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Abstract. The spectral representation of the two-point function for arbitrary fields
proposed recently [1] is rigorously proved and analyzed. The problem is treated in momen-
tum space where the covariant structure is simpler because of the spectrum conditions.
For finite-component fields the explicit "matrix" structure is found in coordinate space too
and is applied to the definition of time-ordered Green functions for arbitrary spin. The
decomposition of the two-point function into kernels of definite spin is carried out in the
general case, a necessary and sufficient condition for the growth of the coefficients in this
decomposition being given. The positive-definiteness condition (in the case of Hermitian
conjugate fields) is fulfilled automatically by the elementary kernels.

The formalism of homogeneous distributions in two dimensional complex domain
[2] is used throughout the paper.
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1. Introduction

A representation was proposed recently [1] for the invariant two-
point function in a theory involving infinite-component fields. The
present paper is devoted to a rigorous derivation and further analysis of
this representation.

We start with the precise formulation of the problem and give a
summary of results.

Let τ be a linear representation A -> T(A) of the quantum mechanical
Lorentz group SL(2, C) where T(A) are (continuous) operators in a
topological vector space £). Let further S(R4) be the Schwartz space of
infinitely smooth fast decreasing functions in four dimensions. A rela-
tivistic quantized field ψ(u;f)(ue S(R4\feT)) is defined as a bilinear
weakly continuous mapping of S(.R4) x D into the set of (unbounded)
operators with a common invariant dense domain Ω in the Hubert space
§ of state vectors (cf. [3]).

We assume that a unitary representation U(a, A) of the covering
of the Poincar̂ e group ISL(2, C) is acting in ί>, satisfying the usual
requirements [3] (including the existence and uniqueness of the in-
variant vacuum state |0) e Ω). The transformation law for the field is
given by

U(a, A) ψ(u;f) U~Ha, A) = ψ{u{a,A); T(A)f) (1.1)

where u{aA}(x) = u(A'1(x — a)), and Λ = Λ(A) is the proper Lorentz
transformation defined by

AσμA* - σvA
vμ (1.2)

(σp j = 1, 2, 3 are the Pauli matrices, σ0 is the 2 x 2 unit matrix).
In view of the translation invariance the two-point function (i.e. the

vacuum expectation value of the product of two fields) can be written
in the form

(1.3)

The tempered distribution Kφxp is called spectral function. To avoid
unnecessary complications we assume the strong form of spectrum
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condition with a mass gap [3] ι) which implies that

suppK(p;f;g)cV+={p\p°>\p\}.

We shall use here the notation 2 χ = [/c, c] for the irreducible represen-
tations of SL(2, C) where k is an integer or half-integer and c is in general
an arbitrary complex number (for the principal series of unitary represen-
tations c is pure imaginary [4]).

Let the fields φ(x;f) and ψ(x;g) transform under the irreducible
representations χx and χ2 of SL(2, C), respectively; then we suppose that
feT)_Xl and g e X)_Z2 transform respectively under T_ χ i and T_X2. Our
main result is the derivation of the general form of the spectral function
K(u;f; g) considered as a trilinear functional o n 3 D(V+) xX>_XίxT)_X2

satisfying the invariance condition

K(u{OιΛ); T_Xι(A)f; T_X2(A)g) = K(u;f; g). (1.4)

The solution of this problem is based on the isomorphism (established
in Appendix A) between the space T>Lχ of linear functionals on D _ χ and
the space dχ of homogeneous distributions of index χ in the two-dimen-
sional complex domain C 2 = C2\{0}. This isomorphism considerably
simplifies the surch of polylinear Lorentz-invariant forms by means
of distribution technique. The general invariant kernel K(p;z;w)
e D'(V+ x C 2 x C2) satisfying conditions (2.2), (2.3) is given by Theorem 2.2.
It is non vanishin only for integer /q — k2 and is characterized by a
generalized function g(τ, v)e &>'(R\ x [ — 1,1]) which depends on two
invariants

τ = p 2 a n d v =ι*g*ιa-pwf8 =f ° \P=fA. (i.5)
zpz wpw \ \ — 1 Oy J

[Here R^ is the (open) positive semi-axis: 0 < τ < o o . ]
The case of finite-component fields is studied in more detail in

Section 3. The analysis of Methee [6, 7] is extended to the case of tensor

1 If the spectrum condition is not fulfilled then one should expect a more complicated
structure for the functional K(u;f; g). This is suggested in particular by the structure of the
SL(2, C) orbits in the space of variables of the kernel K{p; z, w) (see Appendix D).

