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Abstract. We show that Heisenberg picture fields and their vacuum expectation values
exist for a wide class of cut-off interactions among fermions and bosons.

I. Introduction

The quantum field theories studied in the present paper include cutoff
versions of many standard relativistic quantum field theories. They, have
some interest of their own as examples of non-trivial dynamics. However,
the main point of studying them is to obtain information about the
relativistic theories that are their putative limits as the cutoffs are
removed. For this purpose, it is desirable to show

1) that the knowledge of a suitable set of matrix elements of the
Hamiltonian of the cutoff theory uniquely determines the one parameter
group elH\ — oo <£< oo, describing the time evolution of the system,

2) that H has a reasonable spectrum,
3) that the Green's functions of the theory are uniquely determined.
The results of the present paper partially satisfy these requirements.

It is shown that for the models considered
Γ) there is a dense set, D0, of vectors in the Hubert space of states

in which the Hamiltonian is essentially self-adjoint.
2') that H has a purely discrete spectrum with finite multiplicity,

bounded below and is such that its eigen functions lie in D0.
3') that D0 is invariant under the smeared fields and that for certain

values of the coupling constants the ground state is non-degenerate.
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Γ) completely settles 1). 2') settles 2), 3') does not completely settle 3);
when the ground state is degenerate the definition of the Green's func-
tions is ambiguous. For a class of models involving only Bose fields it is
shown that the ground state is non-degenerate. On the other hand, a
counter-example is given in which Fermions are present and the ground
state is degenerate.

These results generalize those obtained by two of the present authors
for a self-interacting Bose field [1] and for a Yukawa interaction of a
spίnor and a Bose field [2].

The paper deals with strong cutoffs in which only a finite number
of boson modes are coupled. The vacuum expectation values are shown
to be continuous in the times so that the Green's functions are un-
ambiguously defined when the ground state is non-degenerate.

The essential mathematical idea of the proofs can be illustrated on
the anharmonic oscillator

H= —~- + ax2 + #x4, α real, / ? > 0 .
ax

One treats αx2 as a perturbation on τ + βx4. This puts no restric-
dx

tion on α because, whatever the size of α, αx2 is infinitely small compared

to — -̂ -f βx4 in the sense of T. Kato. The class of models considered
dx2

is restricted by the requirement that appropriate formally positive domi-
nating boson self-couplings (analogues of βx4 in the anharmonic oscilla-
tor) be present.

Most of the remaining technical difficulties of the paper arise because
of the necessity of treating not only the Hamiltonian H but all its powers,
in order to establish the properties of the invariant domain of vectors,
D0, and from the fact that we want to allow different species of bosons
to have different order dominant self-interactions. The basic idea of the
proof is to show that for every positive integer n

(H{) + H1)
n (1.1)

is infinitely small compared

(H'o + HJ" (1.2)

in the sense of T. Kato. Here H& is the free Hamiltonian of the fermion
fields: Hl is the free Hamiltonian of the boson fields plus the dominant
self-interactions and H2 is the rest of the interaction. When one expands
(1.1) by the binomial theorem and estimates the resulting terms relative
to (HfQ + H^n one arrives at the detailed conditions on the interaction
stated in the next section.
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II. Notation and Preliminaries
00

If B is an operator,D(£) denotesits domain and C°°(B) = f) D(Bn). (B)~
n = l

denotes the closure of B. If B and C are operators, then

AdC(B) = [C,B]

defines an operator. With this notation the multiple commutator
[C, [C, ... [C, B]]] with rcC's is (AdC)"(B).

We put all fields in a space box of volume V with periodic boundary
conditions (3-torus!). In the strongly cutoff case, boson fields have a
sharp ultra-violet cutoff. For example, if φ is a scalar boson field, the
interaction term would depend on the cutoff field

Σ expl-ikx]{am + av(-k)}ω(kΓ112, (2.1)
keΓκ,v

where

and the av(k\ a*(k) are the standard Bose annihilation and creation
operators normalized so that

Analogous formulae hold for boson fields of other tensor characters.
The fermion fields will be assumed to enter the interaction in regularized
form

yρ(X) = $ρ(X-y)dyψ(y} (2.3)

where ρ is a smooth function of fast decrease i.e. belongs to the Schwartz
space ff. In contrast to the case of boson fields ψβ(x) is a bounded
operator for each jc.

The Hamiltonian is assumed to be a sum of a free Hamiltonian,
H0 F, and an interaction Hamiltonian, HIjV. The different fields contribute
additively to the free Hamiltonian. The contribution of a boson field
like those described above is

£ aϊ(k)aγ(k)ω(k) , (2.4)
keΓv

the contribution of a species of fermion to HQ v has precisely this form
but the av(k) and a$(k) are solutions of the anti-commutation relations
instead of (2.2).

