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Abstract. If to a Lagrangian density with invariance under a continuous group of linear
transformations of the fields a term linear or bilinear in the fields is added, the symmetry is
in general reduced and the currents associated with the original symmetry are only partially
conserved. If the theory without the added term is renormalizable, the theory with that
term also is, and the needed renormalization conditions are the essential content of the
appropriate Ward-Takahashi-Kazes-Rivers identities. The case of symmetry breaking
by a term linear in Bose fields (source term) is here analysed completely, in particular with
respect to the nonsymmetric limit of vanishing source term, a particular Goldstone mode,
and with respect to properties of the ground state energy density as a function of the strength
of the source term. Induced and spontaneous breaking of a discrete symmetry are also
treated.

Introduction

B. W. Lee [1] has discussed the sigma model [2,3] from the point of
view of renormalized perturbation theory, in order to have available a
model that satisfies PCAC1 and allows to calculate in a formal but con-
sistent way the amplitudes for processes involving nonsoft pions.

We shall show here 2 that for such models the renormalized perturba-
tion expansions can be very simply obtained if the relations, stemming
from PCAC, between vertex functions of different numbers of arguments
are exploited. These relations yield all the renormalization conditions
required in Bogoliubov-Parasiuk-Hepp (BPH)3 renormalization theory
in terms of only that many parameters as the unrenormalized Lagrangian
has. This technique also covers the Goldstone mode4 obtained in the limit
of vanishing source but, since it deals with renormalized quantities only,

1 Ref. [4] discusses the sigma model and related models from the point of view of
applications to pion physics.

2 A short account was given in Ref. [5].
3 See Ref. [6] and references given there.
4 Ref. [7] gives a comprehensive presentation of the relevant material.
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allows no direct conclusion concerning e.g. whether, switching off the
source term while leaving the rest of the Lagrangian unchanged, the ground
state for the latter would be the usual symmetric or the non-sysmmetric
Goldstone one, although this question is meaningful.

The Goldstone situation can in an intuitively appealing way be
illuminated in terms of the behaviour of the ground state energy density
as a function of the source strength. The discussion hereto, familiar in
the classical case, carries over with few changes to quantum field theory,
whereby, however, a formal similarity to the theory of condensation
of Yang and Lee [8] is noted.

In Section I, the well-known one-particle structure of Green's
functions is presented concisely. In Section II, for Green's functions
involving current operators that have simple commutators with the
fields, Ward-Takahashi-Kazes- and Rivers-type identities are derived.
In Section III, the formulas of the first two sections are written for the
special case of a symmetric Lagrangian density with added term linear
in Bose fields. These relations are used in Section IV to obtain the BPH
renormalization conditions in terms of only the number of parameters
that appear in the unrenormalized Lagrangian. The same is done, with
some necessary precaution to avoid spurious infrared divergences, in
Section V for the associated Goldstone mode, i.e. the limit theory with
vanishing source and spontaneously broken symmetry, which may
also be described directly in terms of a manifestly nonsymmetric La-
grangian. In Section VI, the relation between the theories with and with-
out symmetry breaking source term is discussed and a comparison is
made with the breaking of a discrete symmetry. The appendix contains
the discussion of the properties of the ground state energy as a function
of the source strength, which are obtained using results of Euclidean
quantum field theory.

The calculation of the Green's functions involving a current operator
will, because of the technique needed hereby, be included in the sequel
paper, which deals with symmetry breaking by a term bilinear in fields.

I. One-Particle Structure of Green's Functions

We wish to consider the Poincare-invariant theory of a multi-
component local hermitean field A(x) described by the Lagrangian density

L = L(A,dA). (I.I)

To this end we consider, following Schwinger [9], the related theory
described by the Lagrangian density

L = L(A',dA') + JA' (1.2)
4 Commun. math. Phys., Vol. 16
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where the components of J(x\ as far as they multiply Bose fields, are
suitably smooth real functions that vanish sufficiently fast in infinity,
and, as far as they multiply Fermi fields, elements of a suitably large
Grassmann algebra. We will not discuss this latter case [10, 11] in any
detail, however, since for Fermi fields the source terms merely serve to
mechanize combinatorial manipulations while only in the Bose case we
can, and will in Section III, interpret the source term realistically as a
change in the physical Lagrangian density.

Let > denote the vacuum of the theory (I.I), and >Jn and Xut the
normalized ground states of the theory (1.2) at very early and very late
times, respectively. Upon a suitable choice of the phase factor between
these two states, the functional of J

Gdisc^HouXIXn (1.3)

may be written as

Gdisc{J] = <(expP ί dx J(x) A(x)-])+ >
oo V /

= Σ (n!Γ1i"j..-] ίJx1...^BJK)...JWGd i s c(x1...xn)
n = 0

such that it is the generating functional of the Green's functions

Gdisc(*ι ..•*„) = <(A(x±) . . . A(xn))+ > (1.5)

of the source-free theory.
The ( )+ -product, also called Γ*-product, is for renormalizable

theories of spin 0 and spin ^ fields the ordinary T-product, but will in
general differ from it by noncovariant "seagull" terms [12-14]. Green's
functions can also be defined "axiomatically" i.e. without reference to a
Lagrangian, and then are under certain technical assumptions [15, 16]
Poincare invariant generalized functions to the extent that all the later
considerations of this section apply also to such theories.

Abbreviating throughout this paper functional derivatives with
respect to the argument in curly brackets by subscripts, we have

( - 0" [_δ"/δ J(Xl) ...δ J(xJ] Gdisc { J}

= (- 0" G^.-.ΛJ} = ' ' ( ' }

By

G{J}=lnGdisc{J}

= Σ (»!Γ1i"ί-ί^1...dxnJ(x1)...J(xn)G(x1...xn)
n = l

the generating functional of the connected parts G(x1...xn) of the
original Green's functions Gdisc(x1 ... xn) is defined.
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We define the amputation operation, indicated by underlining, on
a Green's function argument by the convolution with the (in the convolu-
tion sense) inverse-propagator matrix G"1 (...):

G. ..(... y. ..)^$dzG-ί(yz)G...(...z...).

In view of the momentum-space analytic properties of these Green's
functions, which are an essential element in their definition and are due
to relativistic invariance and the nonnegativity of the energy spectrum,
this operation has an unambiguous meaning5 also outside of perturba-
tion theory.

We now set, separating out the J-independent term,

- i Gx {J} -G(x) = s/(x) (1.8)

whereby J may be determinded as a functional of stf e.g. as a Volterra
series by iterative inversion of (1.8):

(z)+-.. (1.9)

We have

and therefrom
iG-}{J} (LlOb)

which is symmetric in x and y, such that we may express J as a functional
derivative of a functional of «*/,

(1.11)

Explicitly, in this Legendre transformation [18]

Γ{j/} == - i J dx J(x) |X(x) + G(x)] + G{J} (1.12)

where on the right hand side for J (1.9) is to be substituted. We have

Γ{^}= Σ(n\Γ1$ LdXl...dxns/(Xί)...^(Xn)Γ(Xl...Xn) (1.13)
n = 2

with Γ(x1 ... xn) the proper (amputated, connected, one-particle-irreduc-
ible6) ft-point vertex function, and

G;,1{J} (1.14)

such that in particular

Γ(xy) = -G-^xy) = -G(xy) (1.15)
5 However, if subtractions for the propagator are needed, certain conventions con-

cerning these should be followed, cp. Ref. [17].
6 See Ref. [17] and for a rigorous discussion, Ref. [19].

