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Abstract. The Einstein tensors of metrics having a 3-parameter group of (global)
isometries with 2-dimensional non-null orbits G3(2, s/t) are studied in order to obtain
algebraic conditions guaranteeing an additional normal Killing vector. It is shown that
Einstein spaces with G3(2, s/t) allow a G4. A critical review of some of the literature on
BirkhofFs theorem and its generalizations is given.

1. Introduction

Birkhoff s theorem is stated, usually, in one of the following forms
[1, 2]: (1) The most general spherically symmetric solution of Einstein's
vacuum field equations is the Schwarzschild exterior solution [3] and
(2) any spherically symmetric solution of Einstein's vacuum field
equations is static [4].

A metric is defined to be spherically symmetric if it allows as a group
of isometries the rotation group 0(3, R) acting on spacelike 2-dimensional
orbits. All corresponding Killing vectors are normal (hypersurface ortho-
gonal). The metric is defined to be static if it allows a timelike and normal
Killing vector

£te« = 0, £[βξ,.y] = 0, ?ξfg.β>0. (1)

Conditions (1) are local and, in general, limited to certain coordinate
neighborhoods of the Riemannian manifold. For example, the Schwarz-
schild exterior solution (in Schwarzschild coordinates)

= _ dt2 _

allows a timelike normal Killing vector ξα = <5ξ only for the range r>2m.
Beyond the null surface r = 2m, this Killing vector stays normal yet
becomes spacelike. As Eq. (1) shows, this behavior is independent of the
coordinates chosen.
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We suggest the following formulation of Birkhoffs theorem:
1. There is a unique 1-parameter family of spherically symmetric

solutions of Einstein's vacuum field equations, the Schwarzschild
solutions.

2. For a certain range of the coordinates, the Schwarzschild metrics
are static.

Corollary. Any spherically symmetric solution of Einstein's vacuum
field equations allows a fourth normal Killing vector.

Thus, Birkhoffs theorem contains two aspects; a statement about the
uniqueness of a certain class of vacuum solutions and a group theoretical
result; if a vacuum solution allows the rotation group 0(3, R) as group
of isometries G3, it also allows a G4.

Since Birkhoffs theorem was first advanced its realm of application
has been extended. Global groups of isometries other than the rotation
group have been included. The vacuum field equations have been replaced
by the field equations with a cosmological constant and/or certain
types of matter. These extensions are briefly reviewed in Section 3.

In Section 2 we investigate systematically what classes of metrics
allowing 3-parameter groups of isometries with 2-dimensional, non-
null orbits admit an additional Killing vector. The n.a.s. conditions for
an additional Killing vector being provided by Killing's equations, we
are mainly interested in equivalent algebraic conditions on the Einstein
tensor (matter tensor). It would be convenient if one were able to tell
from the algebraic structure of the Einstein tensor and its symmetry
properties whether there exists an additional Killing vector.

The investigations of Section 2 show that, in general, by taking into
account the Plebaήski types of the Einstein tensor only [5] it is im-
possible to establish a n.a.s. criterion for the existence of an additional
Killing vector. This is indicated already by the work of Takeno on
spherically symmetric metrics [6]. It may be possible to obtain such a
criterion by using further second order invariants for the description of
the metric. It is doubtful, though, whether by this method one would
gain an advantage over solving Killing's equations.

2. Groups of Isometries, Einstein Tensor
and Generalizations of Birkhoffs Theorem

a) 3-Parameter Groups of Isometries with 2-Dimensional Orbits

It is known that Einstein spaces of Petrov type D with an r-parameter
group of isometries Gr (r > 4) admit also a Gr+ί (indeed, they admit the
maximal group G10) [7]. In looking for an extension of the group
theoretical side of Birkhoffs theorem one might ask whether an Einstein
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space of type D with a G3 as (global) group of isometrics admits also a G4.
In the following, we limit the question to the extent that only groups
G3 with 2-dimensional orbits are included. For groups with spacelike,
timelike and null orbits the notations G3(2, s), G3(2, ί), and G3(2, n) are
introduced. In a sense, the question above has been answered positively:
An Einstein space with G3(2, s/t) admits an additional Killing vector [8].
(Metrics with G3(2, n) are ruled out; they have Petrov type N.) However,
the proof given in [8] is incomplete. In the following, the additional
arguments needed are supplied.

