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Abstract. The definition of the thermodynamic pressure of a quantum mechanical
system of hard core particles is considered for a wide variety of boundary conditions and
a large class of interactions. It is shown that the pressure can be defined for elastic walls
and that in the limit of an infinite system the thermodynamic pressure both exists and
is independent of the coefficient of elasticity. Similarly if repulsive wall boundary conditions
are used the thermodynamic pressure exists. Unfortunately it has not been possible to
demonstrate that the two pressures obtained are identical but a number of their properties
and interrelationships are established.

1. Introduction

In this, and a subsequent, paper we extend to quantum hard core
systems various results which have been obtained for classical [1-3]
and quantum [4-6] spin systems and classical hard core systems [7].
In this paper we consider properties of the thermodynamic pressure.

To define the thermodynamic pressure one must first consider a
finite system and this leads to a certain ambiguity concerning the choice
of boundary conditions, which, in the quantum mechanical formalism,
is related to the choice of the Hamiltonian. We consider Hamiltonians
with a large class of stable interactions whose domains are specified
by conditions of the form

dΨ

dn

on the boundary of the system; dΨ/dn denotes the normal derivative
across the boundary of a wave function Ψ. The parameter σ introduced
in this manner is related to the elasticity of the walls of the system,
σ — 0 is perfect elasticity, σ = oo infinite repulsion, and σ = — oo infinite
attraction. We prove that for finite σ the thermodynamic pressure exists
and is independent of σ. This generalizes the result obtain by Ruelle [8]
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in the case σ= + 00, i.e. the boundary condition Ψ = 0. Unfortunately
we have not been able to establish that the pressure we define is identical
to that of Ruelle although the former is certainly greater or equal to the
latter.

2. General Formalism

Thoughout this, and the following, paper we will consider particles
satisfying Bose-Einstein statistics; the discussion of Fermi particles
is actually easier and all the results we obtain can be derived in this case.

Let A be an open bounded subset of the v-dimensional Euclidean
space Rv. The set Ff of physical configurations of a system of bosons,
with hard cores of diameter α, contained in A is defined by

Fj1 = {X; \x-y\ ^ a for x, y eX, xφy where XcΛ}\

N{X) = cardX takes values 0,1,... Na(Λ), where Na(Λ) is the maximum
number of hard core particles which can be confined in A. We introduce

Na(A)

where V(A) denotes the volume, i.e. Lebesgue measure, of A.
The Hubert space J^a(A) of vector states describing the finite system

is given by the space of square integrable functions over the configura-
tions X C F*9 i. e. Ψ(0) is defined to be a complex scalar and if
X={xl9 ••.,xn}cFf then Ψ(X)=Ψ(x1,...,xn) is assumed to be totally
symmetric and square integrable; the scalar product on J^a(A) is defined
by

_ _ _ _ _ Na{Λ) dx dx

(y,Φ)=y(0)φ(0)+ Σ J '"i n n* i-*n
π=l F£ n l

Alternatively we can define a measure dX on Ff by

Na(Λ) ΆΎ JΎ

ίdX - Σ f - ^ ^ L .
A n=0 F£ n'

and then we have the compact notation

(Ψ, Φ)= \dX Ψ(X) Φ(X).
A

Next consider the connections between the Hubert spaces of different
finite systems. If Aγ and Λ2 are disjoint open bounded subsets of Rv

then J^aiAi) and J^a(A2) can be identified as subspaces of 3tf?

a(AίvA2)
For example it is easily seen that the condition Ψ(X) = 0 if *
defines a subspace of ffla{Aγ\jA2) which is isomorphic to



292 D.W.Robinson:

Further the space 3tf?

a(ΛίvΛ2) can be identified as a subspace of the
symmetric tensor product space WJ~A^®WjA^. The elements of this
latter space are square integrable functions over pairs (Xl9 X2) of con-
figurations X1 C F£\ X2 C Fa1 a n d the subspace of vectors defined by the
restriction Ψ(Xt, X2) = 0 if X1vX2<t F*1KjAl is isomorphic to#ea{Aγ\jA2\
These identifications allow us to extend, or conversely restrict, operators
from one space to another; these possibilities will be of use in making
various estimates.