4*
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is the negative inverse matrix to the matrix of the propagators used before
in amputation. The formulas

- i GX{J} - G(x) = */(χ) = i\dy G(xy) J(y) - i G'X{J} (L16a)

and
(I.lόb)

where G'{ } and Γ'{ } are obtained from the unprimed functionals by
dropping terms lower than cubic, show the nonlinear tree-like structures
that arise when the G(...) are expressed by the Γ(...) and, inversely, the
Γ(...) by the G(...). We also note

-iG'x{J} = $dyG(xy)ry{s/} (1.17)

and emphasize that the vertex functions Γ(...) determine all connected
Green's functions G(...) with the exception of G(x).

Because of their relevance for some later points, we describe features
of the irreducibility concept used here. One-particle irreducibility implies
the absence of any poles in Fourier transforms attributable to stable-
one-particle states that are created by applying the A(x\ the (supposed
irreducible set of) fields used in (1.4) or, in our special case, the fields
occuring explicitly in the Lagrangian, on the vacuum, but not of poles
attributable to stable composite particles. On the other hand, also
singularities other than poles are removed that are associated with the
mass spectrum of the states obtained by applying the field operators singly
on the vacuum. In perturbation theory, one-particle irreducibility
implies the absense of any graphs that decompose into two, both having
external lines before cutting, by cutting one line, which is the concept
relevant in BPH renormalization theory3. It is also for the amputated
and one-particle irreducible functions, in this sense rather than in others
[20, 21] that PC AC leads to simple identities, as we will now see.

II. Ward-Takahashi-Kazes-Rivers Identities

We assume that in the theory envisaged in Section I S hermitean
local vector7 currents jJ(x), α= 1 ... 5 can be defined such that integrals
of their zero components over sufficiently large space volumina trans-
form the fields linearly homogeneously:

[/α°(x), A(y) \ <5(x° - y°) = iτa A(y) δ(x - y) + S.T. (Ill)

where the τα are real square matrices acting on the suppressed component
index of the field and S.T. ("Schwinger terms", different from equation to

7 The considerations of this section can with corresponding changes in (II.1), imme-
diately be extended to higher tensorial currents, such as energy-momentum tensor density.
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equation) denotes as sum of local space derivative terms

S T.= Onnn(y)d»xd»xd»xd(x-y)

that need not, however, be really meaningful. For the scalar 7 divergences
of the currents we write

0μ£(*) = 4(*). (Π 2)

From (II. 1) follows that multilinear local products of field operators,
which do not involve time derivatives in the case the currents are not
conserved, such as might be used as interpolating fields [22-24] for
composite particles, transform (formally) also linearly homogeneously
in analogy to the fields in (II. 1) provided sufficiently many such combina-
tions are introduced. Thus, we may take the following considerations
to apply irrespective of whether the fields used are "fundamental"
or other local ones.

We next assume that the Green's functions involving one current
operator can be defined:

GSisc«(x, Λ . - - yn) = <(£(*) X(y t) . - . A(y& > (II.3)

where the ( )+ -product must involve [25] "seagull terms" whenever the
Schwinger terms do not vanish for all equal-time commutators [/μ, A]
but, just like Schwinger terms, "seagull" terms need not be meaningful
as the T-product in question need not be meaningful.

We make a corresponding assumption for the divergences, such that

Gdiscα(x, yt. .y^ <(dβ(x) Afo) . . . A(yn))+ > . (II.4)

Then, from (II.1-4)

% Gdiscα(*> Λ - - yn) = Gdiscα(x, j>ι . . . yn)
Λ (Π.5)

+ * L (τ«)v GdiscGΊ - - yv - - yn) δ(x - yv) + zldiscα(x, ̂  ... yn)

where the subscript of τα has an obvious meaning.
In (II.5), the J-term is formally a sum arising from the Schwinger

terms in (II. 1), the derivative of the "seagull" term connected with (II.3),
and the "seagull" term connected with (Π.4). This, necessarily covariant
and meaningful, sum need not vanish, but has, in the case of a conserved
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current, be shown [26] to be of the form8

^discαfo .Vl " )U

+. Σ 3
V

+ Σ
v<λ

such that is can be absorbed in the left hand side of (II. 5) by a change of
(jίiiscα( ) by meaningful and covariant "seagull" terms.

For a nonconserved current, ^discα need not be of the form (II.6).
It is not possible to absorb non-divergence A<^ίsc(x9yί ...yn) parts in
Gdisc(;x, y1 ... yn) if for Gdisc(x, y^ ... yn) a definition independent of (II. 5)
is given, i.e. directly in terms of the divergences, (II.4). This is in particular
so in the case we will discuss in Section III. However, for a renormalizable
model of that type, Sections IV and V, ̂ discα = 0. Moreover, recent results
of Tung [27] imply the vanishing of A -terms in (II.5) for certain more
general models in renormalized perturbation theory, the reason being
"smoothness" of the current divergence operator in all these models,
which also applies to our models of symmetry breaking by bilinear terms
considered in the sequel paper. Therefore, we will omit the zl-term in
(II. 5) in the following and have for da(x) = 0 the Ward-Takahashi-Kazes 9

(WTK) identities.
We transscribe (II.5) into generating functionals. With

Σ (n\Γ1in$-ϊdy1...dynJ(y1)...J(yn)
n—0 V * /

•GSta.foΛ O^GSte.fc-O
and

Σ(n\Γlfl-ίdy1...dyHJ(ylL)...J{y^ (Π7b)

• Gdiscβ(χ, yi . . . yn) = Gdiscα(χ, J}
we find

^ Ggiscα(x, J] = Gdiscα(x, J} + i J(x) τ» Gdίscx{J} . (II.8)

We introduce the connected Green's functions by their generating func-
tionals

G£(x, J} = Gdisc{J} -1 Ggisco[(x, J} (Π.9a)
and
_ G.(x, J} = Gdίsc{J} -1 Gdiscα(x, J} (Π.9b)

8 Hatted arguments are to be omitted.
9 See Ref. [28] and references given there.
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and obtain
dμGt(x, J} = Ga(x, J} + i J(x) τα GX{J} . (11.10)

We integrate (11.10) over all space- time. If the boundary terms in in-
finity hereby vanish, a sufficient condition for which is the absence of non-
vacuum zero-mass states in the theory, we find, multiplying the result by
real numbers uα and summing over α (using the summation convention
and uΆτΛ = u τ)

f dx J(x) u τGx{J} = i\ dx ua GΛ(x, J} .

Upon replacing J by exp[Aw τr] J, with λ real, this becomes

(9/3 A) G{eλu'τT J} = i$dxua Ga(x9 eλu'τTJ}

whence

i
G{e"'*T J} - G{J} = i$dλ$dx u. GΛ(x, eλu'τTJ} . (11.11)

o

In particular, if the currents are divergence-free, the Green's functions
are invariant (i.e., do not change their values) under transformation on
all arguments by the matrices exp[w τ]. In the cases of interest, these
will form a representation of an ^-parameter Lie group, the latter being
an invariance group of the theory.

