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Abstract. We consider the thermodynamic pressure p(μ, γ) of a classical system of
particles with the two-body interaction potential q{r) + yv K{yr), where v is the number of
space dimensions, y is a positive parameter, and μ is the chemical potential. The tempera-
ture is not shown in the notation. We prove rigorously, for hard-core potentials q(r) and
for a very general class of functions K(s), that the limit y->0 of the pressure p(μ, γ) exists
and is given by

sup lim τ~ΓμyWy)-fl°[π(y)]}-{ dy dy'n(y)n(y')K(y-y"A
ne^lDI-oo \D\ J 2 J J

L.D D D J

where the limit and the supremum can be interchanged. Here M is a certain class of non-
negative, Riemann integrable functions, D is a cube of volume |Z)j, and a°(ρ) is the free
energy density of a system with K — 0 and density ρ. A similar result is proved for the free
energy.

I. Introduction

Many authors have considered the equilibrium statistical mechanics
of a system of identical particles which have a two-body interaction
potential of the form

v{τ9y) = q(τ) + fK(yτ) (1.1)

where r is the vector distance between a pair of particles, y is a positive
parameter and v is the number of dimensions. The function q(r) is called
the short range or reference potential and the term yvK(yτ) is called the
long range or Kac potential, whose range is proportional to y"1. Some
of these authors [1-4] have considered the limiting values of the thermo-
dynamic functions and correlation functions in the limit y—•(); others
[3, 5-7] have derived expansions of these functions in powers of y. We
shall be dealing with the former problem. In particular, we shall generalize
the results of Lebowitz and Penrose [4] (henceforth referred to as LP)
to a wider class of Kac potentials. Both the paper of LP and the present
one are motivated to some extent by the work of van Kampen [8].
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The main result of LP was to prove rigorously, for a certain class of
Kac potentials (including, for example, non-positive Kac potentials),
that the free energy density a(ρ,y) of a system with the potential (1.1)
and density ρ has the limit

α(ρ, 0 + ) = limα(ρ, y) = CE\a°(ρ)+ y αρ2 (1.2)

where1 α = JdsJK(s), a°(ρ) is the free energy density of a system (called
the reference system) with two-body potential q(r), and CEf(ρ), called
the convex envelope of the function /(ρ), is defined for arbitrary / as the
maximal convex function not exceeding f(ρ). They deduced that the
limit π(ρ, 0 + ) of the pressure π(ρ, y) = ρd/dρa(ρ, y) — α(ρ, y) is given by
the Maxwell construction (or equal area rule) [4] applied to the function

π ° ( ρ ) + y α ρ 2 (1.3)

where π°(ρ) is the pressure of the reference system. This strongly re-
sembles Maxwell's modification of the van der Waals equation of state,
and is identical to it in the one dimensional case if the reference system
consists of hard rods [3]. Consequently, the limit y->0 is known as the
van der Waals limit.

The result (1.2) can also be formulated in terms of the pressure p(μ, y)
expressed as a function of the chemical potential μ. We then find

p(μ,0 + )= limp(μ, y) = max μ ρ - α ° ( ρ ) - y α ρ 2 . (1.4)

To deduce this from (1.2) we use the general relationship2

p(μ, y) = max[μρ - α(ρ, y)] (1.5)
Q

and note (as can be seen from Fig. 1) that

max[μρ-C£/(ρ)] = sup [μρ - /(ρ)] (1.6)
Q Q

for any function /. Now taking the limit y->0 of (1.5) and using (1.2) and
(1.6) we obtain (1.4). The interchange of the maximum and the limit is
justified2 by the fact [4] that a(ρ,γ) tends uniformly to its limit on a
suitable interval of values of ρ. Alternatively Eq. (1.4) can be deduced
from first principles by using the method of LP in the grand ensemble.

1 When the range of an integral is not specified, it is over all of v-dimensional space.
2 See Ref. [10], Section 10.
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Fig. 1. Both sides of (1.6) are equal to the distance x

For a more general class of Kac potentials, LP obtained upper and
lower bounds on α(ρ, 0 + ), but they did not prove for these potentials
that the limits α(ρ, 0 + ) and p(μ, 0 + ) exist. In the present paper we
provide such proofs and obtain expressions for the limit functions. We
also include the effects of an external potential of the form ψ{yx).

II. Definitions, Results, and Outline of Method

We confine our attention for the moment to the pressure p(μ, y),
since the method and the main result are considerably simpler for this
function. The free energy will be dealt with in Section VI.

The function p(μ, y\ called the pressure in the grand ensemble, can be
defined by the ther mo dynamic limit [10]

p(μ, y) = lim P(μ, Ω, y)
|Ω|->oo

where Ω is a cube of volume |Ω| and

1
P(μ, Ω, 7) =

j8|Ω|

(2.1)

(2.2)

β being the reciprocal temperature and Ξ the grand partition function,
defined by

Ξ(μ,Ω,y)^ £ eβ»NZ(N, Ω, y). (2.3)
N=0

Here, Z(N, Ω, y) is the partition function for N particles in Ω, defined
for JV = 0 by Z(0, Ω, y) = 1 and for N ^ 1 by

Z(iV,β,y)= —1-ή- J dx,... $dxNexp(-βVN) (2.4)
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where A is the thermal wavelength [10], Vx = ψ(yxx) and

VN= Σ v{xa-xb9γ)+ Σ Ψ(y*a) (2-5)

for iV^2, with ι?(r, y) defined by (1.1) and ψ{γx) a periodic external
potential whose period is proportional to y"1. The potential ψ provides,
among other things, a way of calculating the correlation functions in
the van der Waals limit by functional differentiation; we hope to present
this calculation in a future publication.