Finally, let us define a particularly useful operator, the number
operator NA on J(fa(Λ) by

(NΛΨ)(X)= Σ Ψ(X) = N(X)ψ(X),
xeX

i.e. N(X) is the number of points in the set X. Clearly NΛ is a bounded
self-adjoint operator with NΛ^0 and \\NΛ\\ =Na(Λ). If ΛίnΛ2 = 0, then
the number operators NΛl, NΛl can be extended to operators acting on
2tfa{Λγ\jΛ^ which we will also denote by NΛl and NΛl, by the definitions

(NΛIΨ)(X)= Σ nx)
xeXnΛi

{NAlΨ){X)= Σ Ψ(X)
xeXnΛ2

and we have then

3. Hamiltonians of Finite Systems

The description of a finite system of particles presents us with a
wide choice of possible boundary conditions. In quantum mechanics
the specification of boundary conditions is closely allied to the specifica-
tion of the Hamiltonian of the system and in particular the choice of
kinetic energy operator. We next consider the problem of defining
Hamiltonians with various choices of boundary conditions.

To fix our ideas, let us first introduce a kinetic energy operator SΛ

for the finite system of hard core particles confined to A. We assume here,
and in the following, that the surface of A is smooth in the sense of [9],
and define S by

xeX

Vx

2 denotes the Laplacian and the domain D(SΛ) of SΛ is taken to be
the infinitely often differentiable functions with compact support in Ff.
On this domain, SΛ is symmetric but not essentially self-adjoint. A self-
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adjoint of SΛ would determine a possible dynamics of the system of non-
interacting particles and this of course entails the specification of the
behaviour of the particles at the boundaries of F£9 i.e. specification of
boundary conditions is equivalent to the choice of a particular self-
adjoint extension of SΛ.

In the case of hard core particles the boundary δFf of the space
of configurations is complicated but consists of an external boundary
Ωe

Λ defined by

Ωe

Λ={X;XndΛΦ0}

and an internal boundary ΩΛ = dF^\Ωe

Λ. We will now consider a variety
of self-adjoint extensions of SΛ each of which has the property that their
eigenfunctions vanish on the internal boundary but which satisfy different
conditions on the external boundary. We introduce and study these
operators by the use of semi-bounded forms (for a brief review of the
theory of positive forms and the associated positive operators see the
appendix). This method of studying self-adjoint differential operators
is quite standard and a good introduction to the subject is provided
in [9].

We begin by introducing a form t°Λ as follows. The domain D(ί°)
of t°Λ is specified to be the functions which are continuously differen-
tiable in the closure F* of Ff and vanish in a neighbourhood of Ωι

Λ.
On this domain we take

A xeX

The form tΛ is positive, densely defined, and can be proved to be closable.
For notational simplicity we also denote the closure by t°Λ. By proposition
Al there exists a positive self-adjoint operator T% such that

for ΨeD{t°Λ) and further D(t°Λ) = D(τf). The operator defined in this
manner is the self-adjoint extension of SΛ whose domain is specified by
the boundary condition Ψ = 0 on Ω\ but dΨ(X)/dnx = 0 if x e dΛ where
d/dnx denotes the inward normal derivative.

Next let us define fA> for σ real, by D{tΛ) = D{t°A) and

where

sΛ(Ψ)= jdS\Ψ\\ ΨeD(t°Λ).
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The last integral is taken over the external surface1 of F*. Although tΛ

is densely defined it is not clear that it is lower semi-bounded for σ < 0.
A standard calculation shows however that sΛ is relatively ί^-bounded
with relative bound 0 (we will reproduce this calculation below in an
improved form). Accepting this result we deduce that fΛ is lower semi-
bounded and closable and the domain of the closure coincides with the
domain of t°Λ. Further there is a self-adjoint extension TJ of SΛ asso-
ciated with fA in the canonical fashion. The domain of TJ is specified
by the boundary condition Ψ = 0 on ΩΛ and dΨ(X)/dnx-σΨ(X) = 0
for x e dΛ (cf. for example [9]).

Finally we introduce the form tΛ by specifying the domain D(tΛ)
to be the infinitely often differentiable functions with compact support
in Ff and then taking

A xeX

This form is the minimal form associated with SΛ and is closable. We
again denote its closure by tΛ. The self-adjoint operator TΛ associated
with tA is the Friederichs extension of SΛ and its domain is specified by
the boundary condition Ψ = 0 on dF*.

We next consider order relations between the various forms intro-
duced above and for this purpose it is necessary to examine the form sΛ

in more detail.