We now set

(%(x, J} = (%(x9) + J dy G£(x, j?) [-/ Gy{J] - G(y)] + Gf(x, J} (11.12 a)

and

Gβ(x, J} = Gα(x,) + J dy GΛ(x, jj) [- / Gy{J} - G(yJ] + Gfa J} , (Π.12b)

thereby defining Green's functions Gtii(x9 ...) and G^x, ...) as those parts
of the full ones that are one-particle irreducible (in the sense discussed
in Section I) between x and the remaining arguments. For the generating
functionals, we set

G£'(x,J} = Γ£(x,j*} (Π.13 a)
and

thereby defining the proper vertex functions Γ£(x, ...) and Γα(x, ...)
with one argument corresponding to a current and a divergence operator,
respectively. With (1.8), (Π.12-13), (11.10) becomes

- Gβ(x, ) + J d); GΛ(x,$ j/(y) + Γα(x, ̂ } - i[χ(χ) + G(x)] τj
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Here the ^/-independent terms are trivially equal and, moreover, both
vanish in a Poincare-invariant theory. The terms linear in j/ cancel
because of (1.15) and the special case of (11.10)

% Gt(x,y}=:G.,(x, y) + i τα G(x) δ(x - y) . (11.14)

The higher terms are, with Γ {^} from (I.lόb)

dμ /?(x, si} = Γα(x, ̂ } - iJ(χ) τl Γx{^} - iG(x) τ[

x)] τj Γx{j/} -i\dy G(x) τj G'

which are, if Γα = 0 and G(x) = 0, the identities of Rivers [29] (R) for the
special case of only one current operator argument in the vertex functions.

Apart from the replacement of τα by — τj and the presence of the
last term, (11.15) has the same form as (11.10), and similar operations as
performed on (11.10) lead, if again the boundary terms from space-time
integration are assumed to vanish, to (in this equation, the generally
infinite values for si = 0 should be subtracted on both sides)

(ll.lOJ

• l(u - τ)-1 (eu'τ- 1) j4(y) + (u - τ)'1 (eu'τ- 1 - u - τ) G(j )] .

In particular, if the divergences of all currents are linear in the fields
and in addition G(x) = 0, then the vertex functions are invariant under
the transformations contragredient to those under which the Green's
functions are invariant, and in this case (1.11) gives

jj(x) {eu'τJ} = e-u'τTj/(x) {J} . (11.17)

(11.16) shows that if the currents are conserved, the Γ(. . .) are not invariant
under the linear transformations discussed here if G(x)φO, even if the
boundary terms in the space- time integration to obtain (11.16) from
(11.15) vanish. Inversely, while for the G(...) noninvariance under the
transformations considered in the case of conserved currents requires
the non vanishing of boundary terms and, more concretely, the contribu-
tion of states of one massless particle [30, 31] in the vacuum expectation
values

Σ </«(*) \n><n\ polynomial of the Ay (11.18)
n

at the indicated intermediate state, at the same time the integration of
(11.15) may yield vanishing boundary terms provided G(x)Φθ. The
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reason for this possibly different behaviour at zero momentum of
is, cp. (II. 12 a) and (II. 13 a), that Γα

μ is, apart from amputation, only the
one-particle-irreducible part of G£. - The last observations are the essence
of Jona-Lasinio's discussion [32] of spontaneously broken symmetry.

III. Green's Functions and WTKR Identities

in the Presence of Source Term

If we drop the requirement that the source-free theory (I.I) be Poincare
invariant, but assume that asymptotic Poincare invariance holds (i.e. at
very late and very early times, at least formally achieved by letting the
coefficients of the terms in the Lagrangian density then take constant,
though not necessarily the same, values), then the Green's functions are
uniquely defined only up to a common factor such as one was fixed
for the theory (1.2). Denoting the Green's functions for the theory where
a linear term KAis taken as part of the Lagrangian density

Lκ = L(A,dA) + KA (III.l)

by Gκ(. . .), physically interpretable only for a pure Bose source, the choice
of factor such that

OS* [J] = Gdisc {K} -1 Gdίsc {J + K} (111.2)

is particularly convenient since it allows to let K become time- and even
space- time-independent in a limiting process in which Gdisc{J + K}
itself has no limit. The relation that is with Gκ {0} = 0 equivalent to
(IΠ.2)

00 (III 3)
= Σ (n\ΓΊ-ldy1...dynK{y1)...K(yn)Gxyί...yn{J} l '

«=0

is usuable also for space- time independent K and yields a solution of the
relevant functional differential equations [9] of the theory (III.l).
We defer further discussion of the case of space-time independent source
to the Appendix and here take simply (III.3) as our starting point with,
however, particular attention to the possibility

where, if this limit is not unique, GX{J} is even not expected to exist.



58 K. Symanzik:

For the theory (III.l), from (III.2) and (1.8) we have immediately

jtfκ(x) {J} = - i G* {J} - Gκ(x)

ί Gx {K} (II

with the now necessary indication of the source functions the j/ refer to.
We will use the abbreviation

(111.6)

such that, from (1. 11),

Now (1.11) and (III.5) give

Because of the arbitrariness of J and, consequently, of
it follows that for all j4

or

which indeed satisfies (1.12) for the theory (III.l). (III.8) means

rκ(χ, ... χ») = Σ αo"1 ί -ί dy, ... dyιO (ΠLIO)

i.e. the vertex functions of the theory (III.l) are simple linear combinations
of the infinitely many vertex functions of the theory (I.I). In particular,

(III.ll)

or, more explicitly, in view of (1.15),

For use in the next sections, we write the WKTR identities for the theory
(III.l) in the special case that the currents of the theory (I.I) are conserved.
Since the additional term in (III.l) does not involve derivatives, it is
natural to choose for that theory the current operators of the same func-
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tional form as for the ones of the theory (I.I). (III.2) gives

such that forming the Green's functions involving one current operator
by appropriate differentiations and limiting processes, involving space-
like distances, on the right hand side of (III. 13) will give on the left hand
side the analogous construction, provided the prescription to be followed
on the right hand side of (III. 13) requires no explicit reference to J + K.
This will be so for the familiar internal-symmetry currents having the
property (II. 1) in the usual renormalizable models10 [27], in particular
the one of Sections IV and V.

Thus
GSc Oc, J} = Gdisc {K} ~ 1 GSiscα(x, J + K}

or, using (Π.9a) and (IIL2),

Since by assumption

(11.10) and (111.14) give

5μ Gf*(jc, J} = i[J(x) + K(x]β τα Gξ{J] (111.15)

and thus, comparing with (11.10)

G*(x,J} = iK(x)ταGf{J} (IΠ.lόa)

which means, for the theory (III.l),

dμfa(x)=-K(x)τaA(x) (IΠ.lόb)

and in particular, with (III.6)

Gζ(x9 ) - dμ Gζ"(x, ) = - K (x) τα [jf (x) + G(x)] (ΠI.17)

Furthermore, from (III. 15)

8*μ G*μ(*> y) = i Gκ(x) τl δ(x -y)- K(x) τα G
κ(xy) (111.18)

or, with (III.3) and (III.6)

dx

μ <%*(*,$ = -K(x) τα δ(x - y)

10 This holds also in quantum electrodynamics provided, instead of the more common
external field, an external current is used.
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(111.17) and (III. 19) allow to write (111.15) as

- J dyGζ"(x,χ) [-i Gf {J} - Gκ(y)l}

- J dyl*(x) + G(x)] τϊ(GV (xy) [Gf {J} - i Gκ(y}\ .