4 Commun math Ph\s., Vol 15
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The interaction Hamiltonian is an integral over the box of an inter-
action Hamiltonian density:

H,,y= Jdx&.vOe). (2.5)
V

§/ >K(JC) is a formally hermitean polynomial in the cutoff boson fields.
For example, when a single hermitean scalar boson field is present

§,, κ(x) = J<0)(x) + X /<«>(*) φκ< y(x)' (2.6)
α= 1

where the J(α)(x) are polynomial expressions in the fermion fields. When
N cutoff hermitean scalar boson fields are present

SΛK(x) = J(0)(*) -f Σ ^(α)W Π (Φk'M*))" (2 7)
« j = l

Here a = (a l 5 a 2 , ... απ) is a multi-index, and the summation is taken
over all multi-indices for which 0^α 7 ^2w 7 . For convenience, the J(α)

will be referred to as fermion currents.
Now we come to the restrictions on the interaction Hamiltonian

imposed by the requirement already mentioned above, that it should be
dominated by boson self-interaction terms. In the case (2.6) of a single
scalar boson field, it is fairly natural that that should be taken to mean

J ( 2 n } ( x ) = λl (2.8)

λ a real number > 0. For the case of several boson fields the natural
requirement is not obvious. It turns out to be sufficient to assume

a) that the only term in (2.7) in which φ(κ,v(χ) occurs with maximal
degree 2π; is of the form

b) For each remaining interaction term

In addition, it turns out that we need a boundedness property of the
fermion currents.

c) For all α occuring in §/>κ

||(adH0,κ)V(α)(*))ll ^Mn,α< oo (2.10)

for some constants Mn a and all n = 0, 1, 2, . . .
Evidently, for N = 1, a) and b) reduce to the above mentioned restric-

tion for a single boson field. As they stand these requirements exclude
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the possibility that the interaction is only linear in a boson field. We
admit this possibility with the special rule that nj is to be set equal to 1
in this case. The reason for this rule is that there are always quadratic
terms in the free boson Hamiltonian.

Conditions a), b) and c) give one precise form of the idea of dominant
boson self interaction but by no means the only one. For example, it
would also suffice to replace a) and b) by

a') that there is a term of highest degree 2n in the boson fields of the
form

(2.11)

b') that all remaining terms in the interaction Hamiltonian are of
the form indicated in (2.7) with

There are cases covered by a') b') not included under a), b). For example,
the cross term φ(l}2φ(2}2 which arises from (φ(1)2 + φ(2}2)2 is not admissible

2 α
under b) because o^ =u2 = 2, n± =n2 = 2 so ]Γ — — = 1. The reader

j = ι 2nj
will be able to invent still other sufficient conditions and also to generalize
to an arbitrary set of tensor fields after having read the next section.
We content ourselves with listing some examples

Examples of Admissible Interaction Hamiltonian Densities ξ>l9v(x)
1) Neutral pseudo-scalar meson theory

0ΨΪ(x) V 5 ψ e ( x ) Φκ.v(x) + λ(φκ,v(x))\ λ>0. (2.13)

2) The σ-model of pions

Here φKtV has three components (isospin).
3) Two hermίtean scalar boson fields φ(ί\ φ(2}

9ίΦ(£v(χy]2Φ(&(χ) + λ(Φ(£v(*)T, ^ > 0 - (2.15)

Here the condition (2.9) is very restrictive. Replacing the sixth power
by the fourth would not yield an admissible interaction as long as g φ 0.

4) Quantum Electrodynamics of spin — particles in the Coulomb

gauge

eψ*(x) ψρ(x) j dy@v(x - y) ψ*(y) ψρ(y)-eιp*ρ(x) αφρ(jc) Aκ,v(x) . (2.16)
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Here Aκ>v(x) is constructed so as to satisfy V- Aκv(x) = 0, and @v(x — y)
is the analogue on the torus, V, of the Coulomb potential.

It is also worth pointing out that there are physically interesting
cases to which our methods in their present form do not apply. For
example, in the theory of Yang-Mills fields there occur a pair of three
component boson fields g and h with a dominant coupling term

λ(gxh)2, λ>0. (2.17)

In the "direction" g x h this does not grow, and therefore it does not
come under the present theory. It is in fact rather unstable since a term
— ε2(g2 + h2) can make the interaction unbounded below, no matter

how small ε is. It would be of some interest to extend our results to this
case with positivity imposed on lower order terms.

The preceding statements about the Hamiltonians of the models
under discussion have been put in a form in which it is obvious what
relativistic theories one might hope to obtain by removal of the cutoffs.
For the calculations that follow it is much more convenient to have the
boson Hamiltonians in the form of partial differential operators. This
is done by introducing appropriate hermitean linear combinations
Qk\P(k\ J' = 1> N,k e Γκv, of the annihilation and creation operators
occuring in equation (2.1) so chosen that they satisfy the canonical
commutation relations. The cutoff field φ(i]v(x) is then a finite linear
combination of the Q(

k\keΓκv alone. The free Hamiltonian of the
boson fields splits into two parts, one involving the uncoupled modes,
the other, the coupled modes. The part involving the coupled modes
together with the dominant self-interaction can be written as a partial
differential operator. Altogether, we have

HKtV = Hf + Hi+H2 (2.18)

where Hf

Q is the free fermion Hamiltonian,

H!= £ £ ωj(k)a(j}*(k)a(j\k) (2.19)
j= 1 uncoupled

modes of φ(j)

+ Σ Σ [(-Λ)Q<" + V0')(βϋ))], (2.20)
j= 1 coupled

modes of φ(j)

and

= ( j ) α ω ) α (2 21)
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The product in the expression for H2 runs over all coupled modes. The
M(j}(* are bounded operators acting on the fermion variables; they are
integrals over the box of the product of fermion currents with the sines
and cosines occuring in the expansion of the φ(j} in terms of Q(J\

III. Strongly Cut-Off Theories

Our first main result is

Theorem 3.1. Let HKίV = H{) + H1 + H2 where Hf

Q is the free field
Hamiltonian of the fermions H^ is the free field boson Hamiltonian plus
the cutoff dominant boson self -inter actions and H2 is the rest of the
strongly cuttoff interaction as given by (2.21). H0 v is then the sum of
the free field Hamiltonians for bosons and fermions. Let n be any positive
integer. Then

a) Hn

κv is essentially self-adjoint on

b)
c) C"(HKtV) = C«>(H0tV)
d) The spectrum of Hκv is bounded below and consists of isolated

eigen values with finite multiplicity.
e) Let A(f] be one of the fields at f = 0 and A(f, t) = expiHκvtA(f)

exp —ίHκvt. Then for any vector ΩeD0, and all positive integers k

The proof of the theorem will be arrived at in stages. The first is a
general Hubert space argument which will later enable us to pass from
the essential self-adjointness of (Hfy and (H^ on their respective domains
to the essential self-adjointness of (Hf

Q + H^".

