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Abstract.lt is shown that a certain class of cosmological models admits discrete isotropies.
These models are solutions of Einsteins field equations, characterised by: (1) the matter is
described as a perfect fluid, and (2) there exists a group of motions simply transitive on three-
surfaces orthogonal to the fluid flow vector.

§ 1. Introduction

In a recent paper [1] Ellis and MacCallum examined in detail prop-
erties of solutions of Einstein's field equations for a perfect fluid which
admit a three-dimensional group of isometries simply transitive on
hypersurfaces orthogonal to the fluid flow. Investigations of the properties
of observations in these cosmological models* show that all measurable
relations such as the magnitude-red-shift relation in any direction are
invariant under certain reflections in the rest space of an observer moving
with the matter. The main purpose of this paper is to show the existence
of a discrete isotropy group in nearly all of these models, which induces
the reflection symmetries mentioned above.

Discrete isometries of a Riemannian space must be treated differently
from continuous ones, because no linearised geometrical object such as
a killing vector field exists. In § 2 it is shown that if a space admits a
transitive group of isometries all further isotropies can be determined
and are connected with automorphisms of the Lie algebra.

This is applied in § 3 to positive definite three-spaces with a simply
transitive group of isometries and it turns out that all these spaces admit
at least one discrete isotropy. The space sections of the cosmological
models under consideration therefore admit discrete isotropies.

The question is now whether the isotropy in the space sections is
induced by an isotropy group of the space time. The models are determined
by solving a Cauchy problem with data given on one of the space sections.
§ 4 shows that every isometry of the Cauchy data corresponds to an

1 A paper on this by the authors of [1] is to appear.
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isometry of the development of the data. As a consequence of the con-
straint equations the discrete isotropies of the space sections leave the
extrinsic curvature also invariant. Hence the Cauchy data are invariant
under the isotropies and this implies the discrete isotropies of the solution.

§ 2. Discrete Isotropies in Riemannian Spaces

A Riemannian space admitting a connected simply transitive group
of motions can be constructed in the following way. If Gn is any rc-dimen-
sional Lie group then the right translations

Ra:x-+xa x,aeGn (2.1)

form a Lie transformation group on Gn which is isomorphic to G".
To endow Gn with a Riemannian metric (of any signature) invariant
under all right translations a scalar product ge(X, Y) is defined in the
tangent space Te(Gn) of the identity e of Gn and then extended on Gn

by the mappings jRα. More precisely: for any ae Gn there exists one and
only one right translation Ra mapping e into a. The scalar product in
Ta(Gn) is therefore uniquely defined by the condition that (jRfl)# : Te(Gn)
-• Ta(Gn) is an isometry, that is

ga{X, Y): = ge((Ra-ι)* *> (*«- 0* Y). (2.2)

Now we have to show that this metric is invariant under all right
translations. For Rb any right translation and x any point of Gn.

Rb = RxboRx^ (2.3)

holds and therefore we can construct the mapping

(Rb)*'.Tx-+TRb{x)=Txb (2.4)

by

Both mappings in (2.5) are isometries. Therefore (2.4) is an isometry and
(2.2) is invariant under all right translations. We denote this Riemannian
space by Vtt = (ge9G

n).
It is obvious that the spaces constructed in this way are all spaces

with simply transitive groups of isometries.
The Lie algebra of the Killing vector fields is the algebra of the in-

finitesimal right translations [2]. An important role is played by the
infinitesimal left translations, because these are invariant under all right
translations and therefore by (2.2) have constant scalar products on Gn.
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From the construction we see that a space with a simply transitive
group of isometries is completely determined by the group Gn and the
metric at one point. If Gn is not simply connected there exists a uniquely
determined covering group G". Hence for every space Vn with a simply
transitive connected group of isometries there exists a simply connected
space Vn, which is locally isometric to Vn. The local structure is completely
determined by the Lie algebra G" and a scalar product in Gn. (We can
identify Gn with Te(Gn))

In general a simply transitive connected group of isometries will not
be the maximal group of isometries. We consider here a special way
in which further isometries can arise:

Theorem 2.1. In a simply connected space Vn = (ge,G
n) any auto-

morphism α of Gn with a{ge) — ge induces an isometry of Vn.