Due to (II. 12 a) and (II. 13 a), this means

dμΓf(x9J} = -i^(x)τlΓΪ{^}-iGκ(x)τlrϊ' {^} (111.20)

such that, as comparison with (11.15) shows

as expected since, the divergence (IΠ,16b) being linear in the field, removal
of the source-independent and one-particle irreducible part from G*(x, J}
leaves zero remainder. Integration of (111.20) yields with (I.lόb) and the
integrated form of (III. 19), if in both integrations no boundary terms arise,

J dx\j*(x) + Gκ(x)] τl Γ?{j/} = i J dx K(x) τα s/(x) . (111.22)

The formula (11.16), written for the theory (III.l), gives due to (111.21)
simple transformation laws for the vertex functions Γκ (of at least two
arguments, those of less arguments vanishing identically according to
(1.13)). The condition for applicability of (11.16) to (111.20) with (111.21),
discussed at the end to Section II, gives: If the divergences of the currents
are linear in the fields and the currents such that the corresponding
"charges" (or, rather, integrals of the density over sufficiently large space
volumina) transform the fields linearly homogeneously, and if in the
matrix element (11.18) the mass spectrum of the intermediate states does
not reach to zero after removal of the one-particle-reducible parts (in
the sense of Section I), then invariance of the vertex functions and of the
connected Green's functions with two or more arguments under the
transformations induced by the "charges" is equivalent to the vanishing
of the vacuum expectation values of the fields.

The restriction on the residual mass spectrum in the last statement
is necessary in view of the possibility of "composite Goldstone particles"
[7] i.e. massless particles associated with spontaneous symmetry break-
ing but not contained in the states obtained by applying single field
operators on the vacuum, the case discussed in the sequel paper.

IV. Renormalization of a Model with Symmetry-Breaking Source Term

Following Lee [1], we consider the model of an N + 1-tuplet of scalar
hermitean fields A^x), i = Q ...'N, with the Lagrangian density, in terms
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of unrenormalized fields and parameters (indicated by the subscript u)
and written in ordinary rather than Wick products11'12

L = i dμ Aiu y Aiu -\ml Aiu Aiu - i gu(Aiu Aίu)
2 + cu A0u . (IV.l)

We note that (IV.l) has the form (III.l) and thus the considerations of

Section III apply to it, if for the currents we take the ( appropriate

to the 0(N + l)-invariant part of (IV.l); in addition, we may exploit
Poincare invariance.

From now on, we let Latin indices run from 1 to N, writing the zeroth
component separately. We introduce the same amplitude renormalization
factor Z3 for all fields, leaving its specification till later, and introduce
renormalized quantities

(IV.2a)

(Z-1. . .N), (IV.2b)

(IV.2c)

(IV.l) yields ( conserved currents 13

ft = Aίu & Aju = Z3 At
(i

and N partially conserved currents

jf = A0u & Aiu = Z3A0d" A, ,

(IV. 3 a)

(IV.3b)

(IV.4 a)

(IV.4b)

x° -

with the commutation relations with the fields

- i(δίk Aj(y) - δjk At(y)) δ(x-y) + S.T. , (IV.5 a)

(iv.5 b)

(IV.όa)

(IV.6b)

x° -y°)=- ί δl} A0(y) δ(x -y) + S.T. ,

11 If one prefers, one may here use "symmetric" Wick contractions, which are, however,
like "true" Wick contractions, not sufficient to give the field equations bona fide meaning.
The transformation properties of the terms in the Lagrangian or in the field equations must,
however, be explicit rather than clouded by, in this context, extraneous, conventions.

12 flT = diag(l, -1, -1, -1).
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where we need not discuss whether the Schwinger terms are zero, finite,
or meaningless.

The relations (IV.3b), (IV. 5) are those of the remaining O(N) sym-
metry, which in the following we assume not to be broken spontaneously,
while (IV.4b), (IV.6) yield for

i ^ . i X i ... X*, }>ι ... yι

from (11.10) or (III. 15) the identities

i

= Σ

with

Σ Gi!...iιj(^ι •• *κ χk>);ι -
κ = l

dzGiί_ilj(x1 . ..x f c,j>! ...ytz)

where the second equality in (IV. 7), which is also directly obtained by
integrating the equation preceding (111.20), is an immediate consequence
of the first and its special case k = 0, / = 1. In (IV.7) it is assumed that the
mass spectrum in the intermediate state indicated in (11.18) does not
reach to zero, a condition that can be waived for the second equality
in (IV.7), due to the amputation which allows a smooth transition to the
zero-mass-state case, if we expressly exclude the occurrence of "composite
Goldstone particles", cp. Section III. Under this same provision, (111.22)
yields

= Σ
k

- Σ

with Γ...(...) defined in analogy to G ,..(...).
The second equality in (IV.7) in the off-shell form of the Adler self

consistency condition [33] and, as remarked, is usable even if c = 0
such that the first term in (IV.7) is meaningful, namely zero, only if the
z integral exists i.e. there are no Goldstone particles. (IV.9) are the cor-
responding relations for vertex functions and, if one whishes, show how
(IV.7) comes about if one thinks in terms of "pole diagrams" i.e. one-
particle structure (in the sense of Section I).
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We proceed to the construction of the renormalized perturbation
theoretical expansions of the Green's functions in the manner of BPH3.
First we determine the superficial divergence degrees of the vertex parts.
In view of the last term in (IV. 1), the other bare vertices obtained from
(IV. 1) may have σ-legs14 disappear in the vacuum, and since such legs
are disregarded in one-particle structure in the sense of Section I where
all their effects are accounted for by the G(x) term in (1.8), in addition
to the bare vertices of the symmetric theory σ4, σ2ππ, ππππ, π2, σ2 also
the vertices σ3 and σππ are elementary ones, and nonderivative ones
like the first two usual ones they may be considered as being derived from.

Let N4 and AΓ3 be the number of 4-and of 3-vertices, respectively,
and E the one of external, / the one of internal lines, and L the number
of loop integrations. Then

4N4 + 3N3 = 2I + E, (IV.lOa)

N4 + N3=I-L+l (IV.lOb)

and the superficial divergence degree is

/)ΞΞ4L-2/ = 4-£-AΓ 3. (IV.lOc)

Thus, D = 0 for E = 4 and £ = 3, since N3 is odd if £ = 3. For £-2,
D = 2, while for £ = 1, D = 2 because N3 is odd, but these one-leg vertex
parts play no other role than that noted above.

We need values for all superficially divergent vertex functions at
arbitrary subtraction points in momentum space. The Lagrangian (IV. 1)
contains the parameters m2, gu, cu such that we must have only three
independent parameters in the renormalized perturbation expansion,
and therefore there must be relations between the values of various vertex
functions. The identities (IV.9) provide us with precisely all required
relations and with no more, since the information contained in (IV.9)
beyond the relation between the renormalization conditions for the
superficially divergent vertex functions is not independent of the one
contained in the general interrelation between the vertex functions in the
form of their usual nonlinear integral equations [9].

The relevant information from (IV.9) is most easily extracted by
choosing as subtraction points the ones of all momenta zero. We define

J f <**! ...dxkdy1 ...dj'^...^*! ...x f c ,J>ι ... J>ι)

i *!+•••+ ipkXk + iqiyi + ••• + z'̂ J

14 For conciseness, we call the A0 field and associated particles σ-ίϊeld and -particles,
the Aϊ field and -particles π-field and pions.
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Then (IV.9) gives

= Σ ^iλ/
JΠι...?A...iι(Pι " Pfc4λ>4ι -• 4 λ - «ι) (IV.ll)

λ = l
fe

~~ Σ Γii...ilj(Pi' 'Pκ Pk>4ι qιPj

We furthermore set, in view of the preserved 0(N) symmetry that also
implies the vanishing of all Γ with an odd number of π-arguments,

fίl...,,,(o...o,o...o)=rt,2, Σ <W A2 ί_Λ2,
(21-1)11 pairings

and obtain from (IV.ll)

