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Abstract. The spectral representation of the two-point function for arbitrary fields
proposed recently [1] is rigorously proved and analyzed. The problem is treated in momen-
tum space where the covariant structure is simpler because of the spectrum conditions.
For finite-component fields the explicit “matrix” structure is found in coordinate space too
and is applied to the definition of time-ordered Green functions for arbitrary spin. The
decomposition of the two-point function into kernels of definite spin is carried out in the
general case, a necessary and sufficient condition for the growth of the coefficients in this
decomposition being given. The positive-definiteness condition (in the case of Hermitian
conjugate fields) is fulfilled automatically by the elementary kernels.

The formalism of homogeneous distributions in two dimensional complex domain
[2] is used throughout the paper.
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1. Introduction

A representation was proposed recently [1] for the invariant two-
point function in a theory involving infinite-component fields. The
present paper is devoted to a rigorous derivation and further analysis of
this representation.

We start with the precise formulation of the problem and give a
summary of results.

Let 7 be a linear representation 4 — T(A) of the quantum mechanical
Lorentz group SL(2,C) where T(A) are (continuous) operators in a
topological vector space D. Let further S(R,) be the Schwartz space of
infinitely smooth fast decreasing functions in four dimensions. A rela-
tivistic quantized field y(u;f) (ue S(R,), f € D) is defined as a bilinear
weakly continuous mapping of S(R,)x D into the set of (unbounded)
operators with a common invariant dense domain  in the Hilbert space
9 of state vectors (cf. [3]).

We assume that a unitary representation U(a, A4) of the covering
of the Poincag¢ group ISL(2,C) is acting in $, satisfying the usual
requirements [3] (including the existence and uniqueness of the in-
variant vacuum state |0) € Q). The transformation law for the field is
given by

Ula, A) p(u; f) U™ a, A) = 9(ug, 45 T(A) f) (L.1)
where u, 4(x)=u(A4"'(x—a)), and A=A(A) is the proper Lorentz
transformation defined by

Ac, A* =g, A"1 (12)

(0 j=1,2,3 are the Pauli matrices, g, is the 2 x 2 unit matrix).

In view of the translation invariance the two-point function (i.e. the
vacuum expectation value of the product of two fields) can be written
in the form

F,(x—=y:f,2)=O0lo(x; N y(y; 210> = [ K, (p; f,g) e ?*"Vd*p. (1.3)

The tempered distribution K, is called spectral function. To avoid
unnecessary complications we assume the strong form of spectrum
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condition with a mass gap [3]!) which implies that
suppK(p; f;8) C Ve = {plp°>Ipl} .

We shall use here the notation? y = [k, c] for the irreducible represen-
tations of SL(2, C) where k is an integer or half-integer and c is in general
an arbitrary complex number (for the principal series of unitary represen-
tations c is pure imaginary [4]).

Let the fields ¢(x;f) and (x;g) transform under the irreducible
representations y, and y, of SL(2, C), respectively; then we suppose that

fe®_, and ge D_ , transform respectively under 7_,, and T_ ,. Our
main result is the derivation of the general form of the spectral function
K(u;f;g) considered as a trilinear functional on® D(V,)x D_, s
satisfying the invariance condition

K, ays -, (A) S5 T_ ,(A)g) = K(u; £ 8) - (1.4)

The solution of this problem is based on the isomorphism (established
in Appendix A) between the space D, of linear functionals on D_ , and
the space d, of homogeneous dlstrlbutlons of index y in the two- dlmen—
sional complex domain C, =C,\{0}. This isomorphism considerably
simplifies the surch of polylinear Lorentz-invariant forms by means
of distribution technique. The general invariant kernel K(p;z;w)
e D'(V, x C, x C,)satisfying conditions (2.2), (2.3)is given by Theorem 2.2.
It is non vanishin only for integer k, —k, and is characterized by a
generalized function g(t,v)e 2'(RL x[—1, 1]) which depends on two
invariants

|zpw|? — p?|zew|? 0 1\ _
— 2 — = =p* . 1.5
t=p* and v 2PE - Wpw € _1 o) PTP (1.5)

[Here R{ is the (open) positive semi-axis: 0 <7 < 00.]
The case of finite-component fields is studied in more detail in
Section 3. The analysis of Methée [6, 7] is extended to the case of tensor

! If the spectrum condition is not fulfilled then one should expect a more complicated
structure for the functional K (u; f; g). This is suggested in particular by the structure of the
SL(2, C) orbits in the space of variables of the kernel K(p; z, w) (see Appendix D).

2 The pair y = (n;, n,) used in [2] is related to [k, c] by n, = ¢ + k, n, = ¢ — k. We shall
realize T, as a set of argument transformations in the space D, of infinitely differentiable
homogeneous functions of two complex variables (see Appendix A). We shall make use of
the fact that the representation T (acting in D)) is an extension of T ,: T, > T, (see [2]).

3 From the assumed temperateness of the fields it follows that the functional K (u; f; g)
can be extended to the larger space S(V.)x D_,, x D_,,. Moreover, translation invariance
implies that it is a measure with respect to p. However, no additional difficulties appear
when treating the problem in the more general formulation given in the text which in-
corporates for instance the Jaffe fields [5].

20*
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Lorentz-covariant distributions F(x). Such distributions are represented
as finite sums of covariant polynomials of x (or §/0x) multiplied by Li-
invariant scalar distributions (in analogy with the case of analytic tensor
functions treated in [8], Section 4). This result allows us to reduce the
problem of defining the Green tensor functions in terms of Wightman
functions to the corresponding solved problem [9] for scalar fields.

Section 4 is devoted to decomposition of the two-point function with
respect to spin. The problem is reduced to the expansion of a generalized
function in the interval [—1,1] in Jacobi polynomials. It is found
(Appendix E) that a necessary and sufficient condition for such an ex-
pansion to make sense is the polynomial boundedness of the coefficients
(with respect to their index). For a pair of Hermitian conjugate fields the
kernels K; of definite spin are positive-definite.

2. General Form of the Invariant Two-Point Function
in Momentum Space

2.1. Differential Form of the Invariance Condition

Because of the isomorphism between the space D. y (dual to D_,)
and the space d, of homogeneous distributions on D(C,) (see Appen-
dix A) the set of (continuous) trilinear functionals K(u;f, g) on D(V,)
xD_, xD_,, is isomorphic to the set of homogeneous trilinear func-
tionals K(u; F, G) on D(V,.)x D(C,) x D(C,) of indices of homogeneity
X1> X2- In accordance with Schwartz nuclear theorem we can describe
the functional K(u; F, G) by its kernel

K(p;z,w)e D' (V, xC,x C,) (2.1)

which satisfies the homogeneity condition
K (p;[/aeiaz_lz,]/é;ei%zw) = 097! gttt K(p: 2 ) (2.2)
(¢;> 0, x; = [k;, ¢;1), and is Lorentz invariant.
K(A(A)p;zA~ , wA™') = K(p; z, w) (2.3)

where AeSL(2,C),zA ="'Az,'A is the transposed of A, and A(A) is
defined by (1.2).

In order to rewrite (2.3) in an infinitesimal form it is convenient to
introduce instead of the four vector p the Hermitian matrix p (cf. (1.5)):

(4] 3 1 s .2
~ p +p° p —ip . ,
pzpug"=<p‘+ip2 p°—p3>=(pb)’a’ b=12. 24
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Eq. (1.2) implies that
A(A)p = ApA*. (2.5)

In terms of p the forward cone V, can be defined by V, = {p|p'! >0,
detp = p? > 0}. We parametrize the complex matrix

a, a
A= (aiz a%)’ ala?—ala? =1
in the neighborhood of the unit element A =1 of SL(2, C) by the para-
meters a}, ab and af. Differentiating (2.3) with respect to these para-
meters and their complex conjugates in the point 4 =1 we obtain
6 differential equations for K(p; z, w). We shall write down only four of
them (those obtained by differentiation with respect to al, a?, @k, @?),
because they already contain complete information about the Lorentz
invariance of K:

w0 d d .
<” ot oz, (’)wa> k=0, a=12 b=3-a; (26)

.0 0 0 .
b - 7 — W K=0, a=1,2, b=3—-a (27

(p ot ez aw) : @7
(summation is to be carried out over the repeated index ¢ (or ¢) from
1 to 2).