Proof. Since G" is simply connected there is a one-to-one correspond-
ence between automorphisms of Gn and Gn, which is given by Φ-+(Φ*)e>
For any automorphism Φ and any a e Gn

Φ = Rφ(a)oΦ°Ra-i (2.6)

holds. That (2.6) is true can be seen by applying both sides to x e Gn.
If we take the Φ with {Φ%)e = α it can be shown that

Φ*' Ta-+Tφ{a) (2.7)

is an isometry. We can construct this mapping because of (2.6) by

According to the assumption all mappings in (2.8) are isometries,
therefore Φ is an isometry.

Further isotropies in a space with a simply transitive Gn are not
necessarily automorphisms of G". But the following is always true:

Theorem 2.2. Suppose Gr

0 is the maximal connected group of isometries
acting transitively on Vn. Then the maximal group of isometries Gr is
generated by Gr

0 and a discrete group of automorphisms of the Lie algebra Gr

0.

Proof. Let us assume that Gr

0 is not maximal. Then there exists an
isometry Φ of Vn not contained in Gr

0. If Φ has no fixed point, there must
exist a further isometry Ψ leaving P fixed. Ψ is an automorphism of the
Lie algebra of all vector fields on Vn [2]. As Ψ is an isometry and Gr

0 the
maximal connected isometry group on P , I 7 must map the algebra of
killing vector fields of Gr

0 into itself, so that it must be an automorphism
o f ® .
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§ 3. The Isotropy Group of the Space Sections

We consider now 3-dimensional, positive definite spaces admitting
a simply transitive connected isometry group G3. in [1] it is shown that
in any of these spaces we can find an orthonormal triad ev (v= 1, 2, 3)
with the following commutation relations ([1], (2.16))

ίe2,e3] = nie1, (3.1)

Ie3,eί]=n2e2-ae39

α, rii are constant, nγ a — 0. The vector fields eγ are invariant under G3,
that is they are a basis in the Lie algebra of the right invariant vector fields
of G3. We can choose a basis ξv of the Killing vector fields with

Then the ξv also have the commutation relations (3.1). To apply Theorem 2.1
of § 2 we must therefore look for orthogonal linear mappings α of Te

(in which the (ev)e are a basis) which are automorphisms of (3.1), that is
α [ β v ? e μ ] ~ Cα(βvX α(gμ)] We consider first the groups of class A which
are defined by α = 0. In this case (3.1) reads

—I T~ - 1 l ~ - I /'J Λ\

1' 2 J 3 3 ' L 2 ' 3J 1 1 ' L 3 ' 1J 2 2* v •- /

It is obvious that the following reflections which we denote by ^v

are automorphisms:

,9*3:{e1,e2,e3)->{-eu -e2,e3). J

A short calculation shows that for nx = n2 the rotations in the (eί9 e2)
plane are also automorphisms. Similar results hold for nλ = n3, or n2 = n3.

We are now able to determine the maximal group 3(F 3 ) of motions
of these spaces:

dim3(F 3 ) = 3: The maximal isotropy group is discrete, so the iso-
tropies are automorphisms (§ 2). Thus (3.4) is the maximal isotropy group.

dim3(F 3 ) = 4: The space cannot have constant curvature, therefore
one of the vectors ev is a distinct Ricci eigenvector. ([1] it is shown that
all ev are Ricci eigenvectors for groups of class A.)

The isotropy group contains the rotation in the plane orthogonal to
the non-degenerated eigenvalue, the isotropies (3.4) and an isotropy which
acts in Te as the total reflection if F 3 is symmetric [3].

dim3(F 3) = 6: The spaces are spaces of constant curvature. The
isotropy group is the complete 3-dimensional rotation group &(3).
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Which of the three cases can occur depends on the group type and the
values of the nt. A list is given in [1], § 7.