The groups G3(2, s/f) and the canonical forms of the metrics ad-
mitting them as groups of isometries were discussed recently [9].
Altogether, there are six G3(2, s/t) with four distinct Lie algebras A3 (see
Table 1, Appendix 1). For the infinitesimal generators of the algebra and

the corresponding Killing vectors we use the notation Xa = ξ^ ——
ox"

•Λ
(0 = 1,2, 3). All possible extensions by another generator Y=ηa-—

of the Lie algebras A3 are considered. The various cases occuring are
summarized in Table 2, Appendix 1. There are two types of extensions:
(1) central extensions with

and (2) non-central extensions with

[Xa9 Y] = c*Xb + daY (a = 1, 2, 3), (3b)

G3 is maximal on a 2-dimensional space. Thus, the orbit of G4 with
Killing vectors ££, η* is the topological product of the 2-dimensional
orbit (whose tangent plane is spanned by ξ%) and the trajectory of η".

For central extensions, the additional Killing vector η" lies in a
2-dimensional plane orthogonal to the tangent space of the orbit of G3.

This follows from Eq. (3a) through \_Xa9T\=( ησ\—r(L = Lie

derivative) and the fact that G3 is maximal on the orbit. Consequently,
η" is normal. In the case of the algebras not centrally extended this does
not hold in general. For the algebra with Kruchkovich-Petrov type I

(PKI) [10] the structure relations determine Yto be x2 -r-j-. Again, with

G3 being maximal on the orbit, this case does not occur (ηa = 0). For the
algebra with PKV we obtain through the structure relations
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From Killing's equations one may convince oneself that, after a suitable
coordinate transformation, η° = — η1 = 1. The Killing vector cor-
responding to Y

«3 + δ«0-δΰί (4)

is normal. Summarizing we may say: If a metric with a group of iso-
metries G3(2, s/t) admits an additional Killing vector, it is normal.

b) Canonical Forms of Metrics with G3(2, s/t)

The canonical forms of metrics with G3(2, s/t) as global groups of
isometries are taken from [9]. For spacelike orbits x° = const, x1 = const

ds2 = e2*(x°>χl\dx°)2 - eW^ ^dx1)2 - e2?(χ0>χί>dω2(2, 3) . (5)

For timelike orbits x1 = const, x3 = const

ds2 = e2y(χl>χ*)dω2(0, 2)-e2β(χl>χ3\dx1)2 - ί?2**1**3^*3)2 (6)

with
dω2(a, b) = (dxa)2 ± Σ2(xa) (dxb)2 (7 a)

and r «
smxfl

Γ(xα) = | sinhx* (7b)

[l
for (constant) positive, negative and zero curvature of the orbits, respec-
tively, with the sign in (7 a) chosen such that the signature of the metric
is -2.

We omit the class of metrics with canonical form (6) and coordinates
x° and x2 exchanged. The Killing vector ξ* = δ"0 of its G3(2, ί) is timelike
and normal.

Every 2-dimensional space being conformally flat, only two of the
arbitrary functions α, /?, γ in Eqs. (5), (6) are essential. Often, coordinates
are introduced such that y = logx1 (curvature coordinates [4], canonical
coordinates [6]). However, as discussed in detail by Takeno for spher-
ically symmetric metrics, certain classes of metrics do not allow such
coordinates. Takeno's discussion being rather abstract, we give an
example: a metric with G3(2, s) and an additional null Killing vector does
not admit curvature coordinates. In the case of axially symmetric metrics,
a similar situation was discussed by R. Hoffman [24].