The conditions to be satisfied by the interaction potentials q and K are

K ( - s ) , (2.6)

q(x) — oo for

for |r| ^ r 0

for alls, (2.8)

K is Riemann integrable over any any bounded region of ,~ ^
v-dimensional space,

where K, C, r0 and ε are positive constants, and k(t) is a non-increasing
function such that Jdsfe(|s|) < oo. Condition (2.7) implies that the particles
have a v-dimensional spherical hard core of diameter r0. The function
ψ satisfies the conditions

ψ{y) is periodic over an infinite cubic lattice with unit cell J, (2.10)

\ψ(y)\< ψ, a positive constant, for all y, (2.11)

ψ is Riemann integrable over any bounded region of n , ^

v-dimensional space. ^

In the case ψ — 0 it was shown by Dobrushin [9] that the conditions
(2.6, 7, 8) ensure the existence of p(μ, γ). It is not difficult to extend the
argument of Dobrushin and prove that the thermodynamic limit also
exists if a periodic external potential, bounded below, is present. We
shall not give this proof here.

Our first result is

Theorem 1. Under conditions (2.6-12), the van der Waals limit p(μ, 0 +)
of the pressure p(μ, γ) exists and is given by

p(μ,0 + ) = lim supF(n,μ,D) (2.13)

or equivalently by

p{μ, 0 + ) = $upF{n, μ, oo). (2.14)
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The convergence of p(μ, y) to p(μ, 0 + ) is uniform on any closed interval of
values of μ. The functional F(n, μ, D) is defined to be

dy{μn{y) - ψ{y)n{y) - α° [n
\D\

D (2.15)

and F{n, μ, oo) is defined by

,oo) = lim F{n,μ,D) (2.16)
|D|-oo

The limits in (2.13) and (2.16) are taken oi er any ascending3 sequence of
v-dimensional cubes D (of volume \D\) whose sides are multiples of and are
parallel to those of J. The set 0t comprises all functions n which are Rie-
mann integrable on every bounded region of v-dimensional space, satisfy
Ogn(y):gρ c where ρc is the close packing density [13] for spheres of
diameter r0, and are periodic4', with a unit cell that need not be J.

All the integrals in (2.15), and henceforth, are taken as Lebesgue
integrals. The formal similarity between the result (2.14) (in the case
ψ = 0) and the- equation of state (1.4) is apparent. In particular they are
identical if there is a function n independent of y which maximizes
F(n, μ, oo).

Our method of proof of Theorem 1 is similar to the method used by
LP. Starting from (2.4), we divide the cube Ω into a number of cells of
volume ω, obtain upper and lower bounds on P(μ, y, Ω) in terms of
Ω, y and ω, and then take the succession of limits (called the LP triple
limit)

first |Ω|->oo, then y-^0 and finally ω-»oo (2.17)

of these bounds. We also use an additional operation which consists of
restricting the density ρ of the particles thus:

Q :g ρ' where ρ' < ρc, (2.18)

and finally taking the limit Q'-^QC after the LP triple limit. When this
sequence of limits has been taken, the upper and lower bounds coincide
and are given by (2.14) or (2.13).

3 A sequence of sets £ 1 ; E2, £ 3 ... is ascending iί E1CE2CE2 ... .
4 i.e. we can find v linearly independent vectors lq ... kv such that n{y + kλ) = n(y) for

λ = 1 ... v and for all y.
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III. Properties of F(w, μ, D) and F(n, μ, oo)

Before proving Theorem 1, we derive some properties of the func-
tionals defined therein. We prove firstly that F(n, D) and F(n, oo) exist ̂
(or have value — oo), and that they both have a supremum for π e f .
Secondly we prove the equivalence of (2.13) and (2.14). Finally, for later
use in the proof of Theorem 1, we show that F(n, D) is continuous with
respect to n in a certain sense.

To show that F(n, D) exists, we note from (2.15) that it is the sum of
four integrals. The first, second and last integrals exist because products
of integrable functions are integrable. To study the third integral we
define, for any ρ' satisfying 0 < ρ' < ρc9

(ρ ) lor ρ ^ ρ S ρc.

Since a°Q>(ρ) is a uniformly continuous function [10] of ρ in the closed
interval [0, ρc], it follows [11] that a®>[n(y)] is measurable. Consider,
for a given n, the sequence of functions

where ρ0 is a value of ρ where α°(ρ) attains its minimum. The functions
fQ> are non-negative, measurable and, since α° is convex, form a non-
decreasing (as ρ' increases) sequence for ρ' ^ ρ0. Now defining

/(y) = Jim fQ\y) = α° [n(y)] - α°(ρ0) (3.3)

we deduce from Lebesgue's monotone convergence theorem [11] that
Jdy/(y) either exists or is infinite, and hence that j dya°[n{y)~] either
D D

exists or is infinite. We have proved that F(n, D) either exists or is equal
to — oo (depending on the choice of n) for all n e £ In particular, F is
finite if n(y) is bounded away from ρc.

