The van der Waals Limit for Classical Systems

II. Existence and Continuity of the Canonical Pressure

D. J. GATES

Mathematics Department, Imperial College, London

O. Penrose

The Open University, Walton Hall, Bletchley, Bucks, England

Received September 10, 1969

Abstract. For a ν -dimensional system of particles with the two-body potential $q(r) + \gamma^{\nu} K(\gamma r)$ and density ϱ , it is proved under fairly weak conditions on q and K that the canonical pressure $\pi(\varrho, \gamma)$ and chemical potential $\mu(\varrho, \gamma)$ tend to definite limits when $\gamma \to 0$. The limiting functions are absolutely continuous and are given in terms of the derivative of the limiting free energy density $a(\varrho, 0+) \equiv \lim_{n\to 0} a(\varrho, \gamma)$ which was found in Part I.

I. Introduction

In Part I of these papers [1] we considered the free energy density $a(\varrho, \gamma)$ of a v-dimensional system of particles with the two-body potential

$$q(\mathbf{r}) + \gamma^{\nu} K(\gamma \mathbf{r}) \tag{1.1}$$

and density ϱ . (We assume there is no external field in the present paper). Under fairly weak conditions on ϱ and K we proved that the van der Waals limit $a(\varrho, 0+) \equiv \lim_{\gamma \to 0} a(\varrho, \gamma)$ exists and is given by a variational formula.

In the present paper we consider the canonical chemical potential

$$\mu(\varrho,\gamma) \equiv \frac{\partial}{\partial \varrho} a(\varrho,\gamma) \tag{1.2}$$

and the canonical pressure

$$\pi(\varrho,\gamma) \equiv \left(\varrho \frac{\partial}{\partial \varrho} - 1\right) a(\varrho,\gamma) \tag{1.3}$$

for the same system. The existence of these functions was proved by Dobrushin and Minlos [2] (see also [3]). We prove that their van der Waals limits

$$\mu(\varrho, 0+) \equiv \lim_{\gamma \to 0} \mu(\varrho, \gamma), \qquad (1.4)$$

$$\pi(\varrho, 0+) \equiv \lim_{\gamma \to 0} \pi(\varrho, \gamma) \tag{1.5}$$

exist, are absolutely continuous functions of ϱ (and hence differentiable almost everywhere [4]), and are given by

$$\mu(\varrho, 0+) = \frac{\partial}{\partial \varrho} a(\varrho, 0+), \qquad (1.6)$$

$$\pi(\varrho, 0+) = \left(\varrho \frac{\partial}{\partial \varrho} - 1\right) a(\varrho, 0+). \tag{1.7}$$

The results (1.6 and 7) mean that the limit $\gamma \to 0$ and the derivative $\partial/\partial \varrho$ of $a(\varrho, \gamma)$ can be interchanged, and that $\mu(\varrho, 0+)$ can be calculated in principle from the variational formula for $a(\varrho, 0+)$ given in Part I.

Our method consists of proving firstly that $a(\varrho, 0+)$ is differentiable. To prove this we note that $a(\varrho, 0+)$ is convex, as shown in Part I, and hence its left and right hand derivatives, denoted by $\partial_- a(\varrho, 0+)$ and $\partial_+ a(\varrho, 0+)$ respectively, exist and satisfy [4]

$$\partial_{-}a(\varrho,0+) \le \partial_{+}a(\varrho,0+). \tag{1.8}$$

In Section III we complete the proof by showing that $\partial_+ a(\varrho, 0+) \le \partial_- a(\varrho, 0+)$, using an inequality obtained in Section II. Secondly, we prove in Section IV that (1.6 and 7) hold.