We assume α and β to be of class C2, piecewise C4. Thus, we may
extend Takeno's assertion (again for spherically symmetric metrics) that
it is always possible to introduce coordinates such that the canonical
form of metrics with G3(2, s) is

ds2 = 2e2*(u>v)dudv - e2γ(u>*dω2(2, 3) . (5')

In further discussions we shall use Eq. (5') instead of Eq. (5).
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While metrics with G3(2, ί) allow additional spacelike Killing vectors
only, such a vector may have arbitrary space-time character for metrics
with G3(2, s). From subsection a it follows that such an additional
Killing vector is described by

η« = a(u,υ)δl + b(u,υ)δ«υ (8)
and

η^ = a(x\x3)δl + b(x\x3)δ<x

3 (9)

for Eqs. (5') and (6). From Killing's equations it follows that metrics
with G3(2, s) and an additional non-null Killing vector (α foφO) have
the canonical form

ds2 = 2e2a(u+v}dudυ-e2ι(u+^dω2(2, 3) (10)

while metrics with G3(2, s) and an additional null Killing vector (α b = 0)
η* = δa

u may be written as

ds2 = dudv- e2y(v)dω2(2, 3) . (11)

Another form is obtained from Eq. (11) by interchanging u and v.
For metrics with G3(2, f) one obtains rf = δl and

ds2 = (x3)2 dω2(Q, 2) - e2β(χ3\dx1)2 - e2θί(χ3\dx3)2 (12)

as well as the line element obtained by interchange of coordinates x1 and
x3. Finally, the metric with G4 belonging to A4 of PKV and whose
additional Killing vector is given by Eq. (4) may be written as

ds2 = e«(χ0 + χl\dx°)2 - eβ(χ0+χί\dxί)2 - e2χl[_(dx2)2 + (dx3)2] . (13)

c) Einstein Tensor and Additional Killing Vector

The Einstein tensors G/ corresponding to the canonical forms
Eqs. (5') and (6) are given in Appendix 2. They each possess one double
eigenvalue,

A1 ) 2 = G2

2 = G3

3 (14)

λ1>2 = G0° = G2

2 (15)

respectively. Thus, the Plebaήski types occuring are [Z — Z — 2S]tl _ x _1]?

[T-2(S1-iS2][1_1_1] and [2AΓ-2ίS][2_1] for metrics with G3(2,s) and
[2 Γ- Si - S2][i -i -i] for <53(2, t). In the case of metrics with G3(2, s), the
remaining eigenvalues of G/ are given by

4,4 = G,u,
<")±(G(tt)

(1')G(υ)

("))i. (16)

For an additional Killing vector (8) we may rewrite the off-diagonal
components of G/ by using Killing's equations :

G(fl)<*> = ψb2e-2«, G(υf> - ψa2e-2« . (17)
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Here, ψ = ψ(u, v) is an arbitrary real function. Thus, from Eq. (16)

λ,Λ = G(uM±2ψa be-2«. (18)

Eqs. (17) and (18) hold for both α b φ O (non-null Killing vector) and
a b = 0 (null Killing vector). In the latter case, for a φ 0, b = 0

ψ = -y.w-(y.v)2. (19)
(A similar relation holds for a = 0, bφO.) From Eq. (18) it is seen
that metrics with G3(2, s) and additional Killing vector cannot be
of type [Z-Z-2S][1_1_11. Eqs. (10), (11), and (A2.1) show that
[T — 2S1 — S2][i-ι-i] and [2ΛΓ —2S][2_1] (and more degenerate types)
may occur.

From Eqs. (17), (18), (19) and the remaining components of G/ (see
Appendix 2) as well as from corresponding considerations for the metrics
with G3(2, t) one may conclude:

(1) If a metric with G3(2, s/ί) allows an additional non-null Killing
vector, this is an eigenvector of G/. An additional null Killing vector is
eigenvector of G/ only if ψ of Eq. (19) is zero.

By checking the components of the Riemann curvature tensor one
obtains:

(2) A non-flat vacuum solution with G3(2, s/ί) as group of isometries
cannot have an additional null Killing vector.

Comparing Eqs. (10), (11), and (12) with the canonical forms of
metrics whose Einstein tensor has two double eigenvalues or one
quadruple eigenvalue (see Appendix 2) we may state:

(3) Metrics with G3(2, s) whose corresponding Einstein tensors are
of Plebaήski type [2Γ-2S][1_1] and [4Γ]tl] allow a G4.

(4) Metrics with G3(2, s) whose corresponding Einstein tensors are
of Plebaήski type [2N — 2S][2_1] and [47V][2] may or may not allow an
additional Killing vector.