Lemma 3.2. Let A± and A2 be hermitean operators in Hilbert spaces
Jf\ and J^2 respectively. Suppose that for some integer n^ 1, A" ana A"2

are essentially self-adjoint on domains D^ and D2 respectively. Then
C — (Aλ (x) 1 -f- 1 ®A2}

j is essentially self-adjoint on D{ (x) D2 for 1 ̂ j ^ n.

Remarks. 1) By convention, D± ®D2 stands for the (algebraic) tensor
product of D! and D2,i.e. the subset of the full tensor product ̂  ®3f2

consisting of finite linear combinations of vectors of the form vl®υ2

with υγ e Z) l 9 v2 e D2.
2) The lemma has an easy generalization to the case of fc hermitean

operators Al ... Ak acting on domains D1 ... Dk contained respectively
in Hilbert spaces J f j ... JΊfk. From the hypothesis A", ...,Ak essentially
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self-adjoint for some positive integer n, one concludes

is essentially self-adjoint on D^ ® - ® Dk for 1 <^j ^ n. We give the proof
for the case k = 2 for simplicity. We will have occasion to use the case
k = 3 also.

3) The hypotheses of the lemma do not include the requirement that
A1 and A2 be essentially self-adjoint. That property follows from the
following elementary argument. Suppose A is a hermitean operator
and that for some integer n ̂  2, at least one of the deficiency indices of
An is zero. Then, An — /, say, has dense range. Now if ak are the rfh roots

n

of /, the polynomial identity zn — i = Y\ (z — ak) holds and therefore for
fc= 1

each integer fc, 1 ̂  k ̂  n :

This shows that A — ak has dense range. Since for n ̂  2 at least one
of the αk is in the upper half-plane and at least one is in the lower, A is
essentially self-adjoint. Thus in the proof of the lemma we may assume
A1 and A2 essentially self-adjoint.

Proof. We will prove first that

D(L(Aί®ί + ί®A2)^-)^D((AlΓ)®D((An

2Γ)' (3-1)

To this end, let Φ and Ψ be any two elements of D((y4J)~) and D((A"2)~)
respectively. Then there exist sequences ΦkeD(A") and ψkeD(An

2) such
that Φk->Φ, An

lΦk-^(A"lΓΦ9 Ψk-+y, and AΛ

2Ψk-^(An

2)'Ψ. If Al and A2

are respectively the self-adjoint extensions of Al and A2, A" (resp. /ί2)
is a self-adjoint extension of .4? (resp. An

2) and therefore A" = (A")~ and
An

2 = (A"2Γ Now f o r O ^ y ^ w

μlχ||^||^χ|| + ||χ|| (3.2)

for all χeD((,4ϊ)~) and similarly for ̂ . (This is a consequence of the
inequality λ2j ^λ2n+ 1, which obviously holds for all real λ, l^j^n,
and the fact that by diagonalizing A^ one can convert (3.2) into the
equivalent form

Uλ2V(dλ)]1/2^ttμ2^^

Since ||Φfc- Φ|| -*0 and ||yίϊ(Φk-Φ)||->0, we must have \\Aj(Φn- Φ)|| ->0
i.e. A{Φn = A{Φn-+A{Φ. Similarly Aj

2Ψn-^A{Ψ. It follows therefore that
(Al ® 1 + 1 ® A2y Φn ® Ψn -> (^i ® 1 -h 1 ® v42y Φ ® «P. Hence Φ®Ψ
e D(l(A1 ® 1 + 1 ® A2y]~) which completes the proof of (3.1). Further-
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more, we have

l^j^n. (3.3)

We can now easily show that [(^4ι® 1 -f \®A2Y]~ is self-adjoint.
Choose a vector Φ e D((A")~) and a vector Ψ e D((An

2)~) such that their
supports are compact with respect to the spectral resolution of the
operators (A")~ and (A^)' respectively. Then Φ is an analytic vector
for C/4")~, Ψ is an analytic vector for (An

2)~ and Φ®Ψ is an analytic
vector for 1(A1®1 + l®A2y~\~ . (The last statement is clear, as in the
case of (3.2) when A1 and A2 are diagonalized.) Since the linear span of
vectors of the form Φ®Ψ is dense, [(^(x)! + 1®A2Y]~ has a dense
set of analytic vectors and is therefore self-adjoint by Nelson's theorem
[6]. (3.3) shows, in fact, that

, (3.4)

on the domain of the right handside. The proof is complete.
The next four lemmas yield inequalities enabling us to estimate the

terms described in the introduction just after equation (1.2). It is con-
venient to introduce some terminology.