The existence of the discrete isotropies (3.4) implies that the vector
fields ev are geodesic. 5^ corresponds to an isometry leaving the vector
field eί invariant. Therefore the first curvature vector έί must be invariant.
As it lies in the e2 — e3 plane, e1 must vanish at e and therefore every-
where. (G3 leaves ev invariant!)

For groups of class B (a φ 0, nγ = 0) the commutation relations are

(3.5)

1'] = n2e2-ae3. J

In any case we will find that

^1:(e1,e2,e3)^(eu-e2,-e3) (3.6)

is an automorphism of (3.5). The only further possible automorphisms
are rotations in the e2 — £3-plane if n2 = n3, because e1 is an invariant
vector of G3 [1].

For the maximal isometry group 3 ( ^ 3 ) w e find the following:
dim3(F 3 ) = 3: 5^ is the only isotropy;
dim3(F 3 ) = 4: ^ 1-dim group of rotations, and possible further

automorphisms of the 4-dim Lie algebra.

d i m 3 ( F 3 H 6:

§ 4. The Isotropy Group of the Cosmological Models

We consider now the cosmological models of [1]. These are space
times F 4 filled with a perfect fluid which admit a group G3 of isometries
acting simply transitively on closed spacelike three-surfaces orthogonal
to the fluid flow vector. Thus the orthogonal congruence of the group
orbits is geodesic. We assume further that every orthogonal geodesic
meets every group orbit only once. Under these assumptions the tetrad
system defined locally in [1] exists globally on VA and the topology of V4 is

F 4 = G 3 X J R 1 . (4.1)

Using the results of a paper by R. Geroch [4] it is easy to see that
every group orbit is a Cauchy hypersurface of F 4 : Take the orbit
#>: = G3 x {0} C V4 then the future Cauchy development 3)\Sf) (see [9])
of ^.consists not merely of points of £f because £f is three-dimensional
and spacelike.
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Suppose ^ ' ( y ) Φ G 3 x [ 0 , oo), then J f + ( ^ ) + θ, where J f + ( ^ ) is
the future boundary of 9+{£f) (see [9]). tf+(<f) must be a group orbit
because @+{^\ ^+{£f) are invariant under the group. Therefore +

is a spacelike three-surface. This is a contradiction, so that ^ +

The same holds for Jf~(Sf) = Q and this implies [4] that Sf is a Cauchy
surface.

In [1] it is shown that the solutions are determined by a well posed
Cauchy initial value problem, which has a unique solution if we give
the metric and the extrinsic curvature on 5^ Therefore we can consider V4

as the maximal Cauchy development corresponding to certain initial
values, which satisfy the constraint equations.

Now we can prove that every isometry of the Cauchy data corresponds
to an isometry of the maximal development.

Theorem 4.1. If V4 is the maximal Cauchy development of initial data
invariant under a simply transitive G3, then every further isometry of the
initial data induces an isometry on V4.

Proof. Suppose g, d are the Cauchy data on Sf invariant under an
isometry /. We define a diffeomorphism / : V4 -» V4 in the following way:
If p e F 4 , there exists a unique geodesic ^(P) through p orthogonal to ff.
p' = Ή(P)ΓΛS is mapped by / i n t o q'. Then we define f(P) as the point
on the orthogonal geodesic <€' through qf which has the same distance
on <£' from q' as p from q on (€. Let g be the solution of the field equations
determined by the data g, d. Then f(g) is again a solution because the
field equations are tensor equations, g and f(g) are determined by the
same initial data, therefore by the uniqueness of the solution f(g) = g
must hold so that / is an isometry. Together with the work done in [1]
it is now easy to check which of the discrete isotropies determined in § 3
induce discrete isotropies in the considered cosmological models. We
have only to look whether the extrinsic curvature is also invariant under
the isotropies.

Theorem 4.2.Every model of class A admits at least three discrete
isotropies acting in the space sections, given by (3.4).