If they do admit an additional Killing vector it is a null vector. The
canonical form of such metrics is given by Eq. (11). Type [4AΓ][2] occurs

if γιVV + (γt,)
2 Φ 0 and Σ(x°) = ί. Such metrics are non-flat with

R = 0 and C = 0. Statement (3) is contained in [9] already while (4)
should be added to the relevant discussions of [9] and [19]. It was not
obtained there, because these investigations were based on canonical
coordinates.

(5) Metrics with G3(2, ί) whose corresponding Einstein tensors are
of type [4T][i] allow a G4 while those of type [2T-2S]tl_13 need not
admit a further Killing vector.

An example of such a metric with G3(2, ί) of type [2T-2S][1_1] is
provided by Eq. (5.21) (with k = 0) of [9].
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Defining an Einstein space to be a space whose Einstein tensor is
proportional to the first fundamental form, there are then two types of
Einstein spaces with G3(2, s):

ds2 = 2e«(u>v)du dv - c2dω2(2, 3) (20a)

with c constant and

2auve-2« + Σ-iΣi22~ = 0. (20b)

Furthermore,
ds2 = F>zdudv- F2 dω2(2, 3) (21 a)

where F = F(z\ z = u±υ satisfies

±(F zΓ
1(logF zχ z,T2F-2F z + Z- 1 Σ 2 2 F- 2 ^0. (21 b)

By comparison with Eq. (10) one knows that the metric (21 a) allows a
G4. From the general solution of the hyperbolic differential equation
(20 b) given in [22] one may draw the same conclusion for the metric
(20a). However, in order to see this one need not solve Eq. (20b). Following
an idea of Sommerfeld's [23] we calculate the Gaussian curvature K
of the 2-space dσ2 = 2e2<x(u>v)dudv. It is given by Eq. (20b) with

K = Σ'1 Σ} 22 — = constant. A 2-space of constant curvature allows the

maximal group of isometries, i.e. a G3. Thus, an Einstein space with
G3(2, s) and line element (20 a) allows a G6.

For Einstein spaces with G3(2, ί) the same argument is valid although
Eq. (20 b) is to be replaced by an elliptical partial differential equation
(see Eq. (A2.11) of Appendix). Summarizing we may say:

(6) A non-flat Einstein space with G3(2, s/t) as group of isometries
allows a G4.

We have not investigated whether all metrics with G3(2, s) and
remaining degeneracies [ST-S]^.^ and [T-3S][1_1] (G3(2, ί) with
[3T—S][i-i]) do allow a G4. However, statements (4) and (5) make
clear already that the Plebaήski type alone does not determine whether
an additional Killing vector is admitted or not. In order to find a n.a.s.
criterion one ought to investigate more of the second order differential
invariants for the canonical forms (5') and (6) [6].

3. Comments on the Literature on Birkhoff s Theorem

a) Reexamination of the Original Proofs

Birkhoff s theorem has been discovered, independently, by Jebsen,
Alexandrow, and Birkhoff [1, 2]. The proof given by Birkhoff seems to
be the most general. He proceeded from the canonical form (5) with
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α = β (i.e. essentially from Eq. (5')) while Jebsen and Alexandrow chose
canonical coordinates. Thus they excluded the possibility of an additional
null Killing vector. This does not affect the validity of the corollary to
BirkhofFs theorem given in Section 1; as shown in Section 2 c, there
are no spherically symmetric Einstein spaces with an additional null
Killing vector.

Eiesland presented another proof of Birkhoff s theorem by investi-
gating Killing's equations for the canonical form Eq. (5) and a Killing
vector (8) [11]. By using the redundancy inherent in the functions
α, β, γ of (5) he was able to rewrite Killing's equations, for y Φ const,
as follows:

(21)

dy

where ψ = ψ(y) is arbitrary. The invariant components of G(α)

(/?) used
in Eq. (21) are connected to the components given in Eq. (A 2.1) of
Appendix 2 by

(1)— I//; («) ΓL (v)\
— —

One may verify that Eq. (21) holds for all metrics with G3(2, s/t). In
the latter case, all indices 0 in Eq. (21) should be replaced by an index 3.
Thus, statement (6) of Section 2c may be derived immediately from
Eq. (21). The case y = const, was also treated by Eiesland and shown
to be static. Later, it was discussed by Bonnor [12] and discarded as
unphysical.