To solve this, we introduce

r(χ,y)= Σ Σ(V lVχkylr*,2i (IV 13)
k = 0 / = 0

for which (IV. 12) takes the form

FΓy = Γx-xΓy-ic

with the general solution

Γ(x,y) = ίcx+ J (HΓ'aάxF + y + ̂ x2)1. (IV. 14)
1 = 0

The properties

yield
α0 — 0, ^ = — i

We set
Γ2^-iM\ Γ0)2=-i

then αx = — iμ2, a2 = —ig such that

c = Fμ2,

M2 = μ2 + g
and

The Γfc 2/ with /c + / ̂  3 require to dermine the αr, 3 ̂  r ̂  k + /; however,
these are all obtainable from e.g. the vertex functions Γ0)2r = ar which
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need no final subtraction. To calculate them, we must also determine
the two negative inverse one-particle propagators f(p( — p\ ) = Γσ(p2)
and fυ( ,q(-q)} = δijΓπ(q2\ We set, for convenience, hereby fixing
Z3 in (IV.2),

Γπ(q%2 = 0 = i. (IV.20)

Then the special case of (IV.9)

N- 1 Ff ί ί fe(
yields

(δ/dp2) Γσ(p2)|p2 = 0 = i + N-1 F(d/6q2) fu(q, (-q) Q)\q2 = 0 (IV.22)

whereof the last term, which is of order g and higher, can be calculated
without final subtraction. (IV.22) is the required renormalization condi-
tion for the σ-propagator upon the choice (IV.20) for the π-propagator.
Of course, it is more convenient to calculate the σ-propagator directly
from (IV.21) with (IV. 19).

The system of renormalization conditions is now complete. Simple
counting of orders on the basis of (IV. 10) gives the result that in (IV.14)

*r = / ίXz^'1 (r^3) (IV.23)
L = l

where the αr L are finite and only μ2- and M2-dependent, and L is the
number of loop integrations whereby also self energy loops must be
counted, while loops without external lines and attached to the rest of
the diagram only through one vertex do not occur in the BPH scheme.
The condition of one-particle-irreducibility of vertex diagrams is the
reason why the sum in (IV.23) starts with L = 1 rather than with L = 0,
which is the crux of the present procedure 15.

It remains to justify that the relations (IV.9) are exhausted by the
relations (IV. 17- 19) and (IV.22), given the usual nonlinear integral
equations, derived from the field equations, for vertex functions. This
can be proven by adaption of Brandt's proof [34], in renormalized
perturbation theory in quantum electrodynamics, of the WTK identities
at zero momentum of the electromagnetic current operator argument;
the analog of that operator is here the right hand side of the field equation
for the pion field. The details are laborious and will not be given here;
however, the calculation of Green's and vertex functions with one current
operator argument in our model is of interest and will be given, because

15 This method of calculation, where the WTKR relations are central, differs somewhat
from the one of Ref. [1] where the PC AC condition was merely used as a check, the sym-
metry of the original Lagrangian, cp. Ref. [39], being invoked by the manner of regulariza-
tion.

5 Commun. math. Phys., Vol. 16
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the necessary formalism is d oped there, in the sequel paper on sym-
metry breaking by terms bilinear in the fields.

Finally> we briefly describe the transition from the present renormaliz-
ed functions to the more conventional ones.

One introduces

such that16

ImΓren<τ(m2HO, (IV.24a)

lm(d/dp2) Γrenσ(p2)|p2=m2 = 1, (IV.24b)

Γrenπ(m2HO, (IV.25a)

(d/dq2) Γrenn(q2) \q2=m?. = i (IV.25 b)

with
m2 - M2 4- (5m2(m2, m2, ^fren),

where gren is some conventional replacement of g in (IV.16), These rela-
tions and the convention concerning gτen allow to calculate Zσ, Zπ,
δm2 and δm2 as expansions in gren with finite, m2- and m2- dependent
coefficients. Alternatively, one may construct the conventionally re-
normalized functions directly, using again (IV. 11), a procedure resembling
the one of Section V.

We remark that μ2 and M2 are positive [36] but otherwise arbitrary,
except for signg =sign(M2 — μ2) since F. in (IV. 16) must be real. However,
sign(m2 — m2) .= sign g or = sign gτen are required only for the perturbation
theoretical expansion to be possible and thus need not hold rigorously.
Note also that, while gu in (IV. 1) should be nonnegative [37], no rigorous
result concerning the sign of g or #ren is known.

The formula from (TV.IT) and (IV.18),

c = μ2l(M2-μ2)/gγ (IV.26)

shows that c== 0, i.e. the theory at least formally corresponding to a
0(AΓ-h l)-symmetric Lagrangian, can be realized either by μ2-^M2,
F-^ϋ, which yields an O(ΛΓ+1) symmetric renormalized theory, or by
μ2-^Q, F+>0, a merely O(Af)-symmetrie renormalized theory, within our
approach. We defer a discussion of this alternative to Section VI and
treat the second case in the next section.

16 (IV.24) allows ml ^ 4m£ i.e. the σ particle to be unstable. We are adopting the con-
vention of Ref. [35].



Models with Symmetry Breaking 67

V. Renormalizatioη in the Case of Spontaneously Broken Symmetry

ίf in the formulas of Section IV one tries to perform the limes μ2->0,
c -> 0, with g and M2 kept fixed, one encounters "infrared"(UR) divergences.
To order g, Γπ as calculated from the diagram of Fig. 1 imposing (IV.I6)

Fig.l

and (IV.20) with μ2 = 0, is easily found to be finite. Γσ is to order g simplest
calculated from (IV.21), which requires to calculate H"1 <Πi(p>( ~~P) 0)>
to order g*. The diagrams are shown in Fig. 2, a zero denoting the ex-
ternal line carrying zero momentum, the calculation to be done with

f
Fig. 2

one subtraction at zero momentum imposing (IV.19). Before subtraction,
the Feynman integrals are all UR-convergent at any momentum different
from zero. The subtracted term is, due to zero momentum, UR-divergent
for the diagrams 2c and 2/, and thus the renormalized result is UR-
divergent, the reason being the absence of the diagram Fig. 3 which would

J_
Fig. 3

have led to cancellation of the UR-divergence as we shall see later.
Similarly, f ί l / 4 ( , q1 ... q4) is UR-divergent in order g2, since it is to be
calculated by one subtraction at zero momentum from a set of diagrams
from which those that would have led to UR-finiteness of the subtracted
value at momenta zero are, as for Fig. 2, excluded by the condition that
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the diagrams be vertex diagrams. Thus, finite M2 and g are for μ2 = ί
in contradiction to finite renormalized Green's function, at least ir,
perturbation theory.

The obvious remedy is to choose different subtraction points. While
we could use the conventional renormalization discussed in connection
with (IV.24-25), due to the form of (IV. 11) the following choice of sub-
traction point for Γ... (p± ... pk, q1 ... qt) is more convenient:

l-l)=-λ2 (V/,V 7 ).

This point (or manifold of points) is with λ2 > 0 for k + / ̂  4 consistent
and real and realizable even with Euclidean (namely, pure space) momenta.
For k = Q, 1 = 2, i.e. Γκ(q2\ we choose, however,

Γπ(0) = 0, (V.2a)

(d/dq2) Γπ(q2)\q2=:0 = i. (V.2b)
We set

Γσ( - λ2) = - i(M2 + λ2), (V.3)

ftl_i4 (symmetry point) = -ίg(δiίi2δhi4+ ••• + •••), (V.4)

the bar being introduced to avoid confusion with the earlier symbols.
Renormalization now proceeds without any obstacle, some former exact
identities, where all momenta were zero, now being replaced by corrected
ones, due to the fact that on the left hand side of (IV. 11) the momenta
are not at the symmetry point if they are on the right hand side. E.g.
(IV.I8) becomes replaced by

. ) = F20(l + A0+.. .) (V.5)

and (IV. 19) by

Γ1>2 (symmetry point) = — iFg(l + y1g + •••) (V.6)

with finite α l 5 . . . , βi9..., γί9... .
There are now, for general momenta, no UR divergences in any dia-

gram in spite of the zero pi on momenta occurring in (IV. 11) and (V.2).
The reason is that, due to the 0(N) symmetry, the pions are only emitted
or absorbed in pairs rather than singly. For this reason also the S-matrix
is not UR-divergent, the state space [35] being the one of massless
pions only.