2.2. Any Invariant Distribution of D'(V, x ¢ 2 X ¢ 2)
is a “Function” of the Algebraic Invariants

We shall find first the general solution of (2.6), (2.7) without using the
homogeneity condition. Thus, the result will be valid also for a class of
reducible representations of SL(2, C).

We choose the following set of independent algebraic invariants of
the transformation group (p, z, w)—>(4pA*, zA" L, wd™1):

t=p*=detp, ov=wpw, 238)
s= ]/;zaw =)/p*(zywy — z,wy), t=zpW. )

The image of the domain V, x C, x éz~ of the variables (p, z, w) in the
set of invariants (t, v, s, t) is R} x R] x C,. This is a consequence of the
positive definiteness of p and of the identity

. i(;s|2 1), (2.9)

In order to introduce a regular change of variables in K(p, z, w) we
consider the set ¥, x C, x C, as the union of the overlapping domains
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0,, in which w, 0 and O,, in which w; 0. Let J; be the mapping

21
Bz W)= (T;058, 65 4), 44 = (p“,p21;r1=wl + %w2,¢=arg%> (2.10)

of O, on @, ={teR",veR}, (s t)e Cy, p* € R}, p* € C,, P < 1/;;
neCy, ¢ € R} (argw, being a multivalued function of w,). Analogously,
we define the mapping 3,

12
(B2, W) = (5035, 8345), A = <p“,p”;n/ =w,+ %wmp’ = argw1> (2.10a)

of 0, on a corresponding domain Q,.

Lemma 2.1. There exists an isomorphism
K(p;z;w) = Kj(t;v5s,t54)  j=1,2 (2.11)

between D'(0;) and the space D'(2)) of distributions periodic with respect to
¢ (or ¢') of period 2.

The proof of this Lemma is given in Appendix B.

Our next step will be to prove, using the invariance conditions (2.6),
(2.7), that K; do not depend actually on A;. First, we observe that it is
sufficient to differentiate K; with respect to the set of variables 4;, because
any “function” of the invariants (2.8) satisfies Egs. (2.6) and (2.7) identi-
cally. We consider in detail only the case j=1; the case j=2 can be
treated analogously.

Inserting (2.11) (for j=1) into (2.6) for a=1 and into (2.7) for a =1
we find

0K 0K, w 0K
11 1 1 2 1
—_— _ ] - — :0,
(51721 + a’/’ pll > an Wy
0K 0K, w 0K
11 1 1 2 1 —
(aplz + 617 pll > 017 Wi
hence
0K 0K —
apzi = apTi =0 (p*=p". (2.12)

Substituting (2.11) in (2.6) for a =2 and taking into account (2.12) we
obtain

af 0K, 0K, p“w 0K, p“v_v
opt o (M) o (M) 7

2.13
3 _p”w 0K, p”_{_é’K1 1 _o @13)
S AN S A Y
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Since K, does not depend on p2!, p?! (=p'?) (because of (2.12)) the co-

efficients to any power of p?* and p*! in (2.13) should vanish. Taking
into account that in the domain under consideration p*! >0 and w, %0

we get
oK, 0K, 0K, n 0K, i 0K,

~0, ~0, L ~0. (214
o0 o7 T T P Ay 2 a0 (144)

Analogously, using (2.7) for ¢ =2 we find

_ 0K, oK, 0K, 7 0K, i 0K,
—0, ~0, e =0. (2.14b
op an ot TP o T 2pT g (2.145)
From (2.14) and (2.12) we obtain the desired result:
0K, 0K, _ 0K, _ 0K, _ 0K, _ 0K, —0. @19

ap't  apt  apt oy o op

As far as the domain Q, is convex with respect to the variables 4, (for
fixed t,v,s,¢) we conclude that there is a distribution #/(t;v;s, 1)
e D'(Rf x R} x C,) such that

Ki(t,v;s,t;p*, p*, p' 2 n, @) = A (t; 058, 1) in Q

or equivalently K(p; z, w)= #(t;v;s,t) in O,.

An analogous reasoning shows that there exists a function of the
invariants #5(t; v; s, £) € D' (R} x RY x C,) which coincides with K (p; z, w)
in 0,. On the other hand each of the distributions .%; (j = 1, 2) is uniquely
determined by the “values” of K(p;z, w) in the intersection O; N0,
(because the image of 0; N0, in the mapping (2.8) (p, z, w)—(z, v, 5, 1)
is the whole domain R x R{ x C,). Hence #; = A, = 4 and we have
proved the following theorem.

Theorem 2.1. Any distribution K(p;z,w)e D'(V, x C~2 X C‘z) satis-
fying the invariance condition (2.3) can be written in the form

K(p;z,w)= A (t;0;8,t) (2.16)

where T, v, s,t are the invariants (2.8) and A € D'(R] x R} x C~2).

Remark. We have not used symmetric variables with respect to z

and w: t,v (2.8), u (29) and o = S = zew, because the change of
T

variables (7, v, s, t) = (4, v, g, t) is singular (for s =0 its Jacobian vanishes).
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2.3. Irreducibility Condition. Homogeneous Invariant Distributions

In terms of the kernel #(t; v; s, t) (2.16) the homogeneity condition
assumes the form

i i
A (T;0,0;5 ]/ 010,225, |/ 010, 2™ 7*1)

_ Qil IQ‘:ZZ_lei(k‘al+k2a2)%(T; v; s, t) .
Putting ¢ = V0102, = 3oy + o), B= %(“1 —a,) we get

A (T; 0,0, 065, 0€P1) = o TG Tt TE-D o (1505, 1) (2.17)

where

=~
H+

=k +k,. (2.18)

Because of the one-valuedness of " either k, are integers or # = 0.
Each " satisfying (2.17) can be written in the form

A (t;v;s,t)=u"1o2 " H(z; s, 1) (2.19)

where u is given by (2.9) (we recall that u and v are positive for pe V. so
that H € D'(R] x C,)is well defined). Due to (2.17) H satisfies the following
simple homogeneity condition

H(t;gé'"s, ge'f) = et*+2e*-PH(1; 5, 1). (2.20)

Introducing the variables r, v, o, § by

= T4y .
e i=r|f ;’Vell’ r>0,—1<v=1) (221)

and treating for the moment H as an ordinary function we find

[
Il
~

H(t;s, t) = e*+*e*~PH, (1,v). (2.22)

In order to give a precise meaning of (2.22) in the case when H is a
distribution we have to introduce a new class of generalized functions.

To simplify the problem we neglect for the moment the t-dependence
and consider the space X, ,,_ of distributions ¢(s, t) e D'(C,), satisfying
the homogeneity condition (2.20). Introduce the operator R, ,_ defined
on the space of test functions F e D(C,) b

© 2n 2n

(mk+k_F)(V) ji‘ dr j do 5 dﬁe”‘*“ ik_p

A
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R, _defines a continuous mapping F(s, )= u, (V) =Ry . F) ()
of D(C,) onto the space X, of test functions u,,_ of the form*

— oy \F k] 31k-1
0= (15 () .24

where v(v) is an infinitely smooth function on [—1,1]. We define a

topology in X, ,_ by the (countable) set of semi-norms

d"v(v)
av

lug, kO, = sup , n=0,1,..., (2.25)

where v(v) is defined by (2.24).

It can be proved (by a reasoning similar to the one used in Appendix A
in the proof of the isomorphism between b; and d_,) that each ¢(s, 1)
€ X, ,_ may be represented in the form

1—v . 1 ] ' '
¢<rV 5 v el r'/—;v— elﬁ> = elk+aezk—ﬂfk+k_(v) (226)

where f;  _ € X;,_. The exact meaning of (2.26) is given by the equality
(@G5, 0), F(s, ) = (fie, - (0) (Rp, 1 F) (). (2.27)

Let further 2 = 9([—1, 1]) be the space of infinitely differentiable
functions on the segment [ — 1, 1] with topology defined by the set of
semi-norms in the right hand side of (2.25) (see also Appendix E). It is
easily seen that X, ,_ is isomorphic to 2’ (the dual of 9). Namely, to
each g(v) e 2" we make correspond to f,.,_(v)e X;,,_ by the following
rule:ifu, ,_(v) € X, ,_is represented in the form (2.24), then by definition

(fk+ o (V) e,k (V)) = (g(V)s U(V)) .