Next we show that F(n, oo) exists, and if n has the unit cell Γ

F(n^)=^ίdyLn(y)-a\n(y)^-~n(y)ίdyn(y')K(y-

(3.4)

dyrc(y) ψ(y).

D

We omit the dependence of F on μ in this section.
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To prove this we note firstly that the limit on the right side exists because
of the periodicity of n and ψ. Secondly, we consider the difference

δ(D)= - i - dynίy) dy'n(y')K(y-y')

r (3-5)

-~^\dyn(y)\dy'n(y')K(y-y')

D D

between the quadratic terms in the expressions (2.15) and (3.4) for
F(n, oo). Now D can be expressed as a union of regions congruent to the
unit cell Γ together with a region σ whose volume |σj is of order IDI 1" 1 / v

(proportional to the surface area of D). Hence we can, by (2.8) and the
periodicity of n, replace Γ by D in the first term on the right side of (3.5)
if we add a correction of order \D\~1/v. This correction has the upper
bound ρc

2|σ| ID)"1 f ds|X(s)|. We now have

1
$dyn(y) J dy'n(y')K(y-y/) 0(\D\~llv)

\D\ ί
(3.6)

\U\ D Dc

where Dc is the complement of D. By the argument applied by LP to
their Eq. (2.15), the first term on the right side vanishes when |D|->oo.
Thirdly, we note that the terms in (2.15) involving μn and a°(n) tend to
the corresponding terms in (3.4) because of the periodicity of n. This
completes the proof of (3.4).

The fact that F{n,D) and F(n,oo) have suprema follows from the
inequality

F(n9 D) S Qc\μ\ + Qcψ ~ a°(ρ0) + y ρ2

c j ds|X(s)|, (3.7)

which in turn follows from (2.15) and (2.11).
To prove the equivalence of (2.13) and (2.14) we need

Lemma 1. If &Γ is the subclass of 01 consisting of functions with unit
cell Γ, and Γ is a cube whose sides are parallel to and are multiples of those
of J (the unit cell of ψ), then we can find an ε(Γ)>0 such that ε(Γ)->0
as |Γ|->cc and

\F(n,Γ)-F(n,ao)\<ε{Γ) (3.8)

for all ne&Γ. Here \Γ\ means the volume off.
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Proof. The terms involving μn and a°(n) in the expression (2.15) for
F(n, Γ) are identical to the corresponding terms in the expression (3.4)
for Fin, oo). By an argument like that leading to (3.6), we deduce that
difference between the quadratic terms in F(n, F) and in F(n, oo) is
bounded by an amount ε(Γ) independent of n and tending to zero as
|F|-*oo. Also, because n{y)ψ(y) has unit cell Γ, we deduce that

d t e ) ( ) r f ( ) ( ) ( 3 . 9 )

i.e. the terms involving ψ in F{n, Γ) and F(n, oo) are equal. This completes
the proof of (3.8).

It follows from (3.8) that

sup F{n, Γ) S sup F(n, oo) + ε(Γ). (3.10)

We can replace MΓ by 3ί on the left side because F(n, Γ) depends only
on the values of n(y) for y in Γ, and on the right side because MΓC0l.
Taking the limit \Γ\ -> oo of the resulting inequality gives

lim sup supF(π, D) ̂  supF(n, oo) (3.11)
|Z>|-+oo nsM neSϋ

provided that every D is related to J as specified in Theorem 1. The
reverse of this inequality also holds because F(n, oo) = limF(n, D)

g liminfsupF(n, D) for all n. This proves the equivalence of (2.13) and
D n

(2.14) and the existence of the limit on the right side of (2.13).
Finally, we show that the functional F(π, D) is continuous in n. For

any ρ; satisfying 0 < ρ' < ρc, let ${Q') be the subclass of 3t consisting of
functions n which are bounded above by ρ'. We then have

Lemma 2. The functional F(n, D) is continuous with respect to π, for
neM{ρ'), in the following sense: for any ε > 0 we can find a δ>0 such
that, for nγ e ${Q') and n2 e

-^rld^nM-n^Kδ (3.12)
1̂ 1 D

implies

\F{nuD)-F{n2,D)\<ε. (3.13)

Further, the continuity is uniform in both n and D. (In the language of
modern analysis, F is continuous on a subspace of the metric space L l v)

Proof. From (3.12) we have

77^rί^y[^2(y)-^i(y)]μ
1̂ 1 D

<\μ\δ (3.14)
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and from (2.11)

We also have

ί^y[«2(y)-"i(y)]ψ(y) <ψδ . (3.15)

(3.16)

Multiplying by K(y — y') and integrating we find, since nx (y) + π2(y) < 2ρc,
that

1
J dy j rfy'K(y - y') [»2(y)«2(y') - ^(yjn^y')]

(3.17)

Since α°(ρ) is uniformly continuous in the closed interval [0, ρ'], it
follows that for the given δ we can find a^positive number σ(δ) such that
(i) for all ρx and ρ2 in [0, ρ'], |ρx — ρ 2 | < ]/δ implies |α°(ρ1) — ao(ρ2)\ < σ(δ),
and (ii) σ(δ)-+0 as δ->0. For a given nx and n2, we can express D as the
sum of two parts Z)< and D > ? where \nί — n2\<\/δ for yeD< and
l̂ i — w2| ̂  ]/o for y GD>. Then we have

where

σ(δ) for y e D <

2S for y e D > ,

S = sup |αϋ(ρ)|.