Definition 3.3. Let / and g be two complex-valued functions defined
on the same set S. Then / dominates g if there exist constants A and B
such that

\g(x)\£A\f(x)\ + B (3.5)

for all x e S.
f strongly dominates g if for every A > 0 there is a B > 0 such that

(3.5) holds for all x E S.
Each measurable function / on IRS defines an operator of pointwise

multiplication on some subset of L2(1RS; dx) : Φ-+fΦ with (fΦ)(x)
= f(x) Φ(x). In the four lemmas that follow all scalar products and norms
are to be taken in L2(1R5; dx).

Lemma 3.4. Let f and g be infinitely differ entiable polynomially bounded
functions on IRW. Suppose

1) / dominates each of its derivatives,
2) / dominates g and every derivative of g.

Then for any multi-index σ = (σ1? ..., σs), there are constants A, B, C, D
such that

H. M
\\ITgΨ\\^A\\(-Δ)2 fΨ\+B\(-Δ)2 Ψ\\+C\\fΨ\\+D\\Ψ\\ (3.6)

for all Ψ E ̂ (IR5), the space of infinitely differentiate functions of fast
decrease.
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Moreover, if we replace 2) by
2') f strongly dominates g and dominates every derivative of g,

then A can be taken as any strictly positive real number when B, C, D,
are suitably chosen.

Proof. We proceed by induction on |σ|. The lemma is clearly true
when |σ| = 0, because, from \g\ rg A\f\ + B there follows by an elementary
calculation

\ \ g Ψ \ \ ^ A \ \ f Ψ \ \ + B \ \ Ψ \ \ , (3.7)

which is (3.6) for this case. To carry the induction .from |σ| — 1 to |σ|,
we distinguish the cases |σ| even and odd. For |σ| odd, we can write
Dσ = DjDσ' for some j where \σ'\ = \σ\ - 1 is even. Then

g-A^-^DJΨll

The first term on the right hand side is

^ C, \ \ f ( - A)(W-^DjΨ\\ + C2 1|(- zJ)( |σ |- ^DjΨ\\ (3.9)

by the same argument that led to (3.7). The first term on the right hand
side of (3.9) in turn becomes

^[iiDX-j^-^Vm^ (3.10)

Using

\\Dj(-Δ)^-^fΨ\\^\\(-Δ)^l2fΨ\\ (3.11)

to estimate the first term on the right hand side of (3.10), and similarly
for the second term of (3.9) we have altogether

(3.12)

Here the constant C t can be taken arbitrarily small if 2') holds. (In the
course of this argument we have several terms replaced derivatives with
the appropriate powers of — A. An elementary justification for this is
obtained by passing to the Fourier transform. The required inequalities
then follow from the polynomial inequalities |xσ| ̂

We have still to deal with the commutator terms in (3.12). Here we
use the fact that

= Σ Dτhτ (3.13)
W < M
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where the hτ are sums of derivatives of / and hence by assumption 1)
dominated by /. We can therefore apply the induction hypothesis to
show

»P| |g £ {Aτ\\(-Δ)U/2fΨ\\
| τ |<M

+ Bτ ||( - Δ)Mί2 Ψ\\ + Cτ || / Ψ\\ + D

Now it is easy to show that

\\(-Δ)W2fΨ\\£K\\(-Δ)W'2fΨ\\+K'\\fΨ\\ (3.14)

and that K may be chosen as small as desired. (Again pass to the Fourier
transform and use elementary inequalities for polynomials). Similarly,
\\(~Δ)lτl/2Ψ\\ is majorized by ||(- Δ)^/2Ψ\\ + | |<P| | . Thus, we get

+ B'\\(-Δ)^2Ψ\\+C\\fΨ\\+D'\\Ψ\\

where A' may be taken as small as desired. In a similar way, we get a
majorization for

whose right hand side is of the form of the right hand side of (3.15).
Combining this, (3.15) and (3.12) we have an estimate of the desired
form (3.6).

When |σ| is even the induction is slightly easier because instead of
(3.8) one can write

\\DTgΨ\\ ^ \\(-Δ)W2gΨ\\ ^ \\g(- Δ)^'2Ψ\\ + \\[g, (- zJ) |σ'/2] Ψ\\

while (3.9) becomes

and (3.10)

which yields directly the analogue of (3.12)

\\Dfg Ψ\\ £ d ||(- J)w/2 fΨ\\+C2 1|( - Δ)M'2 Ψ\\

+ C1 1|[/, (- ^)w/2] Ψ\\ + llto,(- Λ)w/2] ϊΊI

Because |σ| is even, we may replace (3.13) with

[/,(-J)H/2]= X D*hτ (3.16)
|t|<H
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and the argument goes just as before. (It is just this equality which
would not be valid if |σ| were odd.) This completes the induction and
the proof of the lemma.

What kinds of functions dominate all their derivatives? It is easy
to see that not every polynomial does. Take, for example, P = x\ — x\.
It vanishes on the line χ 1 = χ 2 while DίP = 2xl grows there. Thus, it
does not dominate its derivatives. On the other hand, P = x\ + x2

2 -f 1
is easily seen to dominate its derivatives. More generally, we have

Lemma 3.5. Lei Pi9...Pj be polynomials respectively of degree
2nί9...92rij on IRmι, IRm2, ... ΠΓJ. Suppose each Pj is everywhere ^1
and that there is a constant, ρ > 0, such that

Pj(x)^ρ\x\2n^ 7 = 1 , . . . J . (3.17)

Suppose V is the polynomial on Rm = lRmι + m2 + WJ = lRmι ® HΓ2 0 ® lRmj

defined by

j). (3.18)

If β>0 then W(x) = [V(x)]β strongly dominates all its derivatives.