Using results of many-particle structure analysis of Green's functions
[38], one finds that the Adler self consistency conditions (IV.7), used for
appropriate sums of subdiagrams within vertex diagrams, additionally
improve on the UR-convergence of Feynman integrals for suitable sums
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of vertex diagrams. This is the cancellation mentioned before in connec-
tion with the three- and four-point vertices, where the missing terms would
have completed the original Green's functions for which (IV.7) holds.
While scattering amplitudes vanish due to (IV.7) if any pion momentum
is zero, vertex functions remain singular if σ-momenta or certain sums of
pion-momenta are zero; our renormalization convention was chosen
just to avoid those singularities and to make best use of the remaining
O(N) symmetry.

The theory has two parameters, M2 and g, the finite quantity F
being given by (V.5), with λ2 occurring merely as a dummy parameter
in the sense_that change of λ2 can be compensated by obvious finite
changes of M2 and g, λ2 = 0 being excluded. This two-parameter theory
is the limit as μ2 -> 0 of the three-parameter theory of Section IV as can
be made manifest by using also there subtractions at the symmetry
points (V.I). Then μ2-»0 meets no difficulties, and m2-»0 would meet
none in the conventional renormalization (IV.24-25). (IV. 18) shows that,
due to the finiteness of F and the merely finite changes in the common
normalization of the π- and σ -field, compared to our altered normalization
convention, M2 and g diverge (at least in perturbation theory) in the same
manner when μ2— >0.

The Goldstone mode of the theory (IV. 1) can be formulated in terms
of a Lagrangian density that makes possible the perturbation theoretical
construction in the usual elementary way. Writing

(V.7a)

Aiu^nt (V.7b)

with
ctt = 0 and mϊ + $guf

2 = Q,

(IV. 1) becomes, up to constant terms, in ordinary rather than Wick
unrenormalized operator products u

L = i(3μσ d»σ + 3μπ£ 3"̂  - ±g(σ2 + π2 + 2/σ)2

which, with m2

u==guf
2, may also be written

/ ''

Thus the bare pion mass is zero, and it is not difficult, exploiting con-
servation of the "axial" currents (IV.4a), to show that the pion self mass
is zero in perturbation theory to all orders in g. E.g., the self mass from
the sum of diagrams to order g, Fig. 4, is zero while the first diagram
contributes to amplitude renormalization to this order. The vacuum
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expectation value of the σ field is zero only to lowest order but nonzei
to higher orders (prop. g~*+n, rc^l).

After introducing equal amplitude renormalization factors for ύ
σ and π fields, the theory (V.8) differs from the one analyzed so far in th
section only by the shift (V.7 a) of the σ-fίeld, such that connected Green
functions with at least two arguments and vertex functions are the sair
as before, the use of the same renormalization conditions being unde
stood. The practical advantage of the BPH renormalization technique
obvious from a comparison of Fig. 1 with Fig. 4.

' Λ + i v ) +4- Λ J +

/ N

!

Fig. 4

For the sigma model [2, 3, 39] one obtains results analogous to.thos
for our simplified model. In the Goldstone case, the pions are massles
and, chirality being no longer a good quantum number, the nucleon
massive and merely isospin-degenerate. While pions can be emittei
singly by nucleons, this leads to no more UR-complications than in ou
model due to the pseudoscalar nature of the pions. Quite generally, fo
PCAC models the Adler self consistency conditions lead to nonsingula
scattering amplitudes for Goldstone particle momenta zero and thu
to UR convergence of the S matrix, unless there are additional massles
particles in the theory.

VI. Discussion

We have seen that symmetry breaking by a term linear in Bose field
in a renormalizable theory can be dealt with easily with the help c
the relevant WTKR identities. Thereby, however, as is characteristic
for perturbation theoretical renormalization, one looses contact wit!
the Lagrangian itself, (IV. 1) in our case. Rather than trying to study th
expressions for unrenormalized parameters in terms of renormalize<
ones, it is here more meaningful to ask whether, in case the symmetry
breaking term is switched off, to the remaining symmetric Lagrangiai
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the symmetric solution or the nonsymmetric Goldstpne one would be
stable.

For an answer, we go back to (III.3) which gives

GX{J}'=G*{J-K}

«=o

or, for vertex functions, according to (III.8) and (III.7)

κ=0

It is immediate to check that, on the basis of the identities (111.22) and
the integral of (III. 15), the closed expressions given in (VI. 1-2) satisfy
the corresponding identities with K(x)-^>ΰ and Gκ(x)-^G(x), which
means that the new Green's and vertex functions have the expected
symmetry provided the infinite sums in (VI. 1-2) converge.

Now we have more generally

and
- z Jf} - Γ*{ -zjf } = Γ^{^} (VI.4a)

where Kz is given, using (III.8) again, by

(VI.4b)

The considerations of the appendix suggest that, because of (VI. 3),
Gf{J — zK} exists for infinitesimal J (i.e., its functional derivatives
at J = 0 exist), and that, because of (VI.4), Jjf{j/'-zJf} exists for in-
finitesimal J3/, in the non-Goldstone case for 0^z^2, but that these
functional have in the Goldstone case these properties only in the
interval 0 ̂  z < 1 for Gf {J - zK} and only in the interval 0 g z < z0 < 1
for Γf{j/-zJf}, where z0 is defined by ΐΓ^{~z0^T} = -X(x), and
should behave singularly at the approach z->l — 0 and z-^z0 — 0,
respectively.

For space-time constant K and jΓ, Kz tf is hereby a mono tonic
function of z and, in the model of Section IV, Kza vector parallel to Jf
as follows from (III. 17). In the symmetric and Goldstone case, there is
no reason for the functions (VI. 3) and (VI.4) not to exist for arbitrary z<0,
though the power series expansions in z should in the Goldstone case
converge only for |z| < 1 for Gξ {J - zK} and for |z| < z0 for Γ^{^- zJf }.
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It is in principle possible to carry out the infinite sums in (VI. 1)
and (VI.2) in all fixed orders of perturbation theory where, in view of
(IV. 18) and (IV. 1 7), geometric series arise; this procedure is the inverse
of the one Lee [1] applied to carry out the sums needed, in our notation,
in (III. 10). The result is, formally: The Green's function "G" and vertex
functions "Γ" defined by (VI. 1) and (VI.2) are the ones of a symmetric
theory, i.e. (IV. 1) with c = Q, with renormalization conditions, in a nota-
tion analogous to the one of Section IV and written in terms of Γ(x, y)
of (IV.14), "Γ2» = /;,(-*•,()), 6T3" = 0, <TS = ΓXXXX(-F,0), and anal-
ogously for "ΓJ". In the one-loop approximation, which gives for each
vertex function of ^5 arguments the lowest nonvanishing order in g,
we have by familiar techniques π [18, 40]

n g
, J>)ring = -i2~7 π

j du(ί - u)2 [N(μ2 + guzΓl + (μ2 + Iguz)'1] + c0 + q z + c2z
2 + icx

o

where z = y 4- \ (x + F)2 and the cf are such that (IV. 15-16) are satisfied
whence (IV. 1 7)— (IV. 1 9) follow. The higher approximations are increasingly
complicated, and a discussion of the sums "Γ" to all orders, which would
yield a necessary condition for the existence of the symmetric solution
in the form [36]

i <T2" = i Γxx( - F, 0) ̂  0 , ί "Γi" ̂  0 ,

is of course outside the scope of this paper.
That the question about the implications of the Lagrangian with the

symmetry-breaking term switched off can be meaningfully posed at all
means that if the symmetric part of the Lagrangian (or, more properly,
the symmetric part of the field equation) is written more carefully avoiding
meaningless expressions, then that part can be taken as independent u of
the symmetry-breaking term. (Or, in terms of regularization as employed
by Lee [1, 39]: the regularization must conform with full symmetry.)
This also holds for bilinear symmetry- breaking term, in the sense of the
preceding, with respect to the field equations.