Let x = (xί, ...,xv)-*ξ{x) = {ξ1(xi), ...,ξv(xv)) be a real-vector-valued
function continuously differentiable in the closed region A and satis-
fying the boundary condition n . ξ + 1 = 0 on dA where n denotes the
inward normal. The integral representation

sΛ(Ψ) = $dXΣ Vx.{ξ{x)\Ψ{Xψ)
A xeX

follows straightforwardly by integration. However we now have

A xeX

Now denoting the support of \ξ\ by Aξ and using the inequality

\(ξ(x).VXΨ(X))Ψ(X)+Ψ(X)(ζ(x). VXΨ(X))\^j\VxΨ(X)\2 + s\ξ

ε > 0
1 In the above definition we could introduce σ as a C00 function on the surface of

A and then introduce this function in the integral. Our subsequent results generalize
easily to this case. Alternatively we could consider different choices of boundary conditions
on the internal boundaries and still obtain our main results, existence of the thermodynamic
pressure, etc.
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we find

{
A xeXnΛξ

Thus sΛ is relatively ί°-bounded as stated above but we are still free to
choose ξ and this allows us to obtain various interesting relations.

Lemma 1. Let A be a parallelepiped with surface area S(Λ) then the
following inequality is valid

Hence tQ

A is lower semi-bounded with bound given by

ί^ρβS(Λ)min{O,σ}.

Further if σ1 > σ2, then the following ordering of forms is valid

Proof Let A be given by

A = {x;0^xi<Li,ί=l,2,... v}

and choose ξt as follows

ξfcd = l-ε2(Li- xj, Lt - 1/ε2 £xaLi9

where we take ^2Li ̂  2. With this choice of ξ the above inequality for
sΛ is valid and referring to the discussion of the number operator given
in the previous section we find

0^sA^-t°Λ +
ε

Thus in the limit ε -> oo we have

Now the lower bound for fA follows from this inequality and

Similarly the order relationship between f^ and f/ follows by noting
that

tσ

Λ

ί = tσ

Λ

2 + (σ1-σ2)sΛ.
20 Commun. math. Phys., Vol. 16
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Finally fA is an extension of tΛ and hence the relation tΛ ^ fΛ follows
by definition.

After this discussion of the kinetic energy let us consider the defini-
tion of the interaction Hamiltonians.

The interaction between particles of the finite system is defined in
terms of an operator UΛ on J^a(Λ) which we will assume to be bounded
with a bound of the form

where B>0 and independent of A. Further let ΛίnΛ2 = 0 and con-
sider UΛίuΛ2, UAί and Uλ2, as operators on 3tf?

a{ΛίvΛ2). We assume
that

II UΛl(jΛ2 - UAί - UΛ2\\ S C(S(Λ) + S(Λ2)) Qa

where SiΛ^ and S(Λ2) are the surface areas of A1 and Λ2 respectively
and C(^0) is independent of Λ1 and Λ2. Finally we assume that UΛ

is translationally invariant. To explain this notion we introduce the
unitary operator VΛ>X from J^a(Λ) to j^a(Λ + x) by

(VΛ>xΨ)(X)=Ψ(X-x).

Then we demand that the interaction operators satisfy

The above conditions on the interactions are rather strong but are
characteristic of the topological space of interactions introduced by
Gallavotti and Miracle-Sole in the study of classical hard core systems [7].

Now with the interaction UΛ we can associate a bounded form uΛ

by the definition D(uΛ) = J^a{Λ) and

Similarly we can associate the form nΛ with the number operator NΛ9 i.e.

nA(Ψ) = (Ψ,NAΨ)9 D(nΛ) = 34?a(Λ).

With these definitions we introduce the following forms

and note that these forms determine the operators

H°Λ=iΛ+UΛ-μNA9

HΛ=TΛ + UΛ-μNΛ
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respectively. WA and HΛ correspond to the grand canonical Hamiltonians
of our interacting system with μ interpretable as the chemical potential.

Note that TJ, NΛ, etc. reduce to zero on the zero particle subspace
oϊJ4?a(Λ). We will further assume for convenience that UΛ is normalized,
by addition of a multiple of the identity, such that Eβ

Λ = 0 = HΛ on the
zero particle subspace.

4. The Thermodynamic Pressure

We now examine the definition of the thermodynamic pressure. As
a preliminary to this study we consider properties of the local partition
functions and local pressures defined with the Hamiltonians introduced
in the previous section. It should perhaps be emphasized that the majo-
rity of the properties we derive are obtained by application of the mini-
max theorem (cf. Proposition A2 of the Appendix), i.e. by monotonicity
arguments, or by use of convexity.

For simplicity we will throughout this section restrict A to be a
parallelepiped.

Lemma 2. The spectra of the local Hamiltonians WA and HΛ consist
of discrete eigenvalues of finite multiplicity. The operators Gxp{ — βH%}
and exp{ — βHΛ} are of trace class for all β>0.