But (3.12) implies

|D>||/1< J dγ\ni-n2\^ldy\n1-n2\<\D\δ
D> D

so that |D>| < |£)| J/^. It follows from this and (3.18) that

Finally, from (3.14, 15, 17, and 21) we have

\F(nuD)-F(n2,D)\

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

as

which proves the lemma6.

The same argument proves that F(n, D) is upper semi-continuous for π e i .
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IV. Lower Bound on the Pressure

The main part or the proof of Theorem 1 now consists of proving
the statement (2.13). To do this we show in the present section that the
right side of (2.13) is a lower bound on p(μ, 0 + ), and in the following
section that it is an upper bound.

Finding a lower bound on P(μ, Ω, y) is equivalent to finding a lower
bound on the partition function Z(N, Ω, y). To obtain such a lower
bound, we follow LP and divide Ω into M smaller cubical regions
ωx ... ωM, each of volume ω, so that |Ω| = Mω. We shall find a succession
of lower bounds, firstly in terms of the occupation numbers of these
cells, secondly in terms of step functions and finally in terms of functions
in 3/1. Let ω be a subcube of ω i 5 concentric with and similarly oriented
to ωf and of volume ω where ω' < ω. Now, following LP, we obtain
from the definition (2.4)

Z(ΛΓ,Q,y)>—f *" f .- j d X l . . . d x w β - ^ (4.1)

where Nx ... NM is any set of integers whose sum is N and which satisfy

O^Nt^ ]Vc(ω') (4.2)

where Nc(ω') is the maximum number of spheres of diameter r0 whose
centres can be contained by one cube ω . The notation in (4.1) indicates
that the first Λ^ volume integrations are over ω[, the next N2 over ω'2,
and so on. It follows that

π Z°(Ni9 ω')lZ(N, β, y) > [ π Z°(Ni9 ω')l expί- jSβ^ - βWmJ (4.3)

where Z° is the partition function of the reference system; Q^ax is an
upper bound, for all xx ... xN and all JV, on the total energy of interaction
due to q(r) resulting from pairs of particles that are in different cells ω ;
and Wmax(Nί ... NM) is an upper bound on the total potential energy
due to yvK(yτ) and ψ{yx) for configurations specified by the integral
in (4.1).

To estimate Wm^ we define
max

^ supφ(yx). (4.4)
xeω, x e <x>[

Then ψ contributes ̂  N^ to WmΆx. Next define

Ktj= sup K(yx-γx'). (4.5)
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Then K contributes to Wmax the term — yv Σ ^ί^j^ΐj due t o particles

in different cells ωf

i9 and the term — y v Σ -̂(JV; — 1)K£ due to particles

in the same cell. Consequently we have

i M M M / 1 \

max 2 r ^T1^ ι J lJ ^ \ ι Ψ ι 2

The grand partition function, defined by (2.3), has a lower bound
given by

Ξ(μ, Ω, y) > exp(βμN) Z(N, Ω, y) (4.7)

for any N. It follows from (4.3, 6 and 7) that the pressure P, defined by
(2.2), has a lower bound given by

P(μ, Ω,y)>- Q'mJ\Ω\ - — y^Ω]'1 Y NiN Kt
2

for any set of integers O^N^ Nc(ω'). (Their sum is now arbitrary.)
The quantity Q^J\Ω\ = ε l5 say, vanishes in the LP triple limit (2.17)

for a suitable choice of ω\ as shown by L P 7 . Also the final term in (4.8)
satisfies

y f ΣNiKti/\Ω\ ^ - ~ fKNc(ω)/ω = -ε 2 , say, (4.9)

from (2.8). Then ε2 vanishes in the LP triple limit.
It is convenient to replace £ t . in (4.8) by

Kϊ}= inf X(yx-yx ') . (4.10)
xeα>i. x e ω,

We can make this replacement if we also subtract from the right side
of (4.8) the correction term

(4.1D
S [Nc(ω)/ω]2 Σ fω(Ktj - KJj) = ε3, say ,

7 Since our Q'^ΆX is an upper bound for all JV, we must replace ρ by ρc in the estimate
of this quantity given by LP.
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oc

where the sum ]Γ is over an infinite lattice of ω/s. But from (2.8) and (2.9),
J dsK(s) exists as a Riemann integral and is finite. Hence, as shown by LP,

for a l l ; . (4.12)

It follows that ε3 vanishes in the LP triple limit. Similarly we can replace
ψι in (4.8) by

ψj ΞΞ inf ψ(yx) (4.13)

if we subtract the correction term

M M

\Ω\~l Σ ^iiψ't ~ Ψϊ) = Nc(ω) l^l"1 Σ(ψΐ — ψj) Ξ ε4? saY (4Ί4)
i i

From conditions (2.10, 11 and 12) we deduce that ψ(y) is Riemann
integrable over its unit cell J, and hence

1 M 1
lim lim — r Σ w ^ — —r MyvHy) (4-15)
y-+0 |β|->oo | Ω | j \J\ j

It follows that ε4 vanishes in the LP triple limit. The inequality (4.8)
now reduces to

P(μ, Ω, y) > IΩΓ1 £ W μ - N£φ7 - ^°(N ί, ω
;)]

where A0, the free energy of the reference system, is defined by

Λ°(N, Ω) = -β-1 logZ°(iV, Ω).

