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Abstract. The explicit form of the "conformaΓ'-invariant "phase shift" analysis in the
s-channel for a scattering process involving two incoming and two outgoing particles is
derived for the two-dimensional world model. The high energy behaviour of the scattering
amplitudes is determined completely (up to a constant factor) by the requirement of
"conformal" invariance. It is not possible to obtain this high energy limit by neglecting the
masses right from the beginning. The main mathematical problem is the determination
of the Clebsch-Gordan coefficients for SU0(lt 1) in the momentum basis.

I. Introduction

In a preceding paper [1] we have discussed a method for the calcula-
tion of conformal-in variant scattering amplitudes. Contrary to other
authors, who have considered conformal-invariant Lagrangian field
theories [2] or off-shell amplitudes [3], we deal with on-shell scattering
amplitudes. These scattering processes are not restricted to incoming
and outgoing mass zero particles, but include particles with mass
0<m<oo. In this note we should like to present a slightly different
analysis for the two-dimensional world model. We assume that the
scattering amplitude is not only invariant under the "Poincare" group
SO0(1,1) χ)Γ2, but also under the identity component of the spin-
covering group of the group SO0(2,2)/C2, which is the analogue in our
model to the conformal group of relativistic space-time1. The identity
component of the spin-covering group is given by Sί/0(l, 1) x S(70(l, 1);
and therefore every Clebsch-Gordan coefficient will separate into a
product of two coefficients, which depend on p+ = E + p and p~ = E — p,
respectively. Only the irreducible unitary representations of the discrete
series [4] ^\^2\ / = 1, 2, 3 ... can possibly be used to describe a physical
particle. The restriction of these representations with respect to the
translational subgroup [5] shows that the spectrum of p+ for example is

1 We use "conformal" group always in this sense.
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given by 0<p+ < GO (whereas we have —oo<p+ <0and —oo<p+ < +00
for the ^/2} and the continuous representations, respectively).

The incoming particles of mass 0, "spin" 1/2, and positive or negative
momentum are represented by &$ x 1 and 1 x @(J2\ respectively.

The particles with mass mφO, (0<m 2<oo) and "helicity" %(l — λ)
are represented by <2)\^ x @(λ/2 (Tne conformal quantum numbers /
and λ of the massive particle are determined by the "spins" of the two
mass 0 particles, in which it could decay.) Note that the mass of a particle
is no longer a Casimir operator but becomes a variable (if φO). However,
only mass ratios and energy ratios have a physical meaning. The main
mathematical problem is to calculate the Clebsch-Gordan coefficients
of Sl/0(l, 1) for the discrete series in the momentum basis.

II. The Calculation of the Clebsch-Gordaπ Coefficients

The generators of SC/0(1,1) can be represented by

¥•> ^ — "F Λ ' — ^ 3 2 'dp dp p

in the Hubert space j ψ*ψ < oo, where the Casimir operator C
o P

takes the values C = — J— - 1 J / = 1, 2, 3 ... . We have now to deter-

mine the direct product of two irreducible representations [6]
12/2(^2)- In the product space we introduce the variables

and ξ = — —. The product space is then defined by
Pl+P2

η l-ξ*

For the generators we get

,2 C[ξ,

" " "' dη ' " '' dη2 η

The Casimir operator C of the product representation is given by

*' dξ2 ί + ξ ι-ξ
The condition of self-adjointness [7] of C gives

«, n = 0,1,2,-
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All elements of the product Hubert space can therefore be expanded into

Φ = Σ aι(n) dι(ζ)> where ]Γ J af(η) at(η) < oo. (There is no degeneracy.)
/ i n

The orthonormal set gt(ξ) are the square-integrable solutions of (1),
with respect to the measure 2 d ξ / l — ξ2.

9 Ϊ ' l 2 ( ξ ) =
2-l,l -l)(

\Pl+P2

where the symmetry between the two representations l± and 12 is ex-
pressed by the following relation between the Jacobi polynomials P^β}

The normalization factor N is given by

From
<.l,p\l',p'y=δu,pδ(p-p') (3)

follows finally for the Clebsch-Gordan coefficient

— Pi — P?). (4)
P l + p 2 - ^

From "Poincare"- and dilatational in variance follows for (4) only
— p2). The exact form of M is determined by the

reduction of certain irreducible representations of the "conformal" group.