Proof The above properties of HΛ have been already proved by
Ruelle [8]. Note however that from Lemma 1 we have hΛ^hσ

Λ and hσ

Λ

is lower semi-bounded. Thus applying the minimax theorem we can
conclude that if Eσ

Λ has the stated properties then these properties are
automatically shared by HΛ.

Next note that from the definition of the interaction and from
Lemma 1 we have:

hσ

A^ fΛ-{B + \μ\)QaV{Λ)

[t*Λ-(B+\μ\)oaV{Λ) if σ^O

\t°Λ-(B+\μ\)ρaV(Λ) + σρaS(Λ) if σ^O.

Thus appealing to the minimax theorem once again we conclude that
if Xi°has the desired properties then these properties are guaranteed
for Eσ

A, and hence HΛ.
Next introduce the space jf(Λ) by

Na(Λ)

n = 0

We can define a closed extension ί° of ί° on Jf (A) by using the definition
of t\ but omitting the domain requirement Ψ(X) = 0 if X (J F^ and the

20*
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restriction that Ψ must vanish in the neighbourhood of ΩΛ. By definition
we have t°A ̂  i°Λ and hence if Γ° is the operator, on Jf(Λ\ associated
with t°A then we see that the proof of the lemma is complete if we can
show that exp {— βffy is of trace class for β > 0. But this last property
can be checked bŷ  explicit calculation.

The operator fA is the kinetic energy operator of a finite number of
free point particles and the eigenvalues of fΛ° can be computed. On
L\ (A) the eigenvalues are given by

Φ)= Σ

where Lt denotes the lengths of the edges of A and nt takes the values
0, 1,2, On the higher particle subspaces L2

+ (Am) the eigenvalues are
given by all possible sums of m single particle eigenvalues. Using Ruelle's
estimation procedure [8] we find that for 0 < z < 1

where L o denotes the minimum of Li9 i= 1,..., v. (The Independence
arises because the operator we are considering differs from that consi-
dered by Ruelle insofar the value 7̂  = 0 is allowed in the eigenvalues,
i.e. we have different boundary conditions.)

The properties derived in the foregoing lemma allow us to introduce
the local pressures by the definitions

PΛ(β, μ, o) = —^ log Tr*aWifΓ>**),

Theorem 1. a) PΛ is non-negative and bounded uniformly in A2.
b) PΛ is a convex continuous function of β and μ and the continuity

is uniform in A2.
c) For σ1 > σ2 the following relation is valid

0 ^ PΛ(β, μ, σi) - PΛ(β, μ, σ2) ^ βfa - σ2) Qa

ά) The two pressures are interconnected as follows

PΛ(β, μ) = lim PA(β, μ, σ) = MPΛ(β, μ, σ).
2 A is assumed to be a parallelepiped with edges of length, Ll9..., Lv and the uni-

formity is in the variables L{ for L{ ^ 1, ί = 1, ..., v; the last restriction is assumed to avoid
possible singular behaviour for small A.



Quantum Statistical Mechanics 299

Proof. Due to our normalization of the interaction we have H^ = 0 = HΛ

on the zero-particle subspace of J^a(Λ). It immediately follows that PΛ

is non-negative. A bound on PΛ(β, μ, σ), and consequently on PΛ(β, μ),
which is uniform in A is given by the estimates used in the proof of
Lemma 2. The convexity of PΛ(β, μ) has been established by Ruelle [8]
and the same argument applies to PΛ(β,μ, σ) (cf. Proposition A3 of the
appendix). The continuity of PΛ follows from the convexity and the
uniformity in A is a consequence of the uniform boundedness. Explicitly
if x>0-^f(x)^0 is a non-negative convex function then for /z^O,
1 > a > 0, and b > 0 we have

ax bx

These inequalities follow from the convexity inequality

by the choices xx=x, x2 = (1 + b) x9 λ = 1 — h/bx, and x1 = x + h,
x2 = (1 — a) χ9 λ = ax/(ax + b\ respectively. From Lemma 1 we have

0 ^ Λy - hσ/ ^ (σx - σ2) ρaS(Λ), σx > σ2

and part c of the theorem then follows form Proposition A3 and the
definition of PΛ. It remains to prove part d.

Let λn and λσ

n be the eigenvalues of HΛ and Hσ

A, respectively, arranged
in increasing order repeated according to multiplicity. As σ-+hσ

Λ is a
monotonically increasing function we deduce that σ-*λσ

n is also mono-
tonically increasing. Hence we can introduce λn by

Further we have hΛ>hσ

Λ and hence

We will prove that λn = λn and then statement d is a consequence of the
fact that PΛ is a continuous function of the eigenvalues.