The next step is to replace Λ°(Nh ω') by ωao(Ni/ω) plus a correction,
where a°(ό) == lim v40(o|ί2|, Ω)/|Ω|. To do this, we note that (4.16) holds

|β|-oo

if we impose any additional restriction on the JVf's. In particular, it holds
if we specify that Nt ^ q'ω where ρ; is chosen to satisfy 0 < ρ' < ρc. But,
if ρ lies in the closed interval [0, ρ'] and Λ°(N,Ω) is defined for non-
integral N by linear interpolation [10], then the sequence of functions
Λ°(ρω,ω')/ω converges uniformly in ρ to a°(ρ) as ω-»oo and ω/ω'—>1,
[10]. Hence, we can find a positive function ε5(ω9ω'\ independent of
Nt (but depending on ρ;) such that

A°(Ni9 ω')/ω < ao(NJω) + ε5(ω, ω') (4.17)

for all N^ρ'ω, where ε5(ω,ωf)-+0 as ω-^oo and ω/ω'->l. It follows
that £5 vanishes in the LP triple limit. We can now replace Λ°(Nh ω') in
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(4.16) by α°(ΛΓ

ί /ω)ω, if we subtract the correction, ε5 from the right
hand side.

The next step is to replace the JVf's in (4.16) by the step function

nstep(y) = Ni/ω for y e ω{ and all i, (4.18)

where ω f is defined as the set of points y such that y/γ e ωt. Thus ωf is a
cube of volume ω = yvω. It follows from (4.10) and (4.13) that

φj= infφ(y) (4.19)
yeω,

and
KTj= _mf _K(y-y') (4.20)

yeω,, y e <θj

Let us also define Ω as the set of points y such that y/y e Ω. The set Ω is
a cube of volume yv |Ώ| and is filled by the cells ω1...ωM. Now sub-
stituting (4.17-20) in (4.16) we obtain, for any π s t e p ,

P(μ,Ω,y)>F(nsUp,Ω)-ε1 . - . - ε 5 (4.21)

where F is defined by (2.15).
The next step is to use Lemma 2 and replace nstQp by a function

ή e M(Q'\ where M(Q') was defined just before Lemma 2. Firstly, for such
an n\ let us define the step function

riγ(γ) ΞΞ - ^ J dyn'{y) for y e ω{ and all i. (4.22)

We can find an π s t e p such that

K(y)-«»,.p(y)l<l/ω for al ly. (4.23)

Secondly, if Γ is a unit cell of the periodic function ή, we dissect the space
of vectors y into an infinite lattice of cells Γλ congruent to Γ. Then we have

dy\n'(y) - n'y(y)\ = -i Σ - i - ί dy|n'(y) - «;(y)| + OdΩΓ1^) (4.24)

where Γx...Γk is the set of Γλ's which lie entirely inside Ω. Although ή
is periodic over the Γλ% riy is not since each Γλ is subdivided differently
by the ωf's. However, the theorem of Darboux [12] shows that

j dy\ri - riy\ < δ{ω) for all λ , (4.25)

where δ(ω) is independent of λ and tends to zero as ω->0 and hence
as y-»0. It follows from (4.24) that

lim lim sup -=- f dy\n' - n'\ = 0. (4.26)
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Combining this with (4.23), we deduce that for any n'e&{ρ% we can
find an nstep(y) (which depends also on y and ω) such that

IΩΓ1 $dy\n'-nstep\
Ω

vanishes in the LP triple limit. Since nstep belongs to M(ρ% we deduce
from Lemma 2 that

\F(n\Ω)-F(nstep,Ω)\<ε6 (4.27)

where ε6 vanishes in the LP triple limit. From (4.21) and (4.27) we con-
clude that for all ή e^(ρ')

P(μ,Ω,y)>F(w /,Ω)-ε 1 " - ε 6 . (4.28)

The next step is to show that ή may be replaced by any function
n e £ For such an n, let us choose

n Jn(y) where 0£»(y)£ρ

[ρ elsewhere,

which clearly belongs to 0l(ρ\ Hence (4.28) holds for this ή. Eq. (4.29)
implies that |w(y) — ra'(y)| Sρc — ρf for all y, and also, since a°(ρ) is convex
that α°[n'(y)] ^α°[n(y)] for ρ ' ^ ρ 0 , where ρ0 is a value of ρ where
α°(ρ) is minimum. Therefore, by an argument like that of Lemma 2 with
δ replaced by ρc — ρ', we find that, provided ρ' ^ ρ0,