The generalized function f; , _ defined in this way will be written in the
form

feo=(157) T () o .29

4 Let f(2) be an infinitely differentiable function of z and z in the complex plane C,.
Then, it is easy (using the Taylor decomposition of f around the origin) to prove that for
any integer n

2n
| e f(ge")da = oMg(o?),
0

where g is an infinitely smooth function on R;. Applying (twice) this argument to the
integral (2.23) we see that the behaviour of u, ,, _ in the neighbourhood of v=+1 is given
by (2.24).
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Applying this result to H(t;s,t) defined by (2.19) and (2.20) (after
smearing it out with a test function of ) we obtain finally, the following
theorem on the general form of the invariant kernel K.

Theorem 2.2. An invariant distribution K(p;z;w)eD'(V, x C, x (~?2)
satisfying the homogeneity condition (2.2) does not vanish only for integer
ky (2.18) and in that case has the form

K(p;z;w) = (zpz) " H(wpw)2~Lelk+2eik-F f(1,v) (2.29)
where o, B, v are defined by (2.21) and (2.8):

o =arg(zew), f=arg(zpw), v= = , (2.30)
and

o\ ke ~3 |
fle) = (1 ") (1?) ¢t e[DRN® X, , T, (231)

g(t,v)e Z(Rf x[—1,1]) (the dual space to DR} x[—1,1])=D(R})
®2([—1,11)).

Remark 1. The points { =({,,{,) on the unit sphere |{;|*+|{,|* =1
may be put into one-to-one correspondence with the 2 x2 matrices

> Cl CZ
= = 2 232
{ (—Cz Cl)ESU() (2.32)

(then the invariant volume element on the group SU(2) has the form

1
4n?
smooth functions on the unit sphere in C, with the natural topology. The
homogeneity condition (2.20) with respect to ¢ leads to the following
representation:

s(1—1¢?) ldCldfldCZd@l). Let D[SU(2)] be the set of infinitely

K(p;z;w) = (2p2) " (wpw)> ' T(z;0) (2.33)

where T(t;0)e D'(Rf x SU(2)) and

Cz(yﬁlﬁ—ﬁ”/ ﬁpﬁ zew>. (2.34)

Eq. (2.33) may be useful for the extension of Theorem 2.2 to other cases
(for instance, for space like p and zpzw pw 0 it is sufficient to replace
SU(2) by SU(1, 1)). We shall refer to this remark in Section 4.2.
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Remark. Eq.(2.29) becomes formally identical with Eq.(1.14) of
Ref. [1], written for k; = |k,|:

K(p; z; w) = (zp2) 7 " (wpiw)2 "M 71 (zew)* (zpW)*~ h(p?;v), (2.35)

k+ —k_
h(z, v) <l/f> (1;) g(z:v) (2.36)

and v=cosf =(n(z, p), n(w, p)) where n({,p) ({(=z or w) is the three

dimensional unit vector
<l/£ g %l/% ) (2.37)

if we put

ni(¢,p) =

3. The Two-Point Function for Finite-Component Fields
3.1. The Invariant Distribution F(x; ()

The case of finite-dimensional representations is contained in our
previous discussion. In fact, if ¢ — |k| is a positive integer the representa-
tion y = [k, c] is reducible, the set of homogeneous polynomials of z
and 7 (of degree (c+k—1,c—k—1)) forming an invariant (¢* —k?)-
dimensional subspace E, of the representation space. It is obvious that
all results of the preceding section (including representation (2.29))
remain true for this invariant subspace. Our present aim is to study in
more detail the two-point function for (irreducible) finite-component
fields using the fact that both F(x;z;w) and K(p; z; w) are polynomials
in z,z, w,w. The method of this section makes no use of the spectrum
conditions and, hence, applies to the description of the general form of an
invariant functional on D(R,)x E,, x E,,. Therefore, we will be able to
write down the explicit covariant structure of the two-point function not
only in p but also in x-space. That will enable us to define the time-
ordered Green’s function in terms of the two-point Wightman functions
(Section 3.3).

It is convenient to denote the finite dimensional representations of
SL(2,C) by the pair of non-negative (half) integers (i, j) connected with
the pair [k, c] by

QDi=c+k—1, 2j=c—k—1. 3.1)

It is well known that the direct product of two irreducible finite-dimen-
sional representations (i;, j;) and (i,, j,) can be decomposed into a direct
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sum of irreducible representations:

itia  jitia
(i1, 1) X (i35 )2) = C‘B @ ())- (3.2)

i=liy—iz| j=lj1—Jj2l

Hence, the study of the two point function F(x;z, w) of two finite-
component fields can be reduced to the investigation of a distribution
F(x;{) = F; ;)(x; {) with the following properties:

a) As a “function” of x (for fixed {) F(x;{)e D'(Ry),

b) F(x;{)isa homogeneous polynomial of ¢, 7({ € C,) of degree (2, 2j),

c) F(AXA*;{)=F(%;(A), AeSL(2,C). (3.3)

Following the procedure of Section2.1 we derive from (3.3) six
differential equations for F:

. 0 0
("ac—ﬁ—c”ﬁc_%(x;é):o, a=1,2, b=3-a,

2 (3.4)
<x Fwy -G o, )F(x;é)=0, i=1,2, b=3-a,
., 0 5}
(Ts)‘;<xbcm*5a 3Cb>F(x H=
' (3.5)

*)d 65L_ 0
(T3)b(x e C(?Cb)F(x 0=

Summation has to be carried out over all indices in Eq. (3.5); 73 =1%

e 0\’
o0 -1/

The covariant structure of F(x;{) can be described in the following
way.

Theorem 3.1. Any invariant distribution F(x;{) satisfying conditions
a)—c) above can be written in the form

Fyp(x50) = 8;;((XDM F(x) (3.6)
0 -\
= ,,(Caﬂz Ix C) T(x) (3.7)

where F(x) (resp. T(x)) is a scalar Lorentz invariant distribution of
D'(R,). In the non-trivial case i=j for a given F(x;{) the distribution
F(x)(resp. T(x)) is determined within the accuracy of 2j arbitrary constants.

* We use different notations (a;) “" L () ( ) for the same numerical matrices because

they refer to different transformation propertles under SL(2, C). Their equality is basis
dependent (it is only invariant under transformations of the SU(2) subgroup of SL(2, C)).
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More precisely, if Fo(x)is a given solution of (3.6), then the general solution
has the form
2j-1

F(x)=Foy(x)+ Y c(0)é(x). (3.8)
1=0

We give the proof of this theorem in Appendix C.

3.2. Covariant Structure of the Two-Point Function
for Finite Dimensional Representations of SL(2, C)

Let the covariant two-point function F(x;z, w) be a homogeneous
polynomialin z, z and in w, w of degree (2i;, 2j;) and (2i,, 2j,), respectively.
Using the decomposition (3.2) and Theorem 3.1 we can write

F(x;z,w) =Y Piiviaid(x; z, w) F(x), (3.9)

where £, is an invariant homogeneous polynomial of degree n in x and
of the same degree as F with respect to the remaining variables (it cor-
responds to the term (i, j) in the right hand side of (3.2) with i =j=n/2),
F,(x) are Lorentz invariant distributions. The summation in (3.9)
is carried out in the range ny,=2max(|i;—i,|, iy —j,) Sn=ne+2k
< 2min(i; + iy, J/; +Jj,)- (If this range is empty then F vanishes identically.)
Here k=0, 1, ..., k., so that n takes either only even or only odd values.
(We mention that a non trivial invariant function F exists only if the
difference between I =i; —i, and J =j; —k, is an integer.)

By standard methods of reduction of the direct product of two finite-
dimensional representations (e.g. using Young’s symmetrization and
antisymmetrization) we obtain the explicit expression for the poly-

nomial #,:

g;iljl,izjz)(x; z, W) — (Zgw)i1+iz—%(zs_w)ix +j2—%

g+ii—iz F-igtia f $tii—iaf_ F-iitiz _
. (Z _a_> (W i) <z _‘Z) <w -‘l) (Cx0y
o¢ o¢ o o¢
— (st)ix +iz—%(zgw)i1+jz—'§- (% + il — 12>| <g. —i + lz)'

A () (3.10)
5 Tz ) ) Jitiz2 )

'y (zXZ)P1 (zXW)1 (WX Z)P2 (WK W)12
n.: N
pi! 4! p2! q,!