Let (Φn)n^ι be a complete orthonormal set of eigenfunctions of WA

corresponding to the eigenvalues {λσ

n)n>χ. Due to the normalization we
can for each value of n choose a sequence σt such that σ ^ o o and Φ^
is weakly convergent to a vector Φn. We first prove that Φ^ converges
strongly to Φn. Let E\ be the projector on the subspace of 34?a{A) spanned
by all eigenfunctions of E\ with eigenvalues less than λ. We have

*K ^ h*Λ(ΦΪ - Φσ

n

j) ^ h%ϊ - Eσ

λ) (Φ? - Φ°nή) ̂  λ ||(1 - Eσ

Λ) (Φσ

n> - Φσ

nψ.
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Hence

Now we can choose λ such that λjλ < ε for any ε > 0. But Eσ

Λ is finite
dimensional and Φ*1 is weakly convergent thus the strong convergence
follows immediately. Next we wish to prove that ΦJJ' is /^-convergent
for all σ and hence deduce that Φn is in the domain of all hσ

Λ.
For ε > 0 we can choose L such that

for ij > iε and for m = 1,2,... M. It follows that
2 1 1 \\φσi-φσj\\2

2

Thus assuming σ < σ, < σ, we have

m i

m

Now let Ψ be a normalized vector in the subspace spanned by
m=l,2, . . . M - l , then

Thus we have a decomposition of the form

= l , 2 ? . . . , M - l and

Hence

ε < l

where the last inequality follows from the minimax theorem. Thus
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Alternatively we have

^ ~ Qaί(B + \μ\) V(Λ) - σS(Λ)] \\ΦQ -

Thus we can conclude that (Φ^)i>i is Ki convergent and each of the
limit vectors Φm is in the domain of each \fA.

Finally we have

, σ>0

= lϊm(hσ

Λ(ΦJ-h°Λ(Φm))/σ
<χ—> oo

= 0.

Thus Φm is in the domain of hΛ. But (Φm)m> i is a complete orthonormal
family and hence a last application of the minimax theorem allows us
to deduce that

But we also have

Hence λm = λm and hΛ(Φj = λm, i.e. the Φm form a complete orthonormal
set of eigenfunctions of HΛ, and the proof of the theorem is complete.

Note that the only essential property of the interaction that we have
used to derive the results given up to this point is the stability condition

Next we turn our attention to the properties of PΛ as a function of A.

Theorem 2. Let A1 and A2 be disjoint. The following inequalities are
valid

> μ>

where σm = max(0, σ) and
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where A'^A^) is the set of points in Λί(Λ2) at a distance greater than a/2
from dΛ2(dΛ1).

Proof The second inequality is due to Ruelle [8] we have included
it for the sake of comparison. We will prove the first inequality and then
discuss the proof of the second to illustrate why the inequalities are in
opposite sense.

We begin by noting that from the second condition placed on our
interactions and Lemma 1, we have

hσ

ΛluΛ2 ^ hσ

Λl + hσ

Λ2 - ρa(C + σj (SiΛJ + S(Λ2))

where hσ

Λί and hσ

Λl are now understood to be forms defined on ^a{Aγ

e.g.

hAι(Ψ) = j dX Σ \

for ΨeDKluΛ) Now noting that J>fa(ΛivΛ2)CJί?a(Λ1)®JPa(Λ2) we
can define extensions h"Λi and h^2, of h"Λl and \fAl, on the latter space by

h°Λl(Ψ)= \dX J dYΣW ΨiXvjYψ + \dSΛί\Ψ\2 + {Ψ,UΛίΨ) etc.

Λι Λ2 xeX

Thus the sum hσ

Λί + nσ

Al is on extension of hσ

Λι + hσ

Λl and we have

j + S(Λ2)) * h°Λι + h\ ^ \fAι + hΛ2.
Clearly the operator associated with the last form is HAl®\ l

The first statement of the theorem follows immediately from the definition
of PΛ by use of Proposition A3.

Whilst the above proof is a proof by extension the second inequality
is proved by restriction. Firstly we use the condition on our interactions
to deduce that

hΛιuΛ2 ^ hΛ, + hA,2 + hΛ3 + 2ρβC(S(Λ1) + S(Λ2))

where Λ3 = ΛίvΛ2\Λf

1vΛ2 and the forms hAi, hA>2 and hAs are under-
stood to be forms on D(hAiuAl) as above. Now D(hA^®D{hA>2)cD{hAlKjA2)
and consists of vectors Ψ with the property that Ψ(X) = 0 if X^A'^A^.
The restriction of hAs to this domain is zero whilst we denote the res-
trictions of hM and hA,2 by hA>x and hA,2. We have

K h x) + S{A2)).