F(n\ Ω) ̂  F(n, Ω)-Δ for all Ω , (4.30)
where

S c - Q ' ) . (4.31)

Substituting (4.30) in (4.28) gives

P(μ, Ω, y) ̂  F{n, Ώ) - εx - ε6 - A . (4.32)

Since this holds for all n e 01, it follows that

P(μ, Ω, y) ̂  supF(rc, Ω) - ε, ••• - β 6 - A . (4.33)
0t

Finally, taking the LP triple limit followed by the limit ρ'-*ρc gives

liminfp(μ,y)^ lim sup F(n,μ,D) (4.34)
y-*0 |D|-»oo ne0t

where the right side was proved to exist in Section III. This takes us half
way in our proof of the statement (2.13) of Theorem 1.
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V. Upper Bound on the Pressure

To find an upper bound on the pressure, we need an upper bound on
Z. We use the same construction of cells ωt as before and a similar method.
Then, with the notation of (4.1), we have

Z(N,Ω,γ)< £ f *" ί ••• J dx^.-dx^e-^" (5.1)
Nι...NM i V i l . . i V M 1 ( W l ) N ' ( c o M ) ^

N

where the sum ]Γ *s o v e r a ^ integers iV£ whose sum is N and which satisfy
0 ^ JVf ̂  JVc(ω). It follows that

N r M η

, Ω, y) < exp(-/?βmfa) Σ Π Z°W» ω)
J V I . . . N M U = 1 J ^ ^

where Qm i n is a lower bound, for all xί...xN and all N, on the total inter-
action energy due to q(r) resulting from pairs of particles in different
cells ω, . Also Wmin is a lower bound on the potential energy due to
yvK(yr) and ψ(yx) for configurations specified by Nί...NM. As in the
derivation of (4.6) we deduce that

Wmin = ~ f Σ NiNjKJj + Σ ^Nίψτ - 1 fNtKτ}j (5.3)

where K^ and \pj are defined by (4.10) and (4.13).
It follows from (2.3) that

Ξ(μ,Ω,y)<e-β^ Σ \Y\Z°{Ni,ω)eβ^ e~t>w«**M - ™ (5.4)
J V i . . . % L i J

where the restriction that the Nf's sum to N no longer applies. Since
N( S Nc(ω), there are at most Nc(ω)M terms in the summation in (5.4),
so that

Ξ(μ, Ω, y) < e~βύminNc(ω)M max \e-βWmi»ΠeβμNiZ°(Nh ω)\ . (5.5)

Then (2.2) gives

< W m a L {? [ΛΓ^ - ̂ ° ^ ω)] - Ή (5.6)

This inequality still holds if we allow the maximum to range over non-
integral values of the Nh where Λ°(Ni9 ω) is defined by linear interpolation
[10] for such N(.
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The term Qm\J\Ω\ = ε[ say, vanishes in the triple limit as shown by
LP. The term {βω)~ι logJVc(ω) = ε2 say, also vanishes in this limit
because, from LP, 1 ̂  Nc(ω) < ρc(ω1/v + 2ro) v. Put β'3 = ε2, ε4 = ε3 and
ε'5 = ε4, where ε2, ε3 and ε4 were defined in the previous section and
shown to vanish in the LP triple limit. Then (5.6) becomes

P(μ, «> ?) < -j^r ^ a x h [Nfiu - NiΨt - A°(Nh ω)]
1 l (5.7)

where we have replaced ψj and K^ by ψt and Kψ and added the
appropriate correction terms.

The next step is to replace A0 by a0. To do this we first define

ω if N*zρω9

where 0<ρ '<ρ c . Using the inequality of Penrose [13],

Z°(N +1, ω) S Z°{N, ω)Λ~ve2βφ'l(ωllv + 2ro)
v/N - l/ρc] , (5.9)

where Φr is a certain positive constant, we deduce that A°(N,ω) >A°(N\ω)
for all ω, N and N ; such that N>N'> ρ7(ω1/v + 2ro)

v, where

Since Nf ̂ /(JVf), it follows that

^ 0 ] for ρ/^ρJ(l-f2roω-1/T

Also, since Nt — f(Ni)^ω(ρc —ρf), we deduce by an argument like that
leading to (4.32) that

P(μ, Ω, 7) < - ! - max h [/(N> - /(iV,)^ ~ ^^/W), ω)]

(5.Π)

- ~ f Σ/W) /(^)^O I + Ci + 6'5 + Zl

where J is defined by (4.31). Let us put JV/ =/(JVf). Then (5.11) is un-
changed if we replace the /(JVf) by the JV/, and maximize with respect to
the JV/. Since JV/ ̂  ρω we have, by an argument like that leading to
(4.17), that

A°(N}9 ω)/ω < a°{N;/ω) + ε'6(ω) (5.12)
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where εr

6(ω) is a positive function which vanishes when ω->oo. Thus
ε'6 vanishes in the LP triple limit. Now (5.11) reduces to

P(μ,Ω9γ)<-±- max h [N[μ- N ψt - α°(N

Let £fM be the class of step functions which are of the form (4.18) in
Ω, and are periodic with unit cell Ω. Then from (5.13) we have

P(μ, Ω, y) < sup F(n, Ώ) + ε[ ~ +ε'6 +Δ

rg sup F(n, Ω) + ε[ + ε'6 + A
ns0t

since 9*M C 3/1. Finally, taking the LP triple limit, followed by the limit

Q -* Qc> w e n a v e

lim supp(μ, y) ̂  lim supF(n, D). (5.15)

Combining this with (4.34) we deduce that p(μ, 0 + ) exists and is given
by the statement (2.13) of Theorem 1. The alternative statement (2.14)
follows from Lemma 1, as shown in Section III.

