete the proof of Prop. 6 consider the case where the
supposition required for proving the existence of G does not hold,
i.e. the case where πB is everywhere tangent to JfΛ. Then πB has all the
properties of πs which were used in proving that π 5 commutes with πA,
and hence πB must also commute with πΛ (with the further implication
that πAπB — π β , so that πB is in fact identical with π s). This completes
the proof.

Acknowledgement, I should like to thank Kip Thorne for directing my attention to the
need for a formal clarification of this matter.
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