Thus far, it was assumed that the functions α,/?, y appearing in
Eqs. (5), (5'), and (6) are of class C2, piecewise C4. This guarantees the
introduction of curvature coordinates or the removal of an off-diagonal
term in the line element. The conditions usually imposed on the metric
tensor require gΛβ to be only of class C1, piecewise C3 [13]. Using this
apparent discrepancy, Petrov suggested that BirkhofFs theorem might
not hold for metrics of low differentiability and constructed an example
for a spherically symmetric solution of the vacuum field equations
seemingly different from the Schwarzschild metric [14]. In the ensuing
discussion, Hamoui removed the discrepancy between the various
differentiability requirements [15], while Bergmann, Cahen, and Komar
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showed that Petrov's example represented Schwarzschild's metric in
coordinates of low class [16]. They also proved that spherically sym-
metric shock waves cannot exist. This result had been obtained previously
by Papapetrou [17].

b) Extensions to Non-Vacuum Field Equations

Eiesland seems to have been the first to extend Birkhoff s theorem
beyond its application to vacuum solution [11]. From Eq. (21) he con-
cluded that spherically symmetric Einstein spaces are static. As special
examples, he mentioned de Sitter space and the Reissner-Nordstrom
metric. In generalizing this result, Hoffmann showed that Birkhoffs
theorem, in the formulation given in Section 1, holds for the combined
Einstein-Maxwell equations (including a cosmological term) [18], with
a unique 3-parameter solution. Recently, Plebaήski and Stachel noted
that spherically symmetric metrics with Einstein tensors of Plebaήski
type [2Γ-25][1_1] and [4Γ]tl] are static [19].

c) Extensions Beyond Spherical Symmetry

Taub showed that one may replace the rotation group 0(3, R) in
Birkhoffs theorem by other groups of isometries, i.e. by G3(2, s) [20]
(see Table 1 of Appendix 1). In all three cases, there is a unique 1-para-
meter family of solutions of the vacuum field equations.

A further generalization was obtained by Cahen and Debever by
including metrics with G3(2, f) and considering Einstein spaces: An
Einstein space with G3(2, s/t) allows also a G4 [8]. However, Cahen and
Debever define an Einstein space by Raβ = 0 rather than by Saβ = Raβ

-τRg«β = 0 (Eq (3-1 c) of [8] is equivalent to S^ = 0 while Eq. (3.Id)
gives R = 0.) Thus, in fact, the authors have extended the results of Birk-
hoff and Taub to include metrics with G3(2, ί). The extension to Einstein
spaces with R φ 0 for G3(2, s/t) is given in Section 2c.
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Appendix

a) Algebras A3 Belonging to the Groups G3(2, s/t) and Algebras A4 D A3

As discussed in [9], within the Bianchi classification of 3-dimensional
algebras A3 [21] there are altogether four different such Lie algebras
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Table 1. Lie algebras A3 corresponding to groups G3(2, s/t). In column /, the numbers of the
Bianchi classification are given as used in [7]. The three different orbits of type VIII belong

to three non-equivalent groups having the same algebra

IX

VIII

VII fa = 0)

V I f a = - l )

Lie algebra A3

ry v ~] Y ry y ~\ yL*ι, Λ2J — Λ3, l_Λ2,Λ3J — Λί

IX3,XΛ = X2

Γy Y Ί __ O V
]_-Λ-3) Ά jJ — — ̂  -Λ-2

Eί;.?]:-^21*33"*
ΓV V Ί Π ΓV V Ί V
[_-Λ.j, -Λ-2J — ^> L 2' 3J — — -^*2

[Λi,JΓ3] = Ai

Group orbit

spacelike, positive ]
(constant) curvature 1

spacelike, negative
(constant) curvature J
timelike, positive ί
and negative >
(constant) curvature J

spacelike, zero
curvature

timelike, zero
curvature

G3(2,S)

G3(2, ί)

G3(2,s)

G3(2, ί)