To prove that p{μ,y) tends to p(μ,0 + ) uniformly on any interval,
we note that for |μ| ^ m, our correction terms can be made to depend
on m and not on μ. This completes the proof of Theorem 1.

VI. The Free Energy

In this section we derive results for the free energy, corresponding
to those given in Theorem 1 for the pressure. The free energy of a system
of N particles in a cube Ω is defined by

A(N, Ω, y) ΞΞ - / Γ 1 logZ(N, Ω, y) (6.1)

for integral N and by linear interpolation [10] for non-integral JV. The
free energy density is defined by

a(ρ,γ)= lim A(ρ|Ω|,Ω,y)/|Ω| (6.2)
|β|->αo

which exists [9] because of conditions (2.6-12) (see the discussion just
before Theorem 1). The van der Waals limit of the free energy density
is defined by

α(ρ,0 + )=limα(ρ,y). (6.3)

20 Commun math Phys , Vol 15
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The second main result of this paper is

Theorem 2. Under conditions (2.6—12), the van der Waals limit α(ρ, 0 + )
of the free energy density exists and is given by

a(ρ,0 + )= lim inf G{n,D) (6.4)
|D|-*oo ne^D(Q)

or equivalently by

a(ρ,0 + ) = inf G{n, oo) (6.5)
ne^(ρ)

where Ή(ρ) is the subclass of 01 consisting of functions n which also satisfy

II™ $dyn(y) ρ, (6.6)
|D|->oo \D\ D

^D(ρ) is the subclass of #(ρ) comprising functions with unit cell D and
G(n, D) is defined as the functional

y)}
(6.7)

+ -^rϊdy$dy'n(y)n(y')K(y-y')
L\U\ D D

and
G(n, oo) = lim G(n, D). (6.8)

|D|->oo

Further, the convergence of a(ρ, y) to a(ρ, 0 + ) is uniform inρ for O^ρ^ρ'
if ρ'<ρc.

The limits (6.4, 6 and 8) are taken over an ascending sequence of
similarly oriented cubes D, as in Theorem 1. The existence of all the
limits involving |D|-> oo and the infima follows from arguments like
those of Section III.

Before proving Theorem 2, we note that if ψ = 0 and the minimal
function in (6.5) happens to be n = ρ, then α(ρ, 0 + ) = α°(ρ) + | α ρ 2 ,
where a = JdsX(s). This formula was shown by LP to hold for all ρ
and all temperatures if K has a non-negative Fourier transform, and
for restricted ranges of ρ and of temperature if K is a more general
function.

Theorem can be proved from first principles by a method similar
to that used for Theorem 1. Instead, we give a simpler proof using
Theorem 1 together with the standard formula [15]

α(ρ, y) = max [μρ - p(μ9 y)~] . (6.9)

Taking the limit y-+0 of this gives

α(ρ, 0 + ) = max[μρ -p(μ, 0 + )] (6.10)
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where the interchange2 of the limit and the maximum is justified because,
by Theorem 1, p(μ, γ) tends to p(μ, 0 + ) uniformly in μ. From the Eq. (2.14)
for p(μ, 0 + ) we deduce that

p(μ, 0 + ) = sup sup F(n, μ, αo)
Q {ρ)

= sup sup lim μ f dyn(y) — G(n, D)\ (6 .11)
ρ neV(ρ) |D|-oo|_ \D\ D J

= supΓμρ — inf G(n, oo)Ί .
ρ [_ ne^(ρ) J

Substituting (6.11) in (6.10) gives

α(ρ,O + ) = maxinfΓ(ρ-ρ ; )μ+ inf G(n, oo)~j . (6.12)
μ Q' L ne^(ρ') J

To proceed further we need two lemmas.

Lemma 3. The function8

f(ρ)= inf G(n,oo) (6.13)

is α convex function of ρ

Lemma 4. // #(ρ) is convex then

max min [(ρ - ρ;)μ + g(ρj] = g(ρ). (6.14)
μ ρ

To prove Lemma 3 it is sufficient [14] to prove that f(ρ) is bounded
above in some subinterval of [0, ρ j , and that

( 6 1 5 )

for all 0! and ρ2 in [0, ρc). An obvious upper bound on /(ρ) is

G(e, c») = fl°(β) + -^ I dyψ(y) + ~ ρ2 I rfs X(s),

J

which is itself bounded above in [0, ρ ;] for 0 < ρ ; < ρ c . To prove
the statement (6.15), consider a cube D which is divided into 2V identical
subcubes D 1 . . . D 2 V . We choose D so that its sides are parallel to and
are even integral multiples of those of J. Then the sides of each Dλ are
parallel to and are integral multiples of those of J. The definition (6.7)
implies

Gin, D) ̂  ^ X G{n, Dλ) + Δ{D) (6.16)

Note that inf G(n, D) is not necessarily convex (see Eq. (7.3)).
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where

^ Σ [dy[dy'\K(y-y>)\ (6.17)
J

The quantity A(D) is an upper bound on 1/\D\ times the interaction
due to K of particles that are in different subcubes and, like δ(D) in (3.6),
it tends to zero as |D|-»oo.