>
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the summation in (3.10) is carried over those non-negative integers
P1»> P2> 41, 4, for which

n . . n . .
P1+CI1:7+’1_12’ P2+‘12:‘2__’1+12,

n . . n . .
pl"’l’z:?‘*‘h —J2» 4 +Q2=7"J1 +J2-

We assume that I =i, —i, = |J| where J =j; —j,. (The other possibili-

ties are treated analogously.) Putting further g, =¢| g, = % -J—q,

p=J+I1+q,p,= % —-I1— q), dividing and multiplying by (x?|zew|?)? ™!

and using (3.10) we obtain

-1
n n L
" | - ! (i1J1i2J2) (-
[n.(z +I>.<2 I)] 2, (x;z,w) (3.11)

= (x?)F T (zew)? 2 (Zewy 2T (zx2) Y (zxw) T x PY TP T ()
where

(3.12)

ZRZWXW + [zXW)?  zXZ
x?|zew|? o zXZ

and P{*? is the Jacobi polynomial:

P (o) = i (lza> <§f§><K;1>l_q<K;1>q. (3.13)

A formula analogous to (3.9) and (3.10) can be derived just as well with
0/0x instead of x.

3.3. Application to the Definition of the Time-Ordered Green’s Function
for Arbitrary Spinor Fields

Let ¢ and v be local finite-component fields transforming under the
representations (i, j;) and (i,, j,) respectively, with integer' ] — J(=i; — i,
—Jj1 +j,). Our task will be to show the existence of a Lorentz invariant
time-ordered Green’s function G, ,(x; z, w) defined by

X X
G(ptp(x; Z, W) = F(pw(x; Z, W) = <Ol @(7? Z) 1P<— 7’ W) |0>
for xX°>0, + (3.14)

G,,(x;z,w)=0F,,(—x;w,z) for x°<0,



On the Covariant Structure of the Two-Point Function 285

where
o=(~1PM(=(=1%), k=i,—j, a=12.
Locality implies that
F,,(x;z,w)=0F,,(—x;w,z) for x*><0. (3.15)
We shall again make use of the reduction (3.2) and (3.9), so first we study
the reduced problem.
Let Fi(x;{) and F,(x;{) be two distributions satisfying conditions

a)y—c) of Section 3.1 with i=j=mn/2 and let further the locality-type
condition

Fi(x;0)=F,(x;0) for x?<0 (3.16)

be fulfilled. We shall prove that there exists an invariant distribution
F(x;{), which satisfies a)-c), such that

F(x;)=F(x;{) for xe?, =R\,

F(x;0)=F,(x;{) for xev_.=-7. (17

To do this we use representation (3.6) for F, ,(x;{):
F(x;0) = (X F(x), a=1,2 (3.18)

where F,(x) are Lorentz invariant distributions and
Fi(x) = F,(x) for x*<0. (3.19)

Thus, our problem is reduced to the solved [9] problem of existence of a
scalar function F(x) satisfying

F(x)=F,(x) for xe?,, F(x)=F,(x) for xev.. (3.20)

[Eq. (3.20) defines an invariant distribution in R, = R,\{0}. In view of
Proposition C.1 (Appendix C) it can be continued to a Lorentz invariant
distribution in the whole R,.]

In the case when F; ,(x;{)e S'(R,) and when the strong spectrum
condition

suppF,(p; ) CV;, suppF,(p;Q)C V. (3.21)

is satisfied it is more convenient to use the representation (3.7) for F; ,
and F(x;{):

F(x;0) =00 T(x), a=1,2,
F(x;0) = (id, 0" T(x) <i5%mi>' (3.22)

0x,
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The functions T, and T are determined by (3.22) within the accuracy of
arbitrary polynomials in x* of degree® n — 1. They can be chosen in such
a way that

T(x)=Ty(x) for xev., T(x)=T,yx) for xev_. (3.23)

Using the spectrum condition (3.21) we can get rid of the .polynomial
arbitrariness in the choice of T, and T by requiring fast decrease of these
functions for large space-like x:

T,(x) =h,(x*) for x*<0; h(1)=»0 for t——00. (3.24)

(We remind that h,(7) is an analytic function for T <0 so that the limit in
(3.24) can be understood in the usual sense.) Indeed, Fa(p; O =(pLY T,(p)
and, hence, in view of (3.21) T,(p) can be chosen in such a way that
supp T; ,(p) e V.. For this choice of T, the boundary condition (3.24)
is fulfilled automatically as can be seen from the representation

1% ;
hy(x?) = ﬁ ;[Z K, () —Ax*) g, (A)dA for x*<0, (3.25)

where K, (z) is the first Macdonald function and x>0 (see also [10]).
One can prove that T,(x) goes to zero for x> — —co also, for a weaker
form of the spectrum condition: supp Flgz(p; {) C ¥, under the additional
assumption that F,(p; {) are measures in R, vanishing for p =0 (this last
condition is non-trivial only for n=0).

Now we come to the general existence problem for the invariant
Green function satisfying (3.14). Using (3.9) and arguing in the same way
as above we obtain

G52, W) = ¥, iz ({;;z, w)G,,(x) (326)

where G,(x) are Lorentz invariant scalar distributions. Eq. (3.14) deter-
mine G,,,, within the accuracy of an invariant distribution with support
at the origin. Even if we fix this arbitrariness the distributions G,(x)
still are not uniquely defined by (3.26) (each G, being determined only
up to a polynomial of x, of degree n —1). The choice of G, can be fixed
however if we assume as above (in a theory with spectrum conditions)
that G, goes to zero for large space-like x.

Remark. As well known (see e.g. Streater and Wightman [3], Theo-
rem 4.7) locality (3.15) and spectrum conditions for finite-component
fields imply

F,,(x;z,w) = (=¥ *21F (x;w,z) (3.27)

6 See Appendix C (in particular Eq. (C.12)).
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where f is the number of anticommuting (Fermion) fields and I has the
same meaning as in (3.11). In our case (—1)*! * 3/ = g(— 1) where n, is
the lower limit of the summation in (3.9) and o is the sign in (3.15). Indeed,
using the fact that the scalar distributions F,(x) in the decomposition
(3.9) are even functions of x for x*> <0, we readily get the following
equivalent form of the locality condition (3.15):

F, (x;z,w)=0(—=1)°F,,(x;w,z) for x*<0.

Because of the spectrum conditions both sides can be continued analy-
tically in the forward tube R, +iV,. Going afterwards to the real limit
we obtain (3.27) for any x. Eq. (3.27) allows us to fix the freedom in the
definition of the Green’s function (3.14) in the -origin in such a way that

G, (x;z,w) =0o(=1)"G,,(x;w,2). (3.28)

Using (3.27) and the properties of the polynomials (3.10) one can derive
the following representation for the vacuum expectation value of the
fields (anti-)commutator:

)

X X
lezp(- )
=D P (aix; z, W> D, (x; @, )

where D, are odd Lorentz invariant scalar distributions. In view of
[7] (Section 9) each D, may be written in the form

D,(u; ¢, y) = | D,(u)o,(4; ¢, p)dA (3.30)
0

where D;(x) is the Pauli-Jordan function (i.e. the commutator of a free
real scalar field of mass |/2) u(x)e S(R,) and ¢,(4; ¢, p) € S'(R]). The
existence of a unitary representation U(a, 1) of the group of translations
satisfying (1.1) implies that F(p; z, w) is a measure on R, (or, equivalently,
that g,(2) in (3.30) are measures on R,). We mention that for ¢ =y the
representation (3.29) is a consequence of Lorentz invariance alone
(locality and spectrum conditions are not needed for its derivation,
because in this case (3.27) is a simple consequence of (3.9) and (3.10)).

(3.29)

4. Decomposition of the Two-Point Function with Respect to Spin

4.1. Elementary Invariant Kernels
and Poincaré Decomposition of the Two-Point Function
Now we return to the study of the spectral function (1.3) for arbitrary
fields ¢ and vy transforming according to the irreducible representations
7, and y, (in a theory with a mass gap).