III. The Scattering Amplitudes

It is now possible to determine the structure of every "conformaΓ'-
invariant scattering amplitude by a "partial wave" analysis in the
s-channel. The invariant scattering amplitude is given by

/ / — 7— 1 C 1 1 1 1— 7— \
\ tα 5 P^> "> ^^3 5 4- ? P4- ? "^4. I *̂  I 1 ? r 1' '̂ 1 ί ^2 ' r 2' ^2/

/ ± ;± S

1 ' 2 ^

where 5 = (̂  H- £2)
2 ~ (Pi + Pi)2- The one-particle states are defined in

the Hubert space of square-integrable functions of momentum space

f Λ dE dp , dE
\ ψ*ιp—-^—, and J φ*φ , (p>0 or p<0),

0 < m 2 < o o ^ I^ m2 = 0 ^
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for the massive and massless case, respectively. We shall determine F for
several reactions using the results (3) and (4). F is determined up to
constant "phases"/{ λ, which means for example that the strength of the
coupling in a Lagrangian field theory is not determined by conformal
invariance.
The scattering amplitude for the most general scattering process with
4 massive particles involved

l+xΓ x /

is given by
r»+ „

Pί+ί,,

The constants /z λ have to be determined by a dynamical theory. From
unitary follows |/i>λ| ̂  1.

We shall restrict the physical analysis of (5) to a few remarks. The
high energy behaviour of g \ ί t l 2 ( ξ ) is determined by the first factor of (2),
as in the limit s-»oo we have pl/p+

2 ->s/m2> PΪ/Pϊ -^w-i/s, etc.
So the high energy behaviour of the scattering amplitude is fixed

completely by the "kinematicaΓ restrictions imposed by "conformaΓ
invariance.

From (5) we obtain the following high energy behaviour (uniform
convergence assumed)

If one had no specific information, which irreducible unitary representa-
tion of the "conformal" group describes an elementary particle, one can
conclude from (5) that F tends to zero at least like c/s2, as / ̂  1.

Next we consider the opposite case, the scattering of mass 0 particles.

1 x L L x 1

/! X 1 1 X /.2
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From (3) follows that F = (// I jί2 — I)^z1,z3^z2,ί4 So there could be only
diffractive scattering (|/ ί l > / 2 | < 1). Moreover there is only a finite number
of inelastic channels. Note that for l^ = 12 = 1 (Thirring model) there
exists no inelastic channel, i.e. there is no scattering / ls l = 1. It has been
known for the 2-dimensional "conformaΓ invariant Lagrangian field
theory proposed by Thirring in 1957 that there is no "neutrino-neutrino"
scattering. Our proof is more general; no renormalization procedure has
been used. In the group theoretical framework it is possible to define
the incoming or outgoing two particle state unambiguously by the
conformal quantum numbers l± = 12 = 1. The state which contains in
addition one infrared particle for example can have only the quantum
numbers ίx =2,3,4..., /2 = 1, or ίt = 1, /2 = 2,3,4... .

The reaction in which one massive and three massless particles
participate is of importance for the understanding of the structure of the
high energy limit.

1 x /4 /3 x 1

X
x if 1 x 12

F is given by

In the limit of high energy we get

The common belief that one can neglect the mass at very high energy
and replace it by 0 right from the beginning turns out to be incorrect. The
matrix element is tending to zero, and becomes independent of the
"spins" of the high energy mass 0 particles. This is apparently the type
of simplification which might appear at very high energy.

Finally we consider pair creation from mass 0 particles.

/ί x £ £ x ζ

/! x 1 1 x / 2
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There is also only one "phase" / / l 5 / 2 involved. For the high energy limit
we obtain

We intend to apply a similar analysis to the 4-dimensional case. The
restriction on the high energy limit one will obtain is probably not so
stringent as in the 2-dimensional case.

The author would like to thank Prof. W. Heisenberg, Prof. H. P. Dύrr, Prof. H. D.
Doebner and Dr. P. Breitenlohner for interesting discussions.

Note added in proof. For the conformal-invariant scattering amplitudes one can derive
interesting sum rules. For example we obtain for the amplitude on page 131
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