But the operator associated with hA^ + hA2 is clearly #^(8)1 +
acting on D(HAl)®D(HA,2) and the second inequality follows, by appli-
cation of the minimax theorem, in a similar manner to the first.

It should be noted that there is one significant difference in the
information we have used to derive the inequalities of the above theorem.
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The first inequality depends upon the interactions satisfying the condition
of the form

UAi»Al- UΛl -υΛl^~QaC(S{Λγ) + S(Λ2)) (*)

whilst the second inequality is based upon the converse condition

UΛικjA2 ~ UAί - UΛ2 S QaCiSiΛ,) + S(Λ2)). (•*)

Thus the first inequality can be derived for a large class of inter-
actions. For example if UΛ is given in the usual manner by a potential
function then the first inequality immediately follows for positive poten-
tials with no condition of decrease at infinity.

Theorem 3. The following limit, over the net of increasing parallel-
epipeds, exists

P(β,μ)= HmPΛ(β,μ,σ) β>0
Λ-* oo

and is independent of σ. P is a convex continuous function of β and μ.
Secondly the limit

PJ/J, μ) = lim PΛ(β, μ) = lim lim PA(β, μ, σ)
Λ-> oo Λ-> oo σ-> oo

exists and defines a convex continuous function of β and μ and in general

P and P^ take values in the interval

1

where μm = max(0, μ).

Proof The proof of the existence of the limits is a standard argument
based upon the sub-additivity and super-additivity properties of
Theorem 2 combined with the boundedness properties of theorem la
and the assumed invariance of the interactions. We will not repeat the
details. The upper bound on P and P^ are given by minimizing the bound
obtained in the proof of Lemma 2 with respect to the parameter z which
occurs in this bound. All other properties are a direct consequence of
Theorem 1.

5. Conclusion

There are two positive features and one negative feature of the
foregoing results. Firstly we have established that the thermodynamic
pressure exists for elastic boundary conditions by establishing a sub-



304 D.W.Robinson:

additivity property for the local pressure. Secondly we have established
that the thermodynamic pressure obtained in this manner is independent
of the elasticity. Thirdly we have failed to establish that the thermo-
dynamic pressure obtained in this manner is identical to the pressure
obtained with infinitely repulsive walls. We would like to comment on
these points in turn and mention obvious generalizations.

The proof of the first point, the existence of the thermodynamic
pressure, can be straightforwardly extended to the case of point particles
if σ S 0 and the essential estimate depends only upon an inverse tempering
condition of the form (*), a condition which does not necessarily entail
any decrease at infinity of the interaction potentials. Thus we have a
significant generalization of the known results which are based upon a
tempering condition of the form (**). As it would be out of place to give
the statements of the results for point particles in the present paper we
merely emphasize that in operator language the important point is the
inequality

for the kinetic energy operators. In the case of repulsive wall boundary
conditions the kinetic energy operator satisfies the inverse inequality

To establish the existence of the thermodynamic pressure for point
particles with σ > 0 and to show that it is independent of σ is slightly
more complicated. This relies upon an estimate of the form given by
Lemma 1 which shows that the effect of changing the boundary condi-
tions can be majorized in terms of the number of particles near the surface
of the system. In the case of hard core particles this is of course propor-
tional to the surface area but in the case of point particles is unbounded.
Thus more precise estimates have to be made for the configurations of
importance.

Finally we have defined two pressures. The first is given by increasing
the linear dimension L of our system for fixed elasticity σ and is given
in the double limit σ, L-> oo if σ/L-»0. The second pressure is given by
taking the limit σ-» oo and then L-> oo. To prove that these two pressures
are identical it is necessary to obtain some continuity of PΛ(β, μ, σ) for
large σ which is uniform in L. Note that as PΛ(β,μ,σ) behaves quite
differently at σ = + oo and σ = — oo it is natural to expect the appearance
of a fractional power such as σ~* in the discussion of analyticity or
continuity properties for large σ. We offer this as an interesting problem.
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Appendix

Positive Forms and Operators

We briefly review the theory of positive, or more precisely non-
negative, forms and their connection with positive self-adjoint operators;
this review is extracted from the more general discussion given in [10],
Chapter VI.