21 Commun math Phys, Vol. 14
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Let $,+ and $,, be subspaces in the Hilbert space of states defined as
the norm closure of the linear hull of vectors of the type

@(u; f)*10> and  y(v;g)I0>, (4.1)

respectively, where u and v vary in S(R,) and fe D_, ,geD_,,. Let §,
be the set of their common elements

D1 =909, . 4.2)

The unitary representation U(a, A) of the quantum mechanical Poincaré
group (satisfying (1.1)) is, in general, reducible in ;. The decomposition
of &, into irreducible invariant subspaces gives rise to a spectral repre-
sentation of the two-point function which is a generalization of the well-
known representation [11].

Let ¢ and y transform under the irreducible representations [k, ¢;]
and [k,, c,] of SL(2, C), respectively (k; — k, being an integer). Then it
can be shown that the representation U(a, 4) is simply reducible in $, so
that we can write’

5= D [ $sdaym) @3)

where k = max(|k,|, |k,|), and o,(m) (s =k, k+ 1, ...) are positive measures
on (0, 00). Each of the irreducible spaces £,,, can be identified with the
space of functions ¥?,,,(p; {) on the hyperboloid H,, = {p|p? =m?, p° > 0}
which are homogeneous polynomials in { € C, of degree 2s. The scalar
product in £, is defined by

(Bl > —f(i ﬁ)zsdb L A T it AP
ms ms/ms 8C-E ac ms P, ms p, W—i-}-—pz .
H
where
p=e(pe . 4.5)

The decomposition (4.3) makes correspond to each € $, a vector
function (depending on the variables m and s) @,,, = E,, P € 9,,, such that

(P|¥) = sgk [ CEps®P|E s P msdog(m). (4.6)

We shall write, in particula;,
EnsIlio(u; £)*10) = @, (p, G us f) 4.7
E, I,y (0;8) 0> = Pyus(p, {5 0, 8) .- (4.8)

7 Concerning the definition of the decomposition of a unitary representation of a
group in a direct integral see [2] (Section 4.3.7).
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where II, is the projection operator on $,. Translation invariance

implies _
¥us(0, (50, 8) = 0(p) 22(p5 (5 8) - (4.10)

The invariant kernels y;(p; {; z) (corresponding to the functionals y;)
are homogeneous distributions of ze C, of indices [k;, ¢;]. Taking into
account that y; is a homogeneous polynomial in { (of degree 2s) we find
that y;# 0 only for s — |k =0, 1, ..., and in that case

13§ 2) = Ay(zpD) MLz T Loz (4.11)

(We mention that (4.11) is a special case of (2.29) or (2.35).)

Inserting (4.9)+(4.11) in the integrand of the scalar product (4.4) we
obtain the contribution from $,,, to the invariant kernel K(p; z, w) (2.29)
of the two-point function (1.3):

a 8 2s _

K,s(p;: z, W)=Am35,f.(p)( EP—C> (zpz)* s~ wpw)2 7!
x (Lez) " 1 (zp0) i (Lewy T (Lpw) 2,

where d},(p) = 0(p,)d(p* — m?). Proceeding in the same way as in the

derivation of (3.11) we obtain the following expression for the elementary
invariant kernel K, (in the case k; = |k,|):

K0 2 W) = By 85(p) (2p2) ™4 (s
X(ZSW)k1+k2(Z )kl kzP(k1+kz k1~—k2)( )

(4.12)

4.13)

where v is given by (2.30), P*#(v) are the Jacobi polynomials and
B =m*CTEI25) (s + ky)! (s — ky)! Ay
The invariant kernel (2.29) can be expanded in terms of the elementary
kernels (4.13):
K(p;z,w) = Z:kIKms(p;Z, w) doy(m) . (4.14)
This expansion corresponds to the following decomposition of f(t;v)
(see (2.29) and (2.37))

f(zv) ;f s Pe,, —,(v) (4.15)
where
k = max(|k,], k5 4.16)

{f,(x)} is a sequence of complex valued measures and P;,(v) are the
generalized spherical functions [12] related to the Jacobi polynomials by

1/ G=R + R [ 1=y D /4y \FEeD
() =" ( > PIHD(y).
(s—DIs+D! \ 2 2 @17

21*
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[In contradistinction to (4.13) the representation (4.15) is valid for any
ki, k, (not only for k; = |k,|). As shown in Vilenkin [12], Section 3.3.6,
Py, -, depend only on |k, | and |k_].]

We prove in Appendix E that each distribution f(v)e X;,, (see
Section 2.3) can be expanded in a series of the type (4.15) with a sequence
of coefficients f; of polynomial growth (with respect to s). In our case
f(@;v)e(D(R])® X, ) depends also on t and the expansion (4.15)
makes sense if and only if the sequence of distributions f,(z) e D’(R}) is
polynomially bounded in s (i.e. if

Cyw) = (fs(x)ulx)) s=kk+1,...

is polynomially bounded numerical sequence (in s) for each test function
ue D(RY)).

4.2. Remark on the Positive-Definiteness Condition

The positive-definiteness of the metric in the Hilbert space imposes
the following condition on the spectral function for two Hermitian
conjugate fields ¢ and ¢* (for which [k, c,]1=[—k,,c,] = [k, c]):

(Kpge(p3 2, W), F(p; 2) F(p; w)) 2 0 (4.18)

for any F € S(R,)® D(C,). It turns out that the decomposition (4.14) and
(4.15) is a decomposition into elementary positive kernels so that con-
dition (4.18) is equivalent to the positivity of the measures f(t) (for
ky = —k, =k). This is a consequence of our derivation of (4.14). Indeed,
the scalar product (4.4) is explicitly positive-definite and hence (4.12)
is a positive kernel (for [ky,c,]=[—k,,c,]) provided that A4,,>0

which leads to
Js(1)=0. (4.19)

Another proof of the equivalence between (4.18) and (4.19) can be
worked out using the general methods of decomposition of invariant
positive Hermitian functionals on D(¥t) where 9t is finite dimensional
homogeneous space (see [137]). In our case such a positive Hermitian
functional is the two-point function in coordinate space

W(x,z|y, w) = F,(x—y;z,w). (4.20)

The role of the homogeneous space I (with respect to the group of
Poincaré) plays the direct product R, x C,. We are assuming in addition
that F is a tempered distribution with respect to its first argument in
order to be able to perform Fourier transformation (without intro-
ducing analytic functionals). If we restrict ourselves to the p-space only
(as we actually did in Sections 2 and 4.1) then the whole treatment can
be generalized to non-tempered spectral functions in momentum space.
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Using our Remark 1 at the end of Section 2 we can give a purely
group theoretical interpretation of the decomposition (2.33). Indeed, in
terms of the distribution T(z;{)e D'(R x SU(2)) defined by (2.33) and
(2.34) we can rewrite (4.15) in the form

T(z;0) = Zkfs(f)Disi(f) (4.21)
where D&, ({) are the matrix elements of the representation (s) of SU(2)
in the canonical basis (see [ 12] and Appendix B in [1]). By using standard
methods of harmonic analysis on S U(2) and the argument in Appendix E
one can obtain a generalization of Theorem E.1 to the case of arbitrary
distributions T() e D'[SU(2)] (not necessarily of the type (4.21)).

We mention finally that (4.15) implies the following extremal property
of the generalized spherical functions P§.(v) (or of the corresponding
Jacobi polynomials P{:2"(v) see (4.17)). Take for simplicity the special
case when K in (4.18) is a continuous function of p and fix the vector p
along the time axis. The preceding discussion implies the following
result. Let C; be the convex cone of generalized functions f(v)e X ,,
satisfying the positivity condition

§5 @2 f(I29]° — [zeW]) F(2) F(w) d*zd*w 2 0. (4.22)

Then any extreme vector® of this cone is proportional (with a positive
factor of proportionality) to one of the generalized spherical function
P (v) (s = |k|). In the special case k=0, when P§(v) =P 9 (v) = Py(v)
are the Legendre polynomials, this result reduces to a known property
of the zonal harmonics (see e.g. [14]).

Acknowledgement. The second named author (I. T. T.) would like to thank Dr.
C. Kaysen for his hospitality at the Institute for Advanced Study in Princeton where the
present paper was completed.