For any ρ, let ^D(ρ) and ^ D l (ρ) be the subclasses of ^(ρ) consisting
of functions with unit cells D and Dx respectively. The conditions on
D imply that G(n,Dλ) = G(n, Dμ) for all λ,μ and ne%Dl(ρ). Also let
<$D(ρ1,ρ2) be the subclass of 01 consisting of functions n having unit
cell D and satisfying

1 f \Qι for λ=U2,...T~1

Di \QΊ for x = 2 v ι + l , . . . 2 v

These conditions imply

ί j + Q2) (6.19)

so that <&D(ρ1,ρ2) is a subclass of (^D{^ρ1+ ^ρ2) With (6.16) this gives

inf G(n,D)^ inf G(π, D)

S-L- Σ M G(n,Dλ) + A(D) (6.20)
2 ne^D^λ)

^ £= 1, 2 «ε^Di(βι)

Now take the limit |D| -> oo of (6.20) over an ascending sequence of cubes
D all related to J as before. By an argument like that given in Section III
to prove the equivalence of (2.13) and (2.14), we can interchange limits
with infima in the resulting inequality. This gives (6.15) and completes
the proof Lemma 3.

To prove Lemma 4, we write M(ρ) for the left side of (6.14). Since

min [(ρ - ρ')μ + #(ρ')] g g(ρ) (6.21)
Q'
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for all μ, we see that M(ρ) ^ g(ρ). Also, since g is convex, its tangent at
any point ρ never lies above the curve [14]. Taking μ to be the slope
of this tangent, we have g(ρf) + (ρ — ρ')μ^ g(ρ) for all ρ', so that

min [(ρ - ρ')μ + #(ρ')] ^ #(ρ). (6.22)

It follows that M(ρ)^#(ρ), and the proof of Lemma4 is complete9.
Using Lemmas 3 and 4 in (6.12) we obtain (6.5). We can deduce (6.4)

from (6.5) by using the analogue of Lemma 1. That the convergence
of α(ρ, y) is uniform in ρ can be deduced from (6.9) and the fact that the
convergence of p(μ, y) is uniform in μ. This completes the proof of
Theorem 2.

As a corollary, we note that α(ρ, 0-h) is convex in ρ. This follows
from (6.5) and Lemma 3, or alternatively from the fact that α(ρ, 0 + ) is
the limit of a sequence of functions α(ρ, y) which are known [10] to be
convex.

VII. Discussion

Our main results are Theorems 1 and 2 which prove the existence
of and give expressions for the van der Waals limits p(μ, 0 +) and α(ρ, 0 + )
of the pressure and free energy density.

These results are fairly general, being easily extended to classical
lattice gases and other lattice systems that are isomorphic to these gases.
A more difficult generalization would be the replacement of the hard
core condition (2.7) by the condition q(r)> constant.|r|~v~ε for small
|r|. It may be possible to do this by using a result of Dobrushin and
Minlos [16]. It may also be possible, in a more sophisticated treatment,
to replace the conditions on n, and possibly those on K and ψ, by the
condition of Lebesgue measurability. The only place where we require
Riemann integrability of n is in Eq. (4.25).

The result (2.13) raises the question of the significance of the function

0>(μ, D)= supF(n,D). (7.1)

One can show by our methods that

y,y) (7.2)

where Dy is a cube of volume y~v |D|, defined as the set of points x such
that yx e D. The limit (7.3) is thus a combined van der Waals and thermo-
dynamic limit in which the sides of the container grow at the same rate
as the range y~x of the Kac potential. One can also define a free energy

9 The same argument proves that sup inf[(ρ —ρ')μ+/(ρ')] = C£/(ρ) for any /,
μ Q'

where CEf was defined in Section I.
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density ja/(ρ, D) like (7.1) and prove the analogue of (7.2). One finds that
s/ is not necessarily convex in ρ (but is probably differentiate), and is
not related to & by an equation like (6.10); i.e. the canonical and grand
canonical ensembles are not equivalent in this limit. For example, if
K(s) = C, a constant, for |s| ̂  \D\ί/v]/v (the diagonal of D) and ψ(y) = 0
for all y, one finds that

) = a°(ρ)+~C\D\ρ2 (7.3)

which is not convex at low temperatures if C is negative. Possibly, J / re-
presents a finite system of volume \D\, which is, roughly speaking, small
enough to be thermodynamically unstable but large enough to behave
like a continuum. This may have practical application.

It is possible to rederive the results of LP [4] using our Theorems 1
and 2, and also prove that there are some functions K for which (1.2, 3
and 4) do not hold. Theorems 1 and 2 can also be used to evaluate certain
correlation functions in the van der Waals limit. We hope to present this
in a future paper.
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