The symmetry breaking considered in Sections IV-V can also be
described as a breaking of the reflection symmetry 0(1) with respect to
the σ-field. Such treatment applies also to the case N = 0 of the model
(IV. 1). (III.8) gives, because of Γx{^} = -Γx{-^} for the model
(IV.l)ifc t t = 0,

17 A similar calculation appears already in Goldstone's original paper, Ref. [41].
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which is equivalent to

(VI.7a)

(n^l). (VI.7b)

Taking N = 0 for simplicity, we have for

f*((fTb) = Γl , <ΛM> = F , K(x) = c

from (VI.7)

_FF 2 + iF 2F 3-iF 3Γ 4+-... = i c , (VI.8a)

Γ 3-FΓ 4+- =0, Γ5- + =0,... . (VI.8b)

Our method requires to start the computation of F and of all Γl9 /φ 2, 4,
from the solution of (VI.8) with all Γl9 1^5 neglected. E.g., for c = 0
we have to this lowest order the roots F = Γ3 = 0 and the nontrivial ones

F = ±(3M2/0)*, Γ3 = Ti(3M20)*, (Γ2 - -iM2, Γ4 - -iflf) .

Proceeding from these to higher approximations, i.e. to the inclusion of
vertex diagrams with loops, we obtain the expansions

•), (VL9a)

.), (VI.9b)

) (^5), (VI.9c)

whereby in one-loop approximation (VI.5) with N = Q, z = ̂
may be used17. There are, of course, no Goldstone particles in this case.
The method can easily be extended to the case c φ 0.

The difference compared with the procedure of Section IV is that now
the transformation considered is not infinitesimally generated and
genuine functional relations (VI. 6) must be solved, which require the
same type of summation to be carried out as discussed in connection
with (VI. 1-2). The great simplification by use of infinitesimal trans-
formations in the case N ̂  1 is obvious.

We remark in passing that from the form of (VI. 9) one cannot conclude
that g > 0 is necessary, but only that it is necessary in order for, in the
spontaneous-symmetry-breaking case, an expansion in powers of g
to be possible. For N^.ί9 formulas (VI.9a-c) do not hold since, as we
saw in Section V, M2 does then not exist in perturbation theory.

We have not shown that the expansions of Sections IV and V satisfy
the appropriate generalized unitarity equations [42]. However, the situa-
tion is not different here from the one in all perturbation theoretically
renormalized theories, since e.g. the spontaneity of the symmetry break-
ing in the Goldstone case has no particular effect on the renormalized
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perturbation expansion as such, as put in evidence by the Lagrangian
(V.8). The complication is, rather, that in the interesting cases unstable
particles18 [35] arise.

Acknowledgement. The author is indebted to the work of B. W. Lee, which was the
starting point of this investigation. He acknowledges stimulating seminars at DESY by
B. W. Lee and A. S. Wightman on symmetry breaking.

Appendix. Properties of the Ground State Energy Density

We first transscribe the one-particle-structure relations of Section I
into relations in Euclidean quantum field theory [44] (EQFT). In the
functions Gdisc(xi ... xn) and G(xi ... xj one replaces all xf by zx?; the
resulting distribution valued functions of z G{lίsc(x1 ... xή)anάG(z\x1... xn)
possess analytic continuations in z from the positive real axis into the
lower complex half plane. We set

G&cμ}= Σ
« = 0

and

G<*>{J} = X (π!)-1(izrf. .|dχ1...dxΛJ(^..,J(xJG<^x1...xJ (A.2)
n = l

such that (1.7) becomes

{J}. (A.3)

The functions G^fo ... xn) = Sdiββ(*ι ... xn) and G('i}(x, ... xn)
= S(x1 . . . xn) are the Euclidean Green's functions or Sch winger functions.
They are Euclidean invariant and, for the model (IV. 1), real and, if cu = 0,
the ..Sdisc(...) are positive- valued for the symmetric solution if there is one,
Further properties are given elsewhere 19 [44].

In analogy to (1,8-14) we set (S(x) = G(x))

Sx{J}-S(x) = a(x) (A.4)

and have
δφ)/δJ(y) = Sxy{J} (A.5a)

- _ δJ(x)/δa(y) = S;/ { J} (A.5b)
18 V. Glaser, H. Epstein, Ref. [43], have verified the validity of the equations of Ref. [42]

and related ones on the basis of a one-to-one correspondence between fields and stable
particles, in renormalized perturbation theory.

19 The notation of Ref. [44] is. related to the one used here as follows:

τfe ... x'^O^fa .:. xn) , T{J}^Gdisc{J} ,

S(x, ,;..xj-* SdliC(Xl . . .xj, S{J}- Sdisc{J),

G and S being used here for connected functions and functionals.
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such that
J(x)=-jrx{*} (A.6)

with
^fία) =-$dx J(x) [α(x) + S(χ)] + S{J} (A.I)

and
^{α} = -S;/{J}. (A.8)

α} is the generating functional of the Euclidean vertex functions, i.e.
the amputated one-particle-irreducible Sch winger functions J^(xί . . . xn).

As has been discussed in detail elsewhere [44,45], the Schwinger
functions can, for theories such as (IV. 1), be written

Sdiscfo ••• xn) = ]D(φ)φ(xί)... φ(xn)

where D (φ) is a normalized nonnegative measure on some function space 20 .
Thus

Sdisc {J} = j D(φ) exp [f dx J(x)φ (x)] (A.9)

and, as follows from the Holder inequality and (A.3) for z— —i, S{J}
is for real J a convex functional: (c + c' = 1, c Ξ> 0, c' ̂  0)

In particular, Sxy{J} is a positive-semidefinite function. Therefore, from
(A.5) follows that the transformation from J to α is possible except
on such manifolds (on J-space) that Sxy{J} has eigenvalue +00 i.e.
does not exist, and that the inverse transformation is possible except
where — ^fxy{oc} ( = S ~ y { J } ) has eigenvalues +00 i.e. does not exist.