Appendix A. Isomorphism between D, ~
and the Subspace of Homogeneous Distributions of Index —y of D'(C,)

A.1. Synopsis on the Decription of the Irreducible Representations
of SL(2, C) in Terms of Homogeneous Functions ([2])

Let D, be the space of single-valued infinitely differentiable functions
of z=(zy, z,) € C, = C,\{0} homogeneous of index y = [k, c]:

J(Ve)=e""f(2) for ¢>0,

fe%z)=e**f(z) for o real.

8 We recall that a point x of a convex set C is called an extreme point of C if it is not

an internal point of any segment lying in C. A vector x of a convex cone K is called extreme

(or non-decomposable) in K if it defines an extreme point in the intersection of K with a
hyperplane which does not cross the origin.

(A.1)
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The condition of single-valuedness implies that k is integer or half-

integer; c¢ is in general an arbitrary complex number.
We introduce topology in ©, by the denumerable set of norms

o o 2 0 1 o 2
(621> <522> (azl> (ag) Sz,
(A2

2> = 2,2, + 2,2, .

A1, = su

where

ma
|zl = 1 f(lazl"'lﬁ D=n

(With this topology D, is a complete nuclear space.)
The representation y of SL(2, C) is defined in D, by

[T(A4) 1) =f(A2) = f(z4). (A.3)

This representation is irreducible in D, if and only if the pair [k, c] does
not satisfy one of the following relations:

c—lk=12, ..., (A4a)
—c—lk=1,2,... . (A4b)

In the exceptional cases (A.4) the representation y has a generalized
triangular form: it is reducible but not fully reducible (i.e. decomposable)
[2]. In the case (A.4a) the space D, contains the finite-dimensional
invariant subspace E, of homogeneous polynomials of z and z. For all
different from (A.4) the representations y and —y are equivalent [2].

A.2. The Mapping of D(C,) on D, and its Adjoint

We define the continuous linear mapping I, from the Schwartz space
of test functions F e D(C,) onto D RENSE

f(@)=(F)(z)=14de j daF()/ger*z)g e ik, (A.5)
0 0
To prove that the image of D(C,)under the mapping (A.5) is the whole
space D, we choose some h(g) € D(0, c0) for which
©h
271]&419-—-1 (A.6)
o ¢
and for any given fe D, put

= f(2) h(|z]?). (A.7)

With such F Eq. (A.5) is verified immediately. (It is clear that the mapping
I, is not one-to-one.)
Now we define the adjoint mapping ¢ —® = L}¢ from D) into

7 2 b
D(C) by (D, F) = (o, LF) (FeD(C,)). (A.8)
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It is easily checked that the @ defined by (A.8) belongs to the space d_, of
homogeneous distributions of index of homogeneity —y=[—k, —c]:
for a=)/ge'*

Plaz) =9 e ™ P(z). (A9)

(P(az), F(z)) = % <d5(z), F<%>> = Q—12 <(p, IlF(é—))

e—Ma e ik
=W(¢,11F(2))=@ Le (@, F).

Indeed,

(A.10)

We shall prove that in fact the mapping L} is an isomorphism between
D), and d_,. We have seen already that for each ¢ e D) there is
ab=1I}ped_,. Now we shall need the following lemma.

Lemma A.1. Each distribution ® € D’(D~2) satisfying the homogeneity
condition (A.9) vanishes on the subspace

&,={F(z)e D(C,)|I,F(z) = 0} (A1)
(i.e. on the kernel of the mapping (A.5)).

Proof °. In view of (A.9) for any two test functions F(z), G(z) € D(C,)
the following identity holds:

0! -<<15(z), F(z)- G(%)) [=0(P(az), F(az) G(2))] (A.12)

=0 ‘e *(d(2), F(az) G(2)), (a=]/eef).

We integrate both sides of (A.12) with |dadal =3doda. Then the left-
hand side can be interpreted as the value of the distribution H(z; a)

=P(z) x %ED'(CZ x C,) applied to the test function F(z) G % ; an

analogous meaning can be given also to the right-hand side. In view of
the commutativity of the direct product of distributions we obtain

(«p(z), F(Z)J G <§> ‘21—3 doc> = (®(2), G(2) (I F) (2)) (A.13)

° The argument goes similarly to Araki’s proof of Lemma 2 of [15] (p.272). This
lemma of Araki may appear useful for the study of Lorentz invariant distributions of
n 4-vectors. Therefore it would be of interest to refine its original proof: Araki assumed
that for any f(x)e D(R,,) the function f(x) = {f(Ax)sA obtained from f by integrating
over the Lorentz group is a multiplicator in D(R,,). One can only clame that fx) is a
multiplicator in D(R,,\{0}); in general f{x) may be singular at x = 0. Hence, the possibility
of going to the limit R— oo in the identity

(F, ) f(Ax)g(x)dA):(F,lj f(x)g(A"‘x)dA)

4]l <R |41l <R

should be studied more carefully.
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where L F is given by (A.5). Now, putting G(z) = h()z|*) where h(g) satisfies
(A.6), we obtain (®, F) =0 if I,F =0 which proves our statement.

It follows from this lemma that for each @ ed_, there exists a linear
functional ¢ on D, such that

(o, f)=(d,F) for f=LF (A.14)

(Lemma A.1 shows that the definition (A.14) for (¢, ) does not depend
on the choice of the solution F of the equation f = [ F; the functional ¢ is
defined on the whole D, since the image of D(C,) under I, coincides
with D, .) The continuity of ¢ is a consequence of some general theorems.
It is evident also from the formula:

(¢, /)= (@(2), h(lzl) f(2)) . (A.15)
where h(g) is chosen as in (A.6). Hence, ¢ € D).
The representation (A.3) of SL(2, C) in D, generates a representation
T*(4) in D), by
(Ty(AD o, ) =(@. T,(A7Y) f). (A.16)
The isomorphism I between D) and d_, permits us to define the
representation of SL(2, C) also in d_, by putting
DD, =0T (Ao, ¢=(IH""D. (A.17)
Using (A.8) and (A.16) we obtain
((DA(Z)a F(Z)) = (T)/((A) ?, I)(F) = ((pa Tx(A_l)IXF)
= (¢, LIF(zA™1)]) = (@(2), F(zA™!)) = (P(zA4), F(2)),
1e. @ 4(z) = P(zA).
Thus, the representation (A.17) of SL(2, C) in d_, is an extension of
the representation 7_, defined by (A.3) in D_,.

Appendix B. Regularity of Mapping O, — Q, (Proof of Lemma 2.1)

It is rather complicated to check directly that the change of variables
(2.10) (2.8) is a regular one. In order to simplify the proof we shall perform
it in several steps. We shall restrict ourselves to the discussion of the first
case (i.e. of the mapping of O, =V, x C, x C; xC,(w, +0) on Q).

Our first substitution is

21 21
~ 5 p
(p;z;w)—><p;(=zl+pTzz, zz;n=w1+?l—w2,wz>.

It is one-to-one, infinitely differentiable mapping of O; onto itself with
Jacobian equal to 1.
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Next we put
(D; 8 za5m, Wz)_’(ﬁ§ s = ]/;(CW?. —Nz), (= P+ —1 p T ZaWas 1, W2>
where 7 =detp = p%. The Jacobian for this (one-to-one, C*) change of
variables is
D(s,5:t,0) | Ds.o) [P
D Tiz7)  |DCz)|

Further, using that w, 0 in O, we put

2
(p g+ —= o w2w2> = p?(wpw)? >0.

wy, =g0e? (>0, —0<p<o0).

Thus we establish an isomorphism between D'(0,) (3 K(p; z; w)) and the
space D'(V, x C, x Cy xR} x Ry) of distributions K(p;s, t;n; 0, @) peri-
odic of period 27 with respect to ¢ (cf. [16]).

Finally, we make one more (regular) change of variables

(P p*2 p*his s, @)= (T pth pPi s s, £ )

where v = p''nif + —1 0*(= wpw). This way we come to the set D'(Q,)
p

and this completes the proof of Lemma 2.1.

Appendix C. General Form of Covariant Tensor-Valued Distributions
(Proof of Theorem 3.1)

The proof of Theorem 3.1 is based on the following two lemmas.

Lemma C.1. Let F(x;{) satisfy the conditions a)—c) of Section3.1.
Then there exists a (unique for the non-trivial case i =j) pair of invariant
distributions f, (t)e D'(R,) which coincide for 1 <0 and are related to
F(x;{) by

F(x;0) = (x> fL(x)d;; for xeV (C.1)

where the domains V", are determined in (3.17).