Proof. One easily shows by induction that

DaW(x)=
k= 1

where Qk(x) is a product of fc factors each of which is a derivative of V(x)
of order greater than zero. Thus

|σ| / DτιV\ (
D*W(x)=W(x}Σ Σ a ^ i . - . T f c ) — jj- —

fc=lτ1...τk \ V / \ V

where the α's are real numbers. Now DτjV = 0 if the multi-index T, has
a non-zero value for two different groups of variables. Thus a non-zero
contribution is always of the form

V = J

β Σ W2"'
1= 1

Since the numerator always has degree less than 2nk this approaches
DτjV

zero as |x|-»oo. Thus »0 as |x|^oo if |τ7 |Φθ, and therefore W

strongly dominates DσW.
It is worth remarking in passing that the assumptions of this Lemma

3.5 imply W^ 1, and our principal application of Lemma 3.4 will be to
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a case in which f=W. The statement and proof of Lemma 3.4 can be
somewhat simplified in this case by using \\Ψ\\ ^ \\fΨ\\. In particular,
the inequality (3.6) is replaced by

\\DσgΨ\\^A\\(-Δ)W/2fΨ\\+B\\(-A)^l2Ψ\\+C\\fΨ\\. (3.19)

The fact established in Lemma 3.5, that W strongly dominates all
its derivatives will now be used to bound expressions of the form
\\(-Δyl2Vn~jl2Ψ\\2 by a multiple of \\(-Δ + V)nΨ\\2.

Lemma 3.6 [1]. For each positive integer n, there is a constant b
(depending on n) such that for all Ψ e

Σ }\\(--£γl2Vn-jl2Ψ\\2^b\\(-Δ + Vγψ\\2. (3.20)
J = v \ J J

Proof. Denote the left hand side of (3.20) by Σ. Since

2n /2n\Σ== Σ . }(Ψ,Vn~j/2(-ΔyVn-jl2Ψ) (3.21)
j = o \ 7 /

and

IK- Δ + vγ ψ\\2 = (ψ, (- A + v)2nψ)

= Σ (2n\ψ9v
n^l2(-Δγva-jl2ψ)

j=ι \ J ' J

+ commutator terms,

to prove the lemma it suffices to show that the commutator terms can
be majorized in absolute value by

j - o J

with ε < 1 because then

\\(-Δ

and, since (— Δ + F)^ 1

In fact, we will show that ε can be taken arbitrarily small for sufficiently
large d.

The commutator terms can be expressed as a sum of expressions
of the form (Ψ, VlD

τV2Ψ) where F1? V2 are each products o(2n~j factors
each of which is either V112 or a derivative of K1 / 2, and where |τ| <2/,
1 gj fg In — 1. By Schwarz's inequality, the above expression is majorized
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in absolute value by

IID^V.ΨH \\Dτ2V2Ψ\\ where D τ-D τ ιD τ 2, and |T l | <;, |τ2 | ^7

This expression in turn is majorized by

η
(3.22)

where η is any number > 0. It therefore suffices to prove that there are
constants A and B such that

(3.23)

and that, for any A' > 0 there exists a B' such that

(3.24)

for all Ψ e &>.
Let us prove (3.24) and then indicate the changes necessary to obtain

a proof of (3.23). Lemma 3.5 tells us that Vn ~ j / 2 majorizes all its derivatives.
Furthermore, it majorizes Vl and every derivative of Vl. (The proof of
this last runs exactly parallel to that of Lemma 3.5 itself.) Now we apply
Lemma 3.4 to D τ ιF t and Vn~jl2. It asserts that there exist constants C,
D, £, F such that

||Dτι V, Ψ\\ ^ C ||( - Δ)M/2 Vn~j/2 Ψ\\

+ D\\(-Δ)M/2Ψ\\

+ E\\Vn-j/2Ψ\\

+ F\\Ψ\\.

Squaring this inequality and applying \ab\^ — ((a\2 + (b\2) to the cross

terms appearing on the right hand side we get the same inequality with
new set of constants C, D, E, F and || || everywhere replaced by || 1|2:

\\Dτι vl Ψ\\2^c ||( - J) ' τ ι i / 2 vn~jl2ψ\\ 2

+ D \ \ ( - A ) ^ I 2 Ψ \ \ 2

+ E\\V"-j/2Ψ\\2

+ F

Since \τ1\/2<j/2, for any A'>0 we can find £', F', and F" such that
"-j/2 Ψ\\ 2 ̂  A' ||(- Δ)j'2 V"~j/2 Ψ\\ 2 + E' || Vn~ j/2 Ψ\\ 2 (3.26)

^ A \\(-ΔTΨ\\2 + F|| ̂ ||2 (3.27)

(E + E') || Vn ~ jl2 Ψ\\ 2 ^ A'\\ Vn Ψ\\ 2 + F'|| Ψ \\ 2 (3.28)



Cut-off Field Theory Models 61

Therefore

A ) " Ψ \ \ 2 + \ \ V n Ψ \ \ 2 }

F")\\Ψ\\2

> + Fff) \\Ψ\\2.

The proof of (3.23) differs only in that because |τ2 | ^7, A' cannot necessarily
be taken arbitrarily small in (3.26), (3.27), and (3.28).