Due to (A.4) and (A.10), (A.7) may be written

tf {α} = Inf { - J dx J(x) [α(x>+ S(x)] + 5{J}} (A.ll)

with the infimum being global, and unique except for the manifold
in α-space mentioned before. From (A.ll) the global concavity of Jf {α}

follows:

Jf {cα -f cV) = Inf { - J.dx J(χ) [cα(x) + c'α'(χ) + (c + c')S(x)] + (c + c')S{ J}}

^ c Inf { - J dx jT(χ) [α(x) + S(xJ] + S { J}}

+ c' Inf { - J dx J(x) [α;(

20 We are not referring here to a "Wiener history integral", Ref. [45], but are appealing
to a generalized Bochner theorem, given the positive-definiteness of the Schwinger functions.
This idea is due to J. Tarski.
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with c and c' as in.(A.lO). Thus, (A.7) also yields

S{J} = Sup { J dx α(jc) J(x) + Jf {α}} + J dx J(χ) S(x). (A. 12)
α

(A. 12) wins suggestive content in the transition to time-independent J
and α. We have [45]

// Γ +co \ \
Gdisc {J} = ( exp - ίz J rfx° Hj(x0) } (A. 13a)

\\ L -oo /+/

where
')) (A.13b)

is the instantaneous Hamilton operator to the theory (1.2), provided all
components of A(x) that appear in the source term are canonically in-
dependent variables. We write

7V(x) = i[l + sign^T- |x°|)];W
then

SdiscUrH Σ !<!">/ expl-T^O'}) (A.14)
ιι=0

where n numerates, with n = 0 for the ground state, the eigenstates \n)j and
eigenvalues En{j} of Hj. (A. 14) leads us to expect

lim Γ-1SUΓ}=-£o{/} (A.15)
T — >• oo

which we will now prove.
From

fl, |0>7 = £„{/} 1 0>,

follows under the same condition as for (A. 13) in the familiar way

where (III.3) is used. However, due to S%{J} = SX{J + K] for K(x)
x° -in dependent, which can be derived as explained after (III.3) by per-
forming the transition to Euclidean Green's functions, as defined at the
beginning of this Appendix, directly in the defining integral equations
provided the Lagrangian and Hamiltonian are time-independent, from
(A. 16) we also have

Inserting here the expansion in powers of 7^, one immediately obtains

(A.18a)
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where _
S(x1...xJ = l . $dxϊ...dxΐS(x1...xJ. (A.18b)

That S{j}=\imT-1S{jτ}. (A.19)
Γ-» oo

is valid is, however, immediate due to the cluster property, with exponen-
tial decay 21 [46] also in "time" direction of S(x1 . . . xπ). (A.18) with (A.19)
gives (A. 15). It is well known that the ground state energy is a concave
function of any parameter on which the Hamiltonian depends linearly;
here the concavity of E0{j} i.e. convexity of S{j} as a functional of j
is an immediate consequence of (A.10) and (A. 18).

At this point, we leave it to the reader to transscribe (A. 12) for the case
of "time" -independent but space-dependent J and α and immediately
proceed to the case of space-time-constant J and α. Let Ω be a volume
in three -space, χΩ its characteristic function, and V(Ω) = J r f 3 x χΩ(x)
its measure, and u real. Then

eQ(u) = Jim V(ΩΓ1 E0{χΩu} = - S(u) (A.20)

exists, with ^

S(u)= Σί"!)"1"11^, (A 21a)
_ n=1

f^J.-.J^...^^. ..*„), (4.21 b)

again due to the cluster property of S{j} with exponential decay21 [46].
eQ(u) is a concave function of u and is the ground state energy density
for source strength K(x) = uin (III.l). We note also that

Sn = r-*l-ldx2...dxHG(x1...xJ

elementarily by "contour rotation", or from (A. 16) and (III.3).
We consider the effect of J(x)-»u and the concomitant a(x)-+v

in the formulas (A.4-8). We have immediately

(d/du)S(u)=υ + S(x), (A.22)

u = Sϊ1v + Q(v2) (A.23)
Wlth dv/du = (d2/du2) S(u) , (A.24J

u=-(d/dv)JP(v), (A.25)

tf(υ) =-u(v + S(x)) + S(u) , (A.26)

(d2/dυi dVj) tf(v) = - l(32/du du) S(u)]y 1 , (A.27)

(A.28a)
n = 3

21 We are assuming a mass gap, the Goldstone case being obtained as a limit situation.
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Moreover, 2?(v) is concave in y, and

Jf (t>)= Mm [-u[υ + S(xϊ] + S(u)} , (A.29)

-S(u) = β0(u) = Min [ -in; - Jf (t?)] - uS(x) . (A.30)

(A.3.0) shows that the ground state energy density is obtained from a
minimum principle, the (generally, multicomponent) variable v being the
"expectation value" of the field shifted by the number S(x), the ground
state expectation value of the field without source. At the minimum, v is,
apart from the shift, the actual ground state expectation value of the
field. Thus, the expression that is minimized is a pseudo-energy-density,
formally an infinite power series in v with, in perturbation theory, finite
coefficients. The lowest-order terms, from superficially divergent vertices,
are just those occuring in the classical Hamiltonian density with, however,
renormalized "masses" and coupling constants, the subtraction point
being the one at zero momenta as in Section IV.

We try to understand the Goldstone phenomenon from the point
of view of Eqs. (A.22-30). For easy visualization we take two-component
u and v and consider a, without source, 0(2) invariant theory. S(u) is a
convex function of J/UQ + ^I and J^(υ) a concave function of v9 the Le-
gendre transform of S(u), and set S(x)= G(x).zero. If S(u) is everywhere
twice differentiable, so will be ffl (υ), and, on the basis of (A.22) and (A.25),
the one-to-one relation u^v is easily understood geometrically. The
Goldstonejpase corresponds to a choice of parameters in the Lagrangian
such that S(u) is not twice differentiable at the origin:

{ί(d/du0) f(M)]2 + Rd/duJ S(«)]2}*Uo = tang<9 > 0 .

Then to the point u = 0 corresponds in the f-plane the circle \v\ = tang (9.
3tf(υ) is not defined inside this circle or, by (A.29), merely as the concave
closure 3? (v) = 0, |t;| ̂  tang<9. ffl (v) is concave and twice differentiable
for \υ\ > tang Θ, and at \v\ = tang Θ, on the basis of (III.9),

(d/dυQ) JP(v) = (d/dΌj tf(υ) = 0

but, at v0 = tang Θ, vί = 0:

(d2/dv2

0) #(Ό) = 0 , (d2/d

(d3/dvl) $(υ) = 0 , (d*/dvQ

using the results of Section V supplemented by the assumption that in the
Goldstone limit, M2-»0 rather than -> finite [36]. Because of (A.22),
the direction of approach to u = 0 in the u plane determines the limit point
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on the circle \v\ = tangΘ that is hereby reached from outside the circle:
UQ/UI = v0/vl . On the 5"(w)-surface at u = 0, the radial derivative

u\\mQ(d^du^S^ -dxnG(x, ...xj

in the notation of Sections IV and V, does not exist for n = 2 if M2->0, and
also not the higher tangential ones, e.g.

due to the masslessness of the Goldstone particle. Up to the absence of
such particle, the case of breaking of a discrete symmetry disccussed
in Section VI lies similar. To understand how the irregular behaviour
of S(u) may come about,22 we use (A.9), (A. 19) and (A.20) to write

S(u) = Jim [F(Ω)-1 In {f D(φ) expfu f dx χΩ(x) </>(*)]}] , (A.31)

Ω being a volume in R4, χΩ its characteristic function, and V(Ω) = J dx χΩ(x).
Certain results on regularization limites [45] suggest that the integral in
(A.31), which is Sάisc{uχΩ} and is a power series in UQ + u.f with positive,
for finite V(Ω) finite, coefficients, is in our model an entire function of
MO + HI, such that the quotient in (A.31) is for V(Ω)<oo holomorphic
in a strip along the real axis since on that axis Sdisc{uχΩ} ^ 1. If V(Ω)
increases, the logarithmic singularities of the limitand off the real axis
may approach that axis and, in particular, the origin u = 0 in such a way
that the nonregular behaviour along that axis emerges for Ω = jR4,
similarly as such singularities approach the transition point in the activity
plane in the theory of condensation of Yang and Lee [8].
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