Proof. We shall limit ourselves to the consideration of F(x;{) in
7",. Because of the invariance condition (3.3) it is sufficient to prove
(C.1) in the domain

X, ={xeR,|x">0 p=0,1,2,3}, (C2)

since
vV, = U AX, . (C.3)

AeLﬁ
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F(x; {) being a polynomial in { and { is uniquely determined as a function
of { by its values in the domain

Z,={{eC,){0,[>0, u=0,1,2,3}. (C4)

In analogy with the reasoning in Section 2.2 we substitute (for fixed
{ e Z,) the variables x'! and x?2 by t = det% and u = {X{. This change
of variables is legitimate in the domain {x e X, { € Z, } because it is one-

to-one infinitely differentiable, its Jacobian being
D(u, 1) - -
W = XOCO':;C + X3CO'OC >0.

Substituting F(x;{) = G(t,u; x*2;{) in the differential equations (3.4),
(3.5) we find

22 0G 0G 22 G = 0G
- —-20, - —_20,
X dx 12 Cl CZ X 6)621 Cl 6{2
0G 0G = 0G
11 11 _ = =0’
ox a.21 CZ Cl X ax12 CZ acl s
b2 0G o aG _ 96, 9G _ (©3)
oxt? dx? ! acl 2 acz ’
0G G » =
21 12 _ T 0.
axA T axi2 - ag +ag acz

We consider (C.5) as a linear system of six homogeneous equations
0G  0G 0G 0G

ox'?’ ox* oL, Ly’

with respect to the six unknown variables

06 0G
oL ot

(XZZCZZZ “x11C1 Cl)(ig: —(XOC%E"‘ X3CUOZ)C>’EE

. Its determinant

is negative m the domain (C.2), (C.4). Hence the derivatives of G with
respect to x'*, x?!,{ and { vanish in this domain. Therefore in a suffi-
ciently small nelghbourhood of any point (x©,(®)e X, xZ, there
exists a distribution g®(r,u) such that G(r,u;x'?;{)=g9(r,u) or
equivalently

F(x; () =g (% (%0). (C.6)

On the other hand the group SL(2,C) of transformations (X, ()
—(AXA* (A7) acts transitively on the set {(x;{)|x*=1,(X{=u>0}
(see Appendix D) and hence (3.3) and (C.6) imply that g'(z, u) does not
depend on the choice of the point (x©, {'?). Thus there exists a g(t, u)
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€ D'(R,; x R{), such that
F(x,0)=g(x*(X]). (C.7)

The homogeneity condition gives F(x; A{) = A2'71% F(x;{) for any
complex A. Therefore g(t, u) =0 for i +;j and

g(t,u)=u*f (r) for i=j.

The validity of Eq.(C.1) in ¥ n¥_ shows that f, (t)= f_(z) for t <O.
This completes the proof of Lemma C.1.
As a consequence we obtain for x %0

F(x;0) = (XY F(x)dy (C.8)

where F(x) e D'(R,) = D'(R,\{0}) and F(x) = f, (x?) for xe 73"
Next we study invariant functions F(x; {) with support in the origin.

Lemma C.2. If F(x;{) satisfies the conditions of Theorem 3.1 and
supp F(x; )= {x =0} then
N
F(x; )= (DY Y. ¢ '6(x)dy. (C9)
1=2j
Proof. Since F has a compact support it belongs to S'(R,) and its
Fourier transform F(p;{) is a polynomial both in p and ({, {). From the
invariance condition (or Lemma C.1) we find easily that

N
F(p; () = (pD)* ZO a(p?)o;; . (C.10)
k=
Using the identities
3,0 ¢pD =0, (9,Ip*=2¢HT, (C.11)
we find
€3,0r (@*)+=0 for n>k, (C.12)
~ = k —
0,0 (*) = <n> (B0 (p*y~* for n<k, (C.13)
so that
~Z\n _ k!n! —n.(yA A\n(.2\k+n
CpOr (™) = 1k 27" (Lo, 0 (po)y .
Hence for i=j=n/2

N
F(p; ) = (0,00 Y. Cp®F
k=n
which is equivalent to (C.9).
The representation (3.6) is a simple consequence of Lemma C.1 (or

Eq.(C.8)) combined with the following proposition C.1 and with
Lemma C.2.
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Proposition C.1. (Garding and Roos, see [T] Section 8, in particular
the proof of Theorem8.1.) Each scalar Lorentz invariant distribution
F(x)e D'(R,\{0}) can be continued to a Lorentz invariant distribution in
D'(Ry).

For F(x;{)eS'(R,) representation (3.7) is trivially obtained by
applying (3.6) to the Fourier transform of F(x; (). In the general case (for
F(x;{)e D'(R,)) let f.(r)e D'(R,) be the distributions defined by (C.1).
Then there exists another pair of distributions k. (7)€ D'(R,) which
coincide for T <0 and satisfy the equation ((3,0)" hy (x?) = ((XD)" [+ (x*)
for x# 0, or in view of (C.11) (d/dt)"h 4+(tr)=2""f+(z). This proves (3.7)
for x +0. The validity of this representation in the whole R, is then a
consequence of Proposition C.1 and Lemma C.2.

The freedom in the choice of F(x) and T(x) in (3.6) and (3.7) is fixed
by (C.12) and (C.13).

Appendix D. SL(2, C) Orbits in R, x C,

We will study in this appendix the structure of the orbits in the set
{(p,2)|pe Ry (=R, \{0}),ze C,} generated by the SL(2,C) transfor-
mations

(P, z) > (ApA*, zA™Y). (D.1)

We shall see in particular that if p?> <0 some “singular” orbits appear at
the surface zpz =0. These additional orbits do not play any role in the
study of the covariant two-point function for finite-component fields
which is a polynomial in z. Their existence shows however that the strong
form of the spectrum condition is an essential assumption for our
discussion of the general case (Section 2 and Appendix B). It may serve
also as a preliminary step to the study of the general form of an invariant
distribution of D'(R, % C,). [Similarly, the SL(2, C) orbits in R, x C, x C 3
are of interest for the study of invariant distributions of D' (R, x C, x C,).]

We say that a set of invariant functions {¢@;(p,2)}j=1,...,N is
complete for some values a; of @; if the invariant surface

M(ay, ..., ay) = {(p,2) e Ry x Cy | @s(p, 2) = a5, j =1,...,N} (D.2)

is a homogeneous space for the group of transformations (D.1), or, in
other words, if SL(2, C) acts transitively on I, i.e. if for any (p, z) € N
and for an arbitrary fixed (¢, {) € 9 there exists an 4 € SL(2, C) such that

(P, 2) = (4gA*, (A7), (D.3)

Each invariant function defined on a submanifold of R, xC, is a
function of the complete set of invariants on this submanifold.
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In what follows we shall find a complete set of invariants on any
invariant surface defined by the two known invariants

¢1(P,z) =detp=p*> and ¢,(p,z)=zpZ. (D.4)

Proposition D.1. The set of invariants (D.4) is complete if and only
if a, = (p2(ﬁa Z) * 0.

Proof. Let ('l ={ql=a,+0. Then there exists a transformation
Be SL(2,C) from the stability subgroup of § (i.e. satisfying BGjB* =§)
such that {={'B. This transformation can be constructed explicitly
if we take, e.g., the following special values of § and {:

~ 1o )l (1
q'=sgnaz[/671<0 1) (for g7 =a,>0) =]/ (0>;

ay

. 10 1

qu = sgna, (0 0> (for 51121 =a, =0) (= % |az|(0>§ (D.5)
. 10 Nyl (1

qu =sgna, |/ —a, (0 _ 1) (for gfy=a,<0) (= '/ 2] <0>

—a,

The stability subgroup is SU(2) for g, E(2) <i.e. the set of matrices B

of the form B = (8 ¢

i | Where o is real and ¢ is any complex number)
e

for gy, and SU(1, 1) for §yy. Since det§ = detp = a, and zpz = (G = a,
there exists a Lorentz transformation connecting p and ¢: p = DGD*
(DeSL(2, C)). Indeed, for a; <0 that is a consequence just of the equality
p’> =¢*>=a,(<0), and for a; =20 we have to use in addition that
sgnp® = sgnq® = sgna,. Substituting p in the equality zpz={Gl by
DGD* we obtain

zDGzD =({4l=a,. (D.6)

Applying the statement in the beginning of the proof to (D.6) (by putting
{" = zD) we find that there exists a Be SL(2, C) such that BjB* = § and
{=zDB. Now it is clear that the transformation 4 =DBeSL(2,C)
satisfies (D.3) and, hence, the set Mi(a,, a,(£0)) = {(p, z2) e R, x C, | ;= a;,
j=1,2} is a homogeneous space.