Lemma 3.7. Let σ = (σl ... σs) and τ = (τ^ ... τs) be multi-indices. Let
xτ be a monomial on IRS = 1RS1 0 IRS2 0 ... JRSJ, whose degree in the variables

i s a i j , / ,-=! , . ..,J.
Suppose

+ Σ < " (3.29)
j

for some fixed integer n.
Then the operator Dσxτ regarded as defined on y(Rs) is infinitely

small in the sense of T. Kato with respect to ( — A -f V)n, V being defined
by (3.18).

Proof. The first step will be to prove that xτ is strongly dominated
n_\σ\_

by V 2 whenever the condition (3.29) holds. In fact, if we set

[ N Π l / 2

Σ \Xj\2rlj > \xj being the norm in lRSj we have by assumption
' = 1 J

V(x)^. const r2 and because the individual components x7 , belonging to

Σ («j/«j)
1R5-7 satisfy Ixjl^r 1 ^- 7 we have also \xτ\^rj=ί . Thus as |x|-^oo,|xτ |

σl

grows at most like r- 7" l J J while F 2 grows at least like r2" |σ|. There-
σ

fore, xτ[_V~]Ί w-*0 as |x|->oo, so xτ is strongly dominated by Fπ~ | σ | / 2.
Since differentiating xτ simply gives a multiple of a lower power

of x, every derivative of xτ is also dominated by j/"-H/2

To complete the proof we apply the preceding lemmas. Suppose
ε > 0 is given. By Lemma 3.4 there exist constants B, C, D such that

\\DσxτΨ\\^ε\\(-Δ)lσl/2Vn-]σl/2Ψ\\+B\\(-Δ)lσ\/2Ψ\\

+ C\\Vn~lσl/2Ψ\\+D\\Ψ\\

for all Ψ e f^(IRm). We can also evidently find D' and D" such that

B | |(-Zl) l < T | / 2 Ψ\\^ε\\(-Δ)n Ψ\\ + D'|| ψ\\
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Thus,

A ) { σ { / 2 Vn-\σ\'2ψ\\ + \\(-A)nΨ\\ + \\VΛΨ\\']

+ (D + D' + D"}\\Ψ\\.

But from Lemma 3.6 it follows that there exist constants A, D" such that

| |(-j)M/27π- | σ | / 2y^^

thus,
||Dσxτ Ψ\\ ^ ε ||( - A + N)n Ψ\\ +(D + D' + D" + εD"1) \\ Ψ\\ .

Since ε is any positive number and, the choice of A does not depend on
ε, this proves the lemma.

This completes the proof of the preliminary lemmas. Their application
is based on a theorem of Kato.

Theorem 3.8 (Kato) Let A be a linear operator on a Hubert space 3?.
Suppose that A is essentially self-adjoint on the domain D(A) and B is a
hermitean operator such that

a) D(B)3D(A).
b) For each ε > 0 there exists a b such that

(3.30)

for all Φ e D(A). Then the closures B~~ and A~~ satisfy

| |B-φ| |^ε|μΓΦ||+&| |Φ| | (3.31)

for all ΦεD(A~). Furthermore, A~ -f B~ is self-adjoint and

D(A-+B-) = D(A~). (3.32)

(For a proof see [3], Chapter V, §4.)

For the application to the present case, we follow a line of argument
similar to that developed for the λφ4 theory in [1], in an elegant form
due to J. Cannon [4].

For brevity, we introduce the following notation. If A and B are two
linear operators, B < A if D(A) C D(B) and (3.30) holds for all Φ e D(A).
With this notation we have the following two lemmas.

Lemma 3.9 (Cannon). The set of all B such that B < A is a complex
vector space

A<A2 implies A <A2 <A* < ••• .

// A is self-adjoint A < A2.

Lemma 3.10 (Cannon). Suppose that for some operator B

(MA)k(B}<Ak + 1 fc = 0,l, ... (3.33)



Cut-off Field Theory Models 63

Then if / l 9 / 2 , ... and / i , / 2 , ... are non-negative integers such that
Σl{ + Σ / ί < / ,

AlίBl>ίAl2Bl2~ <Al. (3.34)

(For proofs, see [4]).
Proo/ o/ Theorem 3.1. We take β = /f 2

 and ^ = #o + Hv Recall that
//£ is the free fermion Hamiltonian and the Hamiltonian H^ is a sum of
the free boson Hamiltonian, Hb

0 and the dominant boson self-coupling.
For each positive integer n, (//£)" is essentially self-adjoint on the domain
C°°(H£) in the Φoκ space of the fermions, while //" is essentially self-
adjoint on C^(Hbo) in the Φoκ space of the bosons. The first of these
statements is elementary; the second is a basic result of [1]. It follows
from Lemma 3.2 that, in the notation of that lemma, (Hf

Q®\ + 1 ®Hl)
n

is essentially self-adjoint on CGO(//^)®Cco(Ho) and therefore certainly
on C°°(/ί0fK) which includes it. (The ®1 and 1® will be suppressed
whenever it is convenient so the operator under consideration may also
be denoted (Hf

Q + HJ".)
Next we write

H"κ,v = (Hfv + HI)" + LHaκ.v ~ (Hfo + # iΓ] (3.35)

and study the term in square brackets on the right hand side. It is a
sum of monomials in (//£ -f HJ and H2 of precisely the form of the left
hand side of (3.34), when l = n. Thus to apply Lemma 3.10, we have
only to verify

' + 1 - (3.36)

At this stage, for clarity, we indicate explicitly the action of operators
as tensor products A® A'® A", where the first factor, A, acts on the
coupled boson modes, the second, A\ on the uncoupled boson modes
and the third, A", on the fermion modes. With this notation Hl is re-
written as

1 (3.37)

where H4 is the free Hamiltonian of the uncoupled boson modes, H3 is
the free Hamiltonian of the coupled boson modes plus the dominant
boson self-interaction. Similarly, the notation, //£, for the free fermion
Hamiltonian is replaced by (1®1®H£). Finally, H2 is a sum of terms
of the form gτ® 1 ® F where F is a bounded operator.