The conditions to be satisfied by q and K are, as in Part I,

$$q(r) = q(-r), K(s) = K(-s),$$
 (1.9)

$$q(\mathbf{r}) = \infty$$
 for $|\mathbf{r}| < r_0$ (hard core condition), $|q(\mathbf{r})| < A|\mathbf{r}|^{-\nu - \varepsilon}$ for $|\mathbf{r}| \ge r_0$, q is measurable,
$$(1.10)$$

 $|K(s)| < k(|s|) < \overline{K}$ for all s, where k(t) is a positive non-increasing function such that $\int ds \ k(|s|) < \infty$, and K is Riemann integrable on any bounded region of ν -dimensional space. (1.11)

Here A, \overline{K} , r_0 and ε are positive constants.

II. Inequality for $a(\varrho, \gamma)$

To obtain a suitable inequality for $a(\varrho, \gamma)$ we use the result (3.23) of Dobrushin and Minlos [2]. Let $Z(N, \Omega, \gamma)$ be the partition function (for details see [1]) for N particles in a cube Ω with the two-body potential (1.1), and let N_1 and N_2 be positive integers that do not exceed the maximum value of N for which $Z(N, \Omega, \gamma)$ is defined. Then, with a slight

modification 1 , their result states that for $N_{1} < N_{2}$

$$N_1 \left(\frac{Z(N_1)}{Z(N_1 - 1)} + C' \right) \le N_2 \left(\frac{Z(N_2)}{Z(N_2 - 1)} + C' \right)$$
 (2.1)

where

$$C'(\gamma) \equiv \Lambda^{-\nu} \exp\left[2\beta\Phi' + 2\beta\Psi'(\gamma)\right] \int d\mathbf{r} (1 - \exp\left[-\beta q_{+}(\mathbf{r}) - \beta\gamma^{\nu}K_{+}(\gamma\mathbf{r})\right])$$
(2.2)

with $q_+(r) \equiv \max(q(r), 0)$ and $K_+(s) \equiv \max(K(s), 0)$. The dependence of Z on Ω and γ , and of C' on γ in (2.1) is omitted from the notation. Here Λ is the thermal wavelength [1], while $-2\Phi'$ and $-2\Psi'$ are lower bounds on the contributions to the potential energy, due to q(r) and $\gamma^{\nu}K(\gamma r)$ respectively, of a single particle interacting with any number of other particles. The existence of these lower bounds is a consequence of the conditions (1.9 to 11) (compare [5]).

From (2.1) we shall deduce the new inequality

$$N_1 \left[\left(\frac{Z(N)}{Z(N_1)} \right)^{1/(N-N_1)} + C' \right] \le N_2 \left[\left(\frac{Z(N_2)}{Z(N)} \right)^{1/(N_2-N)} + C' \right]$$
 (2.3)

for $N_1 < N < N_2$. To prove this we firstly use (2.1), with N' replacing N_1 and N replacing N_2 , to obtain

$$0 < \frac{Z(N)}{Z(N_{1})} = \prod_{N'=N_{1}+1}^{N} \frac{Z(N')}{Z(N'-1)}$$

$$\leq \prod_{N'=N_{1}+1}^{N} \left[\frac{N}{N'} \left(\frac{Z(N)}{Z(N-1)} + C' \right) - C' \right] \qquad (2.4)$$

$$\leq \left[\frac{N}{N_{1}} \left(\frac{Z(N)}{Z(N-1)} + C' \right) - C' \right]^{N-N_{1}}.$$

This gives

$$N_1 \left[\left(\frac{Z(N)}{Z(N_1)} \right)^{1/(N-N_1)} + C' \right] \le N \left(\frac{Z(N)}{Z(N-1)} + C' \right). \tag{2.5}$$

Secondly, we use (2.1) again to obtain for $N < N' \le N_2$

$$\frac{Z(N')}{Z(N'-1)} \ge \frac{N}{N_2} \left(\frac{Z(N)}{Z(N-1)} + C' \right) - C'. \tag{2.6}$$

Suppose, for a given N, that N_2 is so small that the right side of (2.6) is non-negative. We then have, as in (2.4),

$$\frac{Z(N_2)}{Z(N)} = \prod_{N'=N+1}^{N_2} \frac{Z(N')}{Z(N'-1)} \ge \left[\frac{N}{N_2} \left(\frac{Z(N)}{Z(N-1)} + C' \right) - C' \right]^{N_2-N}$$
 (2.7)