On the other hand if a, = 0 (which is possible only for p? < 0 because

¢ (2)=z0,z (D.7)

is a light-like vector) the invariants (D.4) do not form a complete set. The
above proof does not work in that case because the group which lives the
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equation
(qf=0 (D)

(with fixed §) invariant is larger than the corresponding stability group of
§. (It consists of all V for which V§V* = 1§ where 4 = A(V) is an arbitrary
real number.) However, it is easy to find an additional invariant function
in this singular case which completes the set of invariants (D.4). The
explicit expression for this additional invariant depends on the type of
the vector p.

For p? =a, =0, p and &(z) (D.7) are two real orthogonal light-like
vectors, and therefore, they are collinear. The factor of proportionality is
the third invariant we are looking for in this case:

1 - 1 _
,Z) = —Z0gZ = -+ = —Z203Z. D.9
¢3(p, 2) Do 0 Ps 3 (D.9)

For p? = a; <0 the two three-dimensional zero-length Lorentz vectors®

- (D.10)

zptfz and —a ze" T}

[transforming under the representation [ —1,2] ((0, 1) in the notation
of Section 3.1) of SL(2, C)] are collinear with a phase factor of propor-
tionality. To see this we mention that the equation zpz =0 implies

zp=C(p,z)ze" !, (D.11)

which makes evident the collinearity of the vectors (D.10).
To evaluate C we take the complex conjugate of (D.11) and multiply
by ¢ from the right. Using the hermiticity of p and (4.5) we find

zep=C(p, 2)z. (D.12)

Multiplying (D.11) by p (see (4.5)) from the right and using (D.12) and the
identity pp=a, 1 we obtain

ICp, 2)* = —a

(in particular we see that C = 0 for light-like p so that the 3-vectors (D.10)
vanish in that case). Thus, we can write down the third invariant for
al < 0, az = 0:
V—azeivrE
Ps(pz)= LD TE _gin j_123. (D.13)
ZpTiz
It is not difficult to check that the set of invariants {¢,, @5} given by
(D.4) and (D.9) (resp. (D.13)) is complete on the surface ¢, =0.
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Appendix E. Expansion of Generalized Functions of 2'([—1,1])
in Jacobi Polynomials

We define 2([—1,1]) = 2 as the space of infinitely differentiable
functions v(v) on the closed interval [ —1, 1] with topology defined by
the countable set of semi-norms (cf. (2.25))

dv(v)
dv*

a(v)= su , k=0,1,.... (E.1)

—1svs1

(For ay(v) we shall use also the notation |v].)
Let {P*P(v)}*, be the set of Jacobi polynomials [17] (with
a, > —1) satisfying

1
1=y ’
(PP, Peby = J (——2 ) ( = v) PEP(3) PSP () dy = by,
4 ~ (E.2)

<h B To+n+1)T(B+n+1)
" onlQnta+p+1) o+ p+n+1) )

(We are actually interested only in the case when o and f§ are non-negative
integers.)
We shall prove the following theorem.

Theorem E.1. Each generalized function g(v)e &' can be expanded in
a series

2 L—vY/1+vY
— Peh(y) =
g0 ngogn< 5 )( 5 ) ()

convergent with respect to the topology of &'. Here t,(v) is a functional on
9 defined by the integral

1
(b, 0) = f (1;”7 (%)ﬁ PED()o(v)dy
1

{g,} is a sequence of complex numbers of (at most) power growth:

Ms

8nta(V) (E.3)

0

n

g < AL +n)ff, n=0,1,2, ... (4=A4(g)q=q(). (E4)

Conversely, each sequence {g,} satisfying (E.4) defines through (E.3) a
continuous functional on 9.

Proof. Let ve & and let
En(v) = lll;lf”l)(V) - Pn(v)“5 n= 0, 1, cee (ES)
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where the infimum is taken over all polynomials of power p < n. The
classical Jackson theorem (see [18] or [19], Section 5.1.5) implies

sup[WME (0] Soa,,,0)<o0, r=01,...; n>r (E6)
n>r
where o, are some positive constants (depending only on r).
We shall show that the set of semi-norms

bo(v) = ao(v) =llvll;  b,(v) = sup[WE, )], r=12.. (ET)

is equivalent to the set (E.1). It is readily seen from (E.6) that the semi-
norms (E.7) are majorized by the semi-norms (E.1). To see that the
inverse is also true it is sufficient to make use of the following theorem
of Dzjadyk !° ([20], Theorem 3; see also [19], Section 6.2.3).

Let the function v(v) defined on [ — 1, 1] be such that for some r, N, A
(r, N=0,1,...,0<iA<1) and for each n> N there exists a polynomial
P,(v) of degree p < n such that

1 r+a 1
[v()—P,(v)] = M(v) [(— l—vz) + W] (E.8)

n

where M (v) is a positive constant (which does not depend on n). Then v(v)
has rth derivative and

sup () = a,(v) £ B,y lloll + p M (S) (E.9)

Jv| =1 -

where f and y are suitable constants.
Let v be a test function from 2 and r be a natural number (r = 1);
then, in view of (E.7)

E,(w)<n 2" 'b,,,(v) forall n>2r+1.

Let P,(v) be the polynomial (of degree p < n) of least uniform deviation
from v(v) on [ —1, 1]; then

1 — 2 \r+3 1
[U(V)_Pn(")léEn(U)ébmH(U)':( —‘L> +W:l

n

This means that condition (E.8) of Dzjadyk theorem is verified (with
N =2r+1, A=%) and hence in view of (E.9)

a,(v) = B vl +9,b5, 41 (v) .

19 We have reformulated Dzjadyk’s theorem in a form convenient for our applications.
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Therefore, the sets of semi-norms (E.1) and (E.7) are equivalent. Let
v, be the Fourier coefficients of the function v(v)e 2:

0, = (POP b = f (1;V>a<¥>ﬂpy’ﬁ>(v)u(v)dv. (E.10)
_1 N

We shall need the following estimate for the Jacobi polynomials ([17])
PP <A +n)? for <1 (E.11)

where A and g are constants (a similar estimate without the factor h; ' in
the left-hand side is implied by (E.11)). Taking into account that ¢,(v)
in (E.3) is orthogonal to any polynomial of degree p <n—1 and using
(E.11) we find the following upper bound for |v,|:

ool = #apll0ll 5
vl = KPP, 0 — P, 1)l Snyp sup [PEPO)E, 1) (E12)
ES
SAA+nTE, (v)
(here P,_(v) is a polynomial of degree p <n—1 of least uniform devia-
tion from v(v) on [—1,17]). From (E.12) and (E.6) it follows that the

coefficients v, are decreasing (in absolute value) faster than any negative
power of n. Hence, the series

Y hi o PeR) (E.13)
1=0
is uniformly convergent to some continuous function v,(v); the com-

pleteness of the Jacobi polynomials [17] implies that v, = v. This allows
us to obtain an inequality in the inverse direction to (E.12):

E,0 = |v0m)— Y b o P*P®y)
o . (E.14)
< Y E'RIPEPMISA Y ol (L+ D
l=n+1 I=n+1
Analogously, ©
bo@ =AY [vf (L+1)7. (E.15)
1=0

From (E.12), (E.14), and (E.15) one concludes that the set of semi-

norms
c,@)=sup[(1+nyv,], r=0,1,... (E.16)
nz0

is equivalent to the set (E.7) and, consequently, also to the set (E.1). This
implies that each (continuous) linear functional on 2 has the form

@0= 3 ao (E17)

22 Commun math. Phys, Vol. 14
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where g, is a polynomially bounded sequence, and conversely, each
series of the type (E.17) defines together with (E.10) a continuous linear
functional on 2. This completes the proof of Theorem E.1.

—_
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