Table 2. Extensions of Lie algebra A3 of Table L In column J, the numbers of the Petrov-
Kruchkovich classification, in column 2, the numbers of the Bianchi classification are given [7].
The assumption that r\Λ belonging to Y be a Killing vector imposes further conditions on the

still undetermined functions a° and α1

Additional commutation
relations

IX '[Xat y] = 0

viii [^fl,y] = o

VII [ΛΓβ, F] = 0

VTT ΓV VI Y ΓV VΊ V

Representation of y

y_αθ ( χO n ^ ! o lx d

same

same

y 2 ^ . 3 ^ , O / 0 l\

dx2 dx

i /^i/ΎO γι\ ^
1 " \X , Λ - i

dx1

vi [xα, y] = o y=α°(x°, x1) -~ + α1 (x°, j

vi K,ri = *2,[*2,Γ] = o, y=χ2-^-

[Ai.y]-o y.^^^r^O ̂ )̂
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corresponding to groups with 2-dimensional spacelike or timelike orbits.
For the convenience of the reader we reproduce this list.

The following table summarizes all 4-dimensional Lie-algebras A4

containing the ^43's of Table 1 as subalgebras. This table has been
compiled by searching through the classification of 4-dimensional Lie
algebras (over the real numbers) by Kruchkovich and Petrov [10] for
such subalgebras.

b) Einstein Tensor of Canonical Forms (5'), (6)

The components of the Einstein tensor are refered to an ortho-
normal tetrad e*σ).

A. Canonical Form (5') (Metrics with G3(2, s))

(Λ ' J

The curvature scalar R = Rσ

σ and conform invariant C = [3 CΛβyδ

are given by

- r ί — v _ p .2)
^ — ^\tt,uυ y,uv)e ^ ^,22e

There are three classes of metrics whose Einstein tensor has two double

eigenvalues: df^2^^dudυ^d^^)9 (A2.3)

ds2 - 2e2«(u>v)dudv- v2dω2(2, 3), (A2.4)

ds2 = 2FiUdudv- F2(u, v) dω2(2, 3) (A 2.5)

and the metrics obtained by interchanging u and v.
A quadruple eigenvalue exists if, in addition to G(M)

(y) G(y)

(M) φ 0, the
relation holds:

2(auv-γ,u7,v)e-2« + Σ-1Σ,22e-2* = Q. (A2.6)

Thus, the metric (A 2.3) is an Einstein space if

As was seen in subsection 2c the general solution of this equation is
such that the corresponding metric allows additional Killing vectors.
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The only possible Einstein space of type Eq. (A 2.4) is flat space time.
Finally, if the metric (A 2.5) is to be an Einstein space, one obtains from
Eq..(A2.1) that Ftf;(F J"1 =/(M). This is solved by F = F(z) with

? dy ' ' ' _ ? dy
z = v + \ r, x . By introducing the new coordinate u=\——- oneJ f(y) J f(y)
arrives at Eq. (20b) of Section 2c.

B. Canonical Form (6) (Metrics with G3(2, £))

The Einstein tensor for the metrics with G3(2, ί) was given in [9]. For
the convenience of the reader we reproduce the expressions for the
special choice of canonical coordinates y = logx3:

G(0)<°> = G(2)

(2) = e-2"(^-f- - β + άβ - β2} + e-2"(a'0' - «'2 - «"),

ά 1

x3 (x3)2; (x3)2 •"' (A2.7)

The tetrad used in Eq. (A 2.7) is

^σ — p~y bσ pσ — p~P λσ

Z(0)—c °2> e ( l ) ~ e °l>

Furthermore,

(x3)2" 2 2 ' (A2.8)

22

where the dot and dash indicate d/dx3 and 3/θx1, respectively.
A second double eigenvalue exists if

(A2.9)
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For a quadruple eigenvalue one obtains the additional condition

1

(A 2.10)

If the metric with canonical form (6) is to be an Einstein space, we obtain
from Eq. (A2.7) α' = 0, (α + jβ)' = 0. By comparison with Eq. (12), it is
seen that the first equation guarantees an additional Killing vector. The
second one, together with (A 2.7), provides a unique 2-ρarameter family
of solutions

ds2 = (x3)2 dω2(0, 2) - /(dx1)2 -f-^dx3)2

with

If canonical coordinates are not admissible, i.e. for γ — const, in Eq. (6),
we set α = β. Then, Eq. (A 2. 10) is to be replaced by

e-2«(ά + a")-Σ-iΣ>22~ = 0. (A2.ll)
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