¹ Replace $|\psi_{N-1}-\psi_N|$ by $\max(\psi_{N-1}-\psi_N,0)$ in Eq. (3.16) of Dobrushin and Minlos. See also [3].

which gives

$$N\left(\frac{Z(N)}{Z(N-1)} + C'\right) \le N_2 \left[\left(\frac{Z(N_2)}{Z(N)}\right)^{1/(N_2 - N)} + C' \right]. \tag{2.8}$$

On the other hand, if N_2 is such that the right side of (2.6) is negative then (2.8) still holds because $[Z(N_2)/Z(N)]^{1/(N_2-N)}$ is positive. Combining (2.5) and (2.8) gives the desired inequality (2.3).

To obtain an inequality for the free energy density

$$a(\varrho, \gamma) \equiv -\lim_{|\Omega| \to \infty} \frac{1}{\beta |\Omega|} \log Z(\varrho |\Omega|, \Omega, \gamma)$$
 (2.9)

where $|\Omega|$ is the volume of Ω , we divide both sides of (2.3) by $|\Omega|$ and take the thermodynamic limit $|\Omega| \to \infty$, with $N/|\Omega| \to \varrho$ and $N_i/|\Omega| \to \varrho_i$. This immediately gives

$$\begin{split} \varrho_{1}\bigg[C'(\gamma) + \exp\bigg(\frac{\beta a(\varrho_{1}, \gamma) - \beta a(\varrho, \gamma)}{\varrho - \varrho_{1}}\bigg)\bigg] \\ &\leq \varrho_{2}\bigg[C'(\gamma) + \exp\bigg(\frac{\beta a(\varrho, \gamma) - \beta a(\varrho_{2}, \gamma)}{\varrho_{2} - \varrho}\bigg)\bigg] \end{split} \tag{2.10}$$

for all γ and all ϱ , ϱ_1 and ϱ_2 that satisfy $0 \le \varrho_1 < \varrho < \varrho_2 < \varrho_c$, where ϱ_c is the maximum density permitted by q.

Before proceeding with the main part of the proof, we note that since $a(\varrho, \gamma)$ is convex [3] in ϱ , it satisfies an inequality like (1.8). Also, taking the limits $\varrho_1 \to \varrho$ and $\varrho_2 \to \varrho$ of (2.10) gives $\partial_- a(\varrho, \gamma) \ge \partial_+ a(\varrho, \gamma)$, which proves that $a(\varrho, \gamma)$ is differentiable. The same result was obtained in [2] by a slightly different method.

III. Differentiability of $a(\varrho, 0+)$

In this section we prove that $a(\varrho, 0+)$ is differentiable by considering the limit $\gamma \to 0$ of (2.10). We note that (2.10) still holds if C' is replaced by an upper bound, C say, on C'. To find a suitable upper bound we note that $q_+ \ge 0$, $K_+ \ge 0$ and $1 - e^{-x} \le x$ for all x, which gives

$$1 - e^{-\beta(q_+ + \gamma^{\nu} K_+)} = (1 - e^{-\beta q_+}) + e^{-\beta q_+} (1 - e^{-\beta \gamma^{\nu} K_+})$$

$$\leq (1 - e^{-\beta q_+}) + \beta \gamma^{\nu} K_+.$$
(3.1)

It follows that

$$\int d\mathbf{r} (1 - \exp[-\beta q_{+}(\mathbf{r}) - \beta \gamma^{\nu} K_{+}(\gamma \mathbf{r})]) \le B + \beta \alpha_{+}$$
 (3.2)

where

$$B \equiv \int d\mathbf{r} (1 - \exp\left[-\beta q_{+}(\mathbf{r})\right]) \tag{3.3}$$

and

$$\alpha_{+} \equiv \int ds \, K_{+}(s) \,. \tag{3.4}$$

Also, let us choose

$$\Psi'(\gamma) \equiv -\frac{1}{2} \inf_{\boldsymbol{r}_1, \, \boldsymbol{r}_2, \, \dots } \sum_{a=1}^{\infty} \gamma^{\nu} K(\gamma \boldsymbol{r}_a)$$
 (3.5)