Proof. The extrinsic curvature is in the notation of [1] given by the
expansion tensor Θab. Lemma 4.1 in [1] states that as a consequence
of the constraints the triad ev is an eigentriad of Θab. Therefore Θab

is invariant under (3.4). Theorem 4.1 gives then the isotropy in V4.

Theorem 4.3. Every model of class B other than the models of group
type VIh with h — — ̂  admits at least one discrete isotropy of the kind (3.6).

Proof. By [1], Theorem 5.1, eί is an eigenvector of the expansion tensor
in all cases besides VIh(h= — ̂ ). Therefore Θab is invariant under (3.6).
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Models invariant under a group of type VIh(h= — %) may admit
the discrete isotropy (3.6) (if eί is a shear eigendirection) or may not
(if e1 is not a shear eigendirection). Which of the possible cases occurs
is dependent on the choice of the initial data.

§ 5. Isotropy Implies Homogeneity

The discrete isotropies (3.4) are not only necessary isotropies in a
homogeneous model of class A but are also sufficient to imply that a
cosmological model is homogeneous.

Theorem 5.1. Suppose F 4 is a solution of Einsteins field equations
for a perfect fluid with the property that Rabcd,..., Rabcd efg

 at any point
are invariant under three linear mappings £fv acting in a spacelike hyper-
surface (see (3.4)), keeping the orthogonal vector fixed, then F 4 admits
a local group of isometries acting transitively on three-spaces orthogonal
to the fluid flow vector.

Proof. The vector fixed under all 9V must be the fluid flow vector ufl,
because it is the unique timelike eigenvector of Rab. The congruence ua

must be geodesic and hypersurface orthogonal because otherwise if,
ωa would not be invariant under all y v . We consider now the intrinsic

geometry of one of the three-surface 9 orthogonal to ua. Rik, ...,Rik.jem

must be invariant under £fx. If these tensors determine three vector fields
ev covariantly up to the signs, then the rotation coefficients are scalars
when we fix an orientation. Therefore their gradients must vanish, other-
wise we would have a covariantly determined vector. From this we know
that the 3-spaces 9 orthogonal to ua admit a group. With similar argu-
ments it follows that the expansion tensor Θab of the congruence ua

must be invariant under the group acting on 9. Theorem 4.1 shows now
the existence of a local group of isometries on F 4 . When no covariant
tetrad is defined by Rabcd and its derivatives up to the third order the
space is locally rotationally symmetric. Then the results of [5] show
that the space admits a local G4 acting on three-spaces.

A very short proof can be given under the assumption that all deriv-
atives of Rabcd are invariant under <?v, if one uses the theorem that the
number of independent scalars and the dimension of the orbit of the
maximal group of isometries add up to the dimension of the space [6].
But as there is so far no general agreement whether this theorem is
rigorously proved for indefinite spaces, the longer version above has
been given here.

24 Commun. math Phys., Vol 15
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§ 6. The Topology of the Space Sections

Every connected Lie group is topologically the direct product of a
compact subgroup K and JR" [7]. K is uniquely determined up to
conjugation. We assume now that the space sections G3 are simply
connected.

If G3 is compact, then G3 must be semisimple [3]. Then G3 must
be of type IX. The group manifold is the covering manifold of the 3-
dimensional rotation group.

If G3 is not compact then we may have (topologically)

G3 = K1xR2, G3 = K2xR\ or G3 = R3 (6.1)

with X1, K2 compact. As no semisimple Lie algebra of dimension smaller
than three exists the following must hold:

X ^ T 1 or K2 = (TιxTι)/N, (6.2)

[8], where Γ 1 is the rotation group in two dimensions and N some
discrete subgroup of T 1 x Γ 1 . Because of (6.2) the only simply connected
group in (6.1) has the manifold R3.

From these spaces we get every space section which is not simply
connected by identification of the orbits of an isometry / without fixed
points. If / leaves every Killing vector field of G3 invariant the new
space will also admit a global group, otherwise only a local group.
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