Thus [Ad(//£ + Hi)]k(H2} is a sum of terms of the form

[Ad(-zl)]k(ρτ)®l®[Ad(^)]k(F). (3.38)

By assumption (2.11), the last factor is a bounded operator, Fk. The first
is a sum of terms of the form DσQτ where |τ'| < |τ| and \σ\ ^ 2k. Now by
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assumption τ is such that the criterion (2.10) is satisfied. That implies
Qτ < H3 by Lemma 3.7. (Set w = 1, |σ| = 0 there.) Then using |σ| ̂  2k, |τ'| < |τ|
we get that (3.29) is satisfied with n = k + l so Dτ'Qσ<Hk

3

+1 again by
Lemma 3.7. It remains only to show from this that (3.38) < (//£ -f H1)

k + 1

The argument goes as follows. Vectors of C00(//3)(x)CGO(H4)®C00(H^
(algebraic tensor product) can be wirtten as finite sums χ = Σφ.®ψi

where Φt e C°°(Ή3) and Ψt e C00 (H4) ® C00 (Hξ). Without loss of generality
the set {Ψi} may be assumed orthonormal. Noting Dσ Qτ ® 1 ®F k

= (i®\®Fk)(DσQτ'® 1®1) and ||1®1®FJ - ||FJ, we have therefore

(3.39)

All but the last of these steps are elementary. Putting aside its justifica-
tion for a moment, one can pass from (3.39) to the desired inequality
valid everywhere on the domain of (H{)-{-H1)

k + 1 by closure. Since ||Ffc|
is independent of χ and ε can be chosen arbitrarily small, this shows
(3.38) <(H{) + Hί)

k + i.
The last step of (3.39) follows from the fact that if A and B are essen-

tially self-adjoint positive operators, commuting on C°°(^l)nC00(5), then

\\AΦ\\^\\(A + B)Φ\\ (3.40)

for all ΦeC00(A)nCco(B). To see this one notes that under the same
assumptions AB is positive ((Φ,ABΦ)= \\A112 B 1 / 2 Φ \ \ 2 ) so

(Φ, A2 Φ) ̂  (Φ, (A2 + B2 + 2AB)Φ) . (3.41)

The square root of this inequality is (3.40).
This completes the proof that all monomials appearing when

Hnκ.v — (Ho + HI)" is expanded satisfy the hypotheses of Lemma 3.10.
Thus each such monomial is <(H{) + H1)

n. Since, by Lemma 3.9,
the operators < (HJ

0 + H \)n form a vector space, we have

and therefore, by Kato's Theorem 3.8, Hn

κ v is essentially self-adjoint
on D((Hf

0 + Hl)
n) and D(H"K,V) = D((Hf

0+ Ήj"). This proves b) of
Theorem 3.1. a) follows from Kato's Theorem 3.8 and the fact proved
above that (H£ + Hι)n is essentially self-adjoint on C°°(//0>F).

c) As a consequence of b) C*(HKtV) = C00^ -f #ι) Thus, to prove c)
it suffices to establish C00 (#£ + #!) = C°°(H0>Γ), that is, the addition
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of the dominant boson self-interaction to the free Hamiltonian
= H0 v does not change the intersection of the domains of all the powers
of the free Hamiltonian. Now one of the basic results of [1] was that
C°° (//!) = C°°(/fo). Thus, the problem of proving c) is reduced to showing
that the addition of H{> to H{ and HO does not affect this relation. That
in turn is a consequence of

D((Hi®l + l®H1)
n) = D((Hi®l)")nD((l®H1)

11) (3.42)
and similarly

). (3.43)

(We have reinstated the tensor product notation for clarity). (3.42) and
(3.43) follow from the positivity of //£, //£, and H^ That may be seen
as follows. We have, surely, that the left hand sides of (3.42) and (3.43)
include the right hand sides. Furthermore,

D((H£® 1 + 1®HO")DD((H£)")®D((HO") (3.44)

(again algebraic tensor product). On vectors velonging to the right
hand side

(Hi ®1 + 1®H1)" = Σ r )(//£)* ® (H.Γ k (3.45)
k = 0 \κ/

and because all operators occuring are positive and commute

for any Cauchy sequence (Φ; ) of vectors belonging to the right
hand side of (3.44). Thus, passing to the closure, we find that
ΦeDftHo^l + l®//!)") implies ΦeD((H£® l)n)nD((l®H1)

Λ). There
is an analogous argument with Hl replaced by H& so the proof of c)
is complete.

d) Both HfQ and Hί have compact resolvents [2, 1]. Thus, their
eigenvalues E{ and Ej respectively have finite multiplicity and cluster
only to infinity. Their eigen functions Φ{ and Φj respectively are complete
in the respective Φ o K spaces. H£ + Hj has eigen values E{ + Ej with
corresponding eigen functions Φf ® Φ,. Since they are complete //£ 4- H^
also has compact resolvent. Now as we have seen in the proof of a),
H2 is infinitely small relative to H{> -f H^ It is a general result of pertur-
bation theory that the addition of such a perturbation preserves the
compactness of the resolvent. (See [3], p. 214, Theorem 3.17). Thus d)
is proved.