the infimum being over r_a 's that are subject to $|r_a - r_b| \ge r_0$ for all $a \ne b$, where r_0 is the hard core diameter of q. To obtain an upper bound on Ψ' we consider, as in Part I, an infinite lattice of identical cubes $\omega_1, \omega_2, \ldots$ of volume ω filling ν -dimensional space. Putting

$$K_i \equiv \inf_{\boldsymbol{r} \in \omega_i} K_-(\gamma \boldsymbol{r}) \tag{3.6}$$

where $K_{-}(s) \equiv \min(K(s), 0)$, we obtain

$$\sum_{a=1}^{\infty} K(\gamma r_a) \ge \sum_{i=1}^{\infty} N_i K_i$$
 (3.7)

where N_i is the number of particles whose centres are contained in ω_i for a given $(r_1, r_2, ...)$. As shown in [6], N_i cannot exceed $\varrho_c(\omega^{1/\nu} + 2r_0)^{\nu}$. Hence, from (3.5) and (3.7), we have for all γ and ω

$$\Psi'(\gamma) \leq \Psi(\gamma, \omega) \equiv -\frac{1}{2} \varrho_c (1 + 2r_0 \omega^{-1/\nu})^{\nu} \sum_{i=1}^{\infty} (\gamma^{\nu} \omega) K_i.$$
 (3.8)

Together with (3.2) and (2.2) this gives for all γ and ω

$$C'(\gamma) \le C(\gamma, \omega) = \Lambda^{-\nu}(B + \beta \alpha_+) e^{2\beta [\Phi' + \Psi(\gamma, \omega)]}. \tag{3.9}$$

Now consider the limit operations $\gamma \to 0$ followed by $\omega \to \infty$ applied to $C(\gamma, \omega)$. The conditions (1.11) imply [7] that

$$\lim_{\omega \to \infty} \lim_{\gamma \to 0} \Psi(\gamma, \omega) = -\frac{1}{2} \varrho_c \alpha_- \tag{3.10}$$

where

$$\alpha_{-} \equiv \int d\mathbf{s} \, K_{-}(\mathbf{s}) \,. \tag{3.11}$$

This, together with (3.9) implies that

$$C(0+) \equiv \lim_{\omega \to \infty} \lim_{\gamma \to 0} C(\gamma, \omega) = \Lambda^{-\nu} (B + \beta \alpha_+) e^{\beta(2\Phi' - \varrho_c \alpha_-)}.$$
 (3.12)

The expression on the right side simplifies in an obvious way if K is either non-positive or non-negative.

Since the limit (3.12) exists, we can replace $C'(\gamma)$ by $C(\gamma, \omega)$ in (2.10), and take the limits $\gamma \to 0$ followed by $\omega \to \infty$ in the resulting inequality.

This yields²

$$\varrho_{1}\left[C(0+) + \exp\left(\frac{\beta a(\varrho_{1}, 0+) - \beta a(\varrho, 0+)}{\varrho - \varrho_{1}}\right)\right] \\
\leq \varrho_{2}\left[C(0+) + \exp\left(\frac{\beta a(\varrho, 0+) - \beta a(\varrho_{2}, 0+)}{\varrho_{2} - \varrho}\right)\right] \tag{3.13}$$

for all ϱ , ϱ_1 and ϱ_2 that satisfy $0 \le \varrho_1 < \varrho < \varrho_2 < \varrho_c$. Finally, taking the limits $\varrho_1 \to \varrho$ and $\varrho_2 \to \varrho$ gives

$$\partial_{-}a(\varrho,0+) \ge \partial_{+}a(\varrho,0+) \tag{3.14}$$

which together with (1.8) implies that $a(\varrho, 0+)$ is differentiable.