Let 2f? be a complex Hubert space. We consider forms ί(φ, xf)
defined for φ, xpeD{t\ a linear manifold of 2tf 9 such that t(φ, xp) is
complex valued, linear in xp9 and anti-linear in φ. The manifold D(t)
is called the domain of t and t is said to be densely defined if D(t) is
dense in Jf. The form t(xp) = t(ψ9 xp) is called the quadratic form asso-
ciated with t(φ9 xp); t(xp) determines t(φ, xp) uniquely by the polarization
formula

t(φ, xp) = i [ί(φ + yή- t(φ - ψ) + ίt(φ + iψ)- it(φ - ixp)] .

Two forms tx and t2 are equal, tί = t29 if and only if they have the
same domain D and t^φ, xp) = t2(φ, xp) for all pairs φ9ψ eD; tγ is an
extension of tl9 t1 D t2 or t2 C tl9 if and only if D(£i) D D(t2) and tx{φ, xp)
= t2(φ9 xp) for all pairs φ, xp e D(t2). The sum t = tί + t2 of the forms tx

and t2 is defined by

t(φ, V>) = h(<P, ψ) + t2(φ> Ψ), D(ή = D(t1)nD(t2)

and the product αί of t by a scalar α is given by

(αί) (φ, v) = αί(φ, φ), D(at) = D(ί).

A form ί is said to be symmetric if

t(φ, xp) = t(φ9 xp), φ, xp e D(t)

and from the polarization formula we see that t is symmetric if and only
if t(ψ) is real valued.

A symmetric form t is said to be bounded from below if

ί(y)^y|lvll2,. ψeD(t)

where || || denotes the norm on Jίf. The largest number γ with this
property is called the lower bound of t and we write t ̂  y. In particular if
t ^ o then t is said to be positive (i.e. non-negative). More generally an
order relation is introduced between symmetric forms by defining tί^t2

if D(t^QD{t2) and

Note that this definition is slightly odd insofar the larger form has the
smaller domain thus for example if t2'Dtl9 then tί^t2.
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Each positive symmetric form t satisfies the inequalities

\t(φ,ψ)\ύt(φ)*t{ψ)*9

Let t be a positive symmetric form. A sequence (ψn) of vectors in J f is
said to be ί-convergent to ψ in Jf, in symbols ψn-fψ as n-• oo, if ψneD(ή,
ψn^ψ strongly, and t(ψn — ψm)->0 as n,m-»oo. Note that φ does not
necessarily belong to D(t). The form ί is said to be closed if ψn-?ψ
implies that ψ eD(t) and t(ψn — ψ) -»0. Further t is defined to be closable
if it has a closed extension. In particular t is closable if and only if ψn-f0
implies t(ψn)-+0. If this latter condition is satisfied then the closure
(smallest closed extension) t of t can be defined as follows. The domain
D(t) is the set of all ψeJf such that there exists a sequence (ψn) with
ψn-j>ψ and t is given by

t(φ9 ψ) = \knt{φn,ψn)

for any ψnΊ> ψ, φn-j>φ. If t is closed a linear submanifold Dr of D(t) is
called a core of t if the restriction tr of ί with domain D' has the closure ί,
i.e. if ? = ί.

The study of positive forms is closely connected to the study of
positive self-adjoint operators;

Proposition A1. Let the a densely defined, closed, positive form on Jtf.
There exists a positive self-adjoint operator T with domain D(T) dense
in J f and such that

1) D{T)cD(t) and t(φ9φ)={φ9Tψ)

for every φeD(t) and ψ eD(T). The operator T is uniquely determined
by this condition.

2) D(T) is a core of t.

3) IfψeD(ή9χeJtrandt(φ9ψ)=(φ9χ)

holds for every φ in a core of t then ψ e D(T) and

Tψ=χ.

4) D(t) = D(T*) and

t(φ9 ψ) = (T*φ, T> ψ) φ,ψe D(t).

D' C D(ή is a core of t if and only if it is a core of T*.

These results show that the forms provide a convenient means for
constructing positive self-adjoint operators. Typically one is often faced
with the problem of constructing positive self-adjoint extensions of a
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given positive symmetric operator and it is often easy to use this operator
to construct symmetric forms. If these forms are closable then they
yield, by the above construction, the desired self-adjoint extensions. The
only feature which is rather delicate is the closability; we next give
three common criteria for this property.

I. Let S be a positive symmetric operator on 2tf and define t by

D(t) = D(S) and

t(φ9ψ) = (φ9Sψ) φ,ψeD(S) = D(t);

then t is positive, symmetric and closable. The self-adjoint operator
associated with the closure t of t is referred to as the Friedrichs exten-
sion of S.