Now we prove e). b) tells us that C°°(//0 t V ) is invariant under Hκv

and elHκ'vt. (For Hκ v this is obvious; for elHκ<v\ it is an easy consequence

5 Commun. math. Phys , Vol 15
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of the spectral theorem.) Since, from the definition of A(f, ί),

dn

9 t 9 9 9 (3.46)

we see that to prove e) it suffices to prove that A(J)Ω is in C°°(//0<F)
if Ω is. There are two things to verify: First that D(A(f)) D C*(H0tV) and
second that A ( f ) C < X ) ( H 0 ί V ) c C c o ( H 0 t V ) . Both these statements require
only elementary calculations in Φ o K space. For all fields A(f\ boson
or fermion, one finds that for each ε > 0 there is a b such that

\\A(f)Φ\\ ^ ίε\\H0tVΦ\\ + 6||Φ||] |/|s (3.47)

for all ΦeD(H0tV). Here | s is some norm on the test function space.
For example, for fermion fields of spin | it is the ordinary L2 norm,
while for the conjugate scalar boson field π,

l/L-[ίl/(/>)|2[m24-/)2]1 / 2^]1 / 2 (3.48)

will do. From this inequality (3.47), one gets immediately D(A(f)) D D(H0 v)
and therefore a fortiori D(A(f))^Cco(H0iV). To see the invariance of
C*(HotV) under A(f\ note that the identity

H 0 t V A ( f ) = A(f) HW + A(f') (3.49)

holds on, say, the vectors with only a finite number of non-zero components
in Φ oκ space, all of which are infinitely differentiable and of compact
support. Here /' is obtained from / by multiplying its Fourier trans-
form by kinematical factors (e.g., ω(p) to some power) that depend on
which field is under consideration. From (3.47) and (3.49) one gets,
passing to the closure, A(f)D(HotV)cD(HQ~v)*s desired.

Theorem 3.1 together with some of the information obtained in the
course of its proof permit one to construct the basic objects, vacuum
expectation values and Green's functions, in terms of which the content
of a field theory is customarily expressed. Notice first that any eigen-
function Ω of H is certainly in C°°(HKtV) and therefore any product
of the fields smeared with test functions in ̂  in the space variables is
certainly applicable to it. Thus the expectation value

YlAj(fj9tj)Ω} (3.50)

is well defined. From c) we see that it is infinitely differentiable in the ί's.
It is clearly a multilinear functional of the fs. Theorem 3.1 e) implies
that it is in fact a tempered distribution in each of these variables and thus
by the nuclear theorem in all the space variables together. The time
ordering operation carried out on the expressions (3.50) is unambigous
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because they are smooth in the times; that shows the Green's functions
exist as piecewise C00 functions of the times and tempered distributions
of the space variables .

The preceding discussion is valid for any eigenfunction Ω of H.
Of course, the traditional definition of vacuum expectation values and
Green's functions uses the ground state for Ω. It should be noticed that
nothing said up to this point prevents the ground state from being de-
generate. This does not cause any trouble with the existence proof for
the vacuum expectation values and Green's functions; it just means that
unless further physical requirements are imposed there is, in general,
a family of equally admissible vacuum expectation values and Green's
functions.

These general remarks can be supplemented and made more precise
in special cases. When only bosons are present, the ground state is non-
degenerate by virtue of the same argument that shows that the ground
state of the non-relativistic Schrόdinger equation for spin-less particles
has no nodes. On the other hand, the following example shows that when
fermions are present no such general argument can exist.

Example 3.11. Consider a single species of fermion interacting with
a single species of boson. Suppose H2 = g A* AQ where A* is the creation
operator for a fermion mode with corresponding contribution to the
free Hamiltonian MA*A, and Q is some linear combination of Q{ ...Qm.
Then the Hubert space may be written as a direct sum ̂  = ̂ ®^\
where J>f0 is the subspace on which A* A = 0 and Jf^ that on which A*A = 1.
Each of these subspaces is mapped into itself by the full Hamiltonian H.

On Jf0 the lowest eigen-value £0 of H is that ofHί=-AQ+ V(Q] while
on Jf7} the lowest eigenvalue of H is equal to the lowest eigenvalue of
— AQ -f V(Q) + M + gQ. By adjusting g one can make this eigenvalue take
any value between E0 + M and — oo, so in particular one can make it
equal to E0. With this choice of g the ground state of H is at least two-fold
degenerate.

Using Theorem 3.1 and the above remarks it is completely straight
forward to verify, following the pattern of [1, 2] that the standard
Heisenberg equations of motion for the operators A(f, t) hold as equalities
on vectors of C°°(//0 t V) and that the usual differential equations for the
Green's functions hold as equations in tempered distributions. We
summarize in

Theorem 3.12. For quantum field theories satisfying the hypotheses
of Theorem 3.1, vacuum expectation values exist as tempered distributions
in the space variables and infinitely differentiate functions of the time
variables. The Green s functions are tempered distributions and piece-
wise infinitely differentiable in the times. The standard Heisenberg equa-
tions of motion for the field operators are valid, when smeared with a test
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function in the space variable, as operator equalities valid on the vectors
of C°°(/f0 v). The standard differential equations for the Green's functions
are valid as relations between tempered distributions.
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