IV. Existence and Continuity of $\mu(\varrho, 0+)$ and $\pi(\varrho, 0+)$

The existence of $\mu(\varrho, 0+)$ and the statement (1.6) follow from the differentiability of $a(\varrho, 0+)$ and the inequality

$$\partial_{-}a(\varrho, 0+) \leq \liminf_{\gamma \to 0} \mu(\varrho, \gamma) \leq \limsup_{\gamma \to 0} \mu(\varrho, \gamma) \leq \partial_{+}a(\varrho, 0+)$$
 (4.1)

which in turn follows from the convexity of $a(\varrho, \gamma)$, (see Eq. (6.5) of Ref. [7]). The existence of $\pi(\varrho, 0+)$, and also the statement (1.7), follow from (1.3), (1.5), and (1.6).

The prove the absolute continuity of $\mu(\varrho, 0+)$ and $\pi(\varrho, 0+)$ we use the Lipschitz condition

$$0 \le \pi(\varrho_2, \gamma) - \pi(\varrho_1, \gamma) \le (\varrho_2 - \varrho_1) \beta^{-1} \left[1 + C'(\gamma) e^{\beta \mu(\varrho, \gamma)} \right]$$
(4.2)

for all γ and all ϱ_1 , ϱ_2 and ϱ that satisfy $0 \le \varrho_1 < \varrho < \varrho_2 < \varrho_c$. The first inequality in (4.2) states that $\pi(\varrho, \gamma)$ is non-decreasing [3] in ϱ , while the second inequality is due to Penrose [3] and can be deduced from (2.1). Again we can replace $C'(\gamma)$ by $C(\gamma, \omega)$ in (4.2) and take the limits $\gamma \to 0$ and $\omega \to \infty$. This gives a Lipschitz condition on $\pi(\varrho, 0+)$ which proves [4] that it, and hence $\mu(\varrho, 0+)$, are absolutely continuous.

As a corollary, we note that when $\partial \pi(\varrho, 0+)/\partial \varrho$ exists it satisfies

$$0 \le \frac{\partial}{\partial \rho} \pi(\varrho, 0+) \le \beta^{-1} \left[1 + C(0+)e^{\beta \mu(\varrho, 0+)}\right] \tag{4.3}$$

where C(0+) is given by (3.12). This derivative does not always exist: for example, it has discontinuities in the special case $K \le 0$ considered by Lebowitz and Penrose [7, 1].

Using the methods of Dobrushin and Minlos [2], it may be possible to extend our results to cover the case where q does not have a hard

² We have tried, without success, to deduce (3.13) directly from the variational formula for $a(\varrho, 0+)$ given in Part I.

core, provided that the existence of $a(\varrho, 0+)$ can also be proved in this case.

Our results can be extended to include an external potential $\psi(yx)$, as in [1], where $\psi(y)$ is periodic, Riemann integrable, and satisfies $|\psi(y)| < \overline{\psi}$, a constant, for all y. To do this we need only replace C' everywhere by $C'e^{\beta\overline{\psi}}$.

Acknowledgement. We gratefully acknowledge financial support for D. J. Gates from 'The Royal Commission for the Exhibition of 1851'.

References

- 1. Gates, D. J., Penrose, O.: (Part I) Commun. Math. Phys. 15, 255 (1969).
- Dobrushin, R. L., Minlos, R. A.: Theory of probability and its applications, USSR, 12, 535 (1967).
- 3. Ruelle, D.: Statistical mechanics. Section 3.4.8. New York: Benjamin 1969.
- Royden, H. L.: Real analysis, coroll. 11, p. 105; prop. 16, p. 109; problem 16, p. 108.
 Second Ed. New York: Macmillan 1968.
- 5. Penrose, O.: J. Math. Phys. 4, 1312 (1963).
- 6. Phys. Letters 11, 224 (1964).
- 7. Lebowitz, J. L., Penrose, O.: J. Math. Phys. 7, 98 (1966).

D. J. Gates Mathematics Department Imperial College London, S.W. 7, Great Britain O. Penrose The Open University Walton Hall Bletchley, Bucks, Great Britain