II. Let S be an arbitrary operator on 3tf and define t by D(t) = D(S)
and

t(φ, ψ) = (Sφ9 S ψ)9 φ,ψE D(S) = D(t);

then t is positive, symmetric, and t is closable if and only if S is closable.
(t is closed if and only if S is closed.)

III. Let (Si)i^1 be a sequence of positive bounded operators on Jf7

and define t by

and

ί(v)= ΣίV.SiV), V

then t is positive, symmetric, and closed.
Hitherto we have principally discussed positive forms but results

similar to the above are valid for forms bounded below. If t ^ γ then f
defined by

f(φ9 ψ) = t(φ9 ψ) - γ(φ9 ψ)9 D{t') = D(t)

is positive. If t is densely defined and closed the same is true of t'
and we may then associate the operator T to t and the operator
T= T' + γί (1 is the identity operator on Jf) has as consequence the
property

t(φ9ψ)=(φ9Tψ)9 ψ

Let us consider the addition of forms in more detail. It is natural
to ask what conditions two forms t1 and t2 must satisfy to ensure that
the sum t = t1 + 1 2 is bounded below. Clearly, this is the case if tγ and t2

are bounded below but this condition is not necessary. One weaker
condition can be found by considering the concept of relative boun-
dedness. Let tί be bounded from below then t2 is said to be ^-bounded
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from below with bound b if D(ί2)DD(ίi) and

t2(ψ)^-a\\ψ\\2-btί(ψ),

with α, b ̂  0. If ί2 is ^-bounded from below with bound b rg 1 then

i.e. ίx + t 2 is bounded from below. Further let t1 be bounded from
below then t2 is said to be ̂ -bounded with bound b if D(t2)DD(t1) and

with a,b^0. If ί2 is ^-bounded with bound 6 < 1 then ίx + t2 is bounded
from below and tί + ί2 is closable if and only if tx is closable in which
case D(t1 + t2) = D(tί).

If tx and t2 are closed forms bounded from below the same is true
of t = tί + ί2. If t is densely defined the associated self-adjoint operators
T, Tί and T2 are defined and T may be regarded as the sum of 7i and T2

in a generalized sense which we write

T=Tί + T2.

Conversely if Tx and T2 are self-adjoint operators which are bounded
below the associated forms exist and the generalized sum can be defined
as the operator associated with t = t1 + t2 whenever this latter form is
densely defined. The generalized sum is an extension of the ordinary
sum and in general the two do not coincide.

The following form of the minimax theorem is often useful.

Proposition A 2. Let t be a densely defined, closed, lower semi-bounded
form and let T be the associated self-adjoint operator. Further let D be a
core of t and for every finite dimensional subspace McD define

λ(M)= sup t(ψ)

ψeM,\\ψ\\ = l

and for every integer m ̂  1 define

λm= inf λ(M).
dimM = m

It follows that λm-^oo as m->oo if and only if the spectrum of T
consists of discrete eigenvalues of finite multiplicity and in this case the
eigenvalues are given in increasing order, repeated according to multi-
plicity by the λm.

Let tv and t2 be two forms of the kind considered in the proposition
and λ^, )?m, the corresponding numbers defined by the minimax process.
If h ^ *2 i n t n e sense of the order relation introduced earlier we have
λjn^λ^ and in particular if Λ^-»oo as m->oo then /ί^-xx).

A large number of existence theorems in statistical mechanics are
based on the use of inequalities derived from convexity arguments. We
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reproduce a standard proposition of this nature phrased in the language
of forms

Proposition A3. Let t and t' be densely defined, closed, lower semi-
bounded forms on 2tf and let T and T be the associated self-adjoint
operators.

1) Let D be a core of t and J* a finite family of orthonormal vectors
φeD. The following conditions are equivalent

a) sup Σ e xP{ — tiψ)) < + °°

b) Tr^{e~τ)< + oo

and if they are satisfied then

sup

2) Consequently if D(t')cD(t\ t ' ^ ί , and e~τ is of trace class then

3) Take 0 < α < l and assume αί + (l — α) ί' is densely defined. Let
α T + ( l — cc)T' denote the operator associated with the closure of this
latter form and assume e~τ and e~τ are of trace class. It follows that

This proposition is extracted from similar statements given in [8];
using the foregoing material the proofs of [8] can be straight-forwardly
adapted. Similar statements can of course be made for more general
convex functions than the function x-+e~x.
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