2 The pair χ = (nli n2) used in [2] is related to [/c, c] by nγ = c + k, n2 = c — k. We shall
realize Tχ as a set of argument transformations in the space T)χ of infinitely differentiable
homogeneous functions of two complex variables (see Appendix A). We shall make use of
the fact that the representation T'χ (acting in T)'χ) is an extension of Tlχ.T'χD TLχ (see [2]).

3 From the assumed temperateness of the fields it follows that the functional K{u;f; g)
can be extended to the larger space S(V+) x Φ _ χ i x ̂ -X2 Moreover, translation invariance
implies that it is a measure with respect to p. However, no additional difficulties appear
when treating the problem in the more general formulation given in the text which in-
corporates for instance the Jaffe fields [5].
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Lorentz-covariant distributions F(x). Such distributions are represented
as finite sums of covariant polynomials of x (or d/d x) multiplied by Lί-
invariant scalar distributions (in analogy with the case of analytic tensor
functions treated in [8], Section 4). This result allows us to reduce the
problem of defining the Green tensor functions in terms of Wightman
functions to the corresponding solved problem [9] for scalar fields.

Section 4 is devoted to decomposition of the two-point function with
respect to spin. The problem is reduced to the expansion of a generalized
function in the interval [ — 1,1] in Jacobi polynomials. It is found
(Appendix E) that a necessary and sufficient condition for such an ex-
pansion to make sense is the polynomial boundedness of the coefficients
(with respect to their index). For a pair of Hermitian conjugate fields the
kernels Ks of definite spin are positive-definite.

2. General Form of the Invariant Two-Point Function
in Momentum Space

2.1. Differential Form of the Invarίance Condition

Because of the isomorphism between the space Ί)Lχ (dual to D_χ)
and the space dχ of homogeneous distributions on D(C2) (see Appen-
dix A) the set of (continuous) trilinear functionals K(u;f,g) on D(V+)
x £ ) _ X l x £ ) _ χ 2 is isomorphic to the set of homogeneous trilinear func-
tionals K(u; F, G) on D(V+) x D(C2) x D(C2) of indices of homogeneity
Xι,χ2. In accordance with Schwartz nuclear theorem we can describe
the functional K(u; F9 G) by its kernel

K(p;z,w)eD'(V+xC2xC2) (2.1)

which satisfies the homogeneity condition

,*) (2.2)

(Qj > 0, Xj = [kj, Cj]% and is Lorentz invariant.

K(Λ(A)p; zA~\ wA~ι) = K(p; z, w) (2.3)

where AeSL(2, C),zA ΞΞMZ, VI is the transposed of A, and A(A) is
defined by (1.2).

In order to rewrite (2.3) in an infinitesimal form it is convenient to
introduce instead of the four vector p the Hermitian matrix p (cf. (1.5)):
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Eq. (1.2) implies that

Λ(Ά)p = ApA* . (2.5)

In terms of p the forward cone V+ can be defined by V+ = {p\p11 >0,
det p = p2 >0}. We parametrize the complex matrix

in the neighborhood of the unit element A = I of SL(2, C) by the para-
meters αj, a2 and a2. Differentiating (2.3) with respect to these para-
meters and their complex conjugates in the point A = I we obtain
6 differential equations for K(p; z, w). We shall write down only four of
them (those obtained by differentiation with respect to a2, a2, a\, a2\
because they already contain complete information about the Lorentz
in variance of K:

. δ d d \

dpbl b dza " dwj ' ' ' b-ά~a' (Z-b)

dpcb - ". dzfi " dwά

pca

 r-zi wb K = 0, ά = ί,2, b = 3-ά (2.7)

(summation is to be carried out over the repeated index c (or c) from
1 to 2).

2.2. Any Invariant Distribution of D'(V+ x C2 x C2)
is a "Function" of the Algebraic Invariants

We shall find first the general solution of (2.6), (2.7) without using the
homogeneity condition. Thus, the result will be valid also for a class of
reducible representations of SL(2, C).

We choose the following set of independent algebraic invariants of
the transformation group (p, z, w)-+(ApA*, zA~γ, wA'1):

τ = p2 = detp, v = wpw,

s = ]/τ zεw = ]/p2~(z1w2 — z2w1), t — zpw .

The image of the domain V+ x C2 x C2 of the variables (p, z, w) in the
set of invariants (τ, υ, s, t) is K£ x R± x C2. This is a consequence of the
positive definiteness of p and of the identity

u = zpz = j-(\s\2 + \t\2). (2.9)

In order to introduce a regular change of variables in K(p, z, w) we
consider the set V+ x C2 x C2 as the union of the overlapping domains
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Ou in which w2 φ θ and 0 2 , in which w1 ΦO. Let 3χ be the mapping

( P \
(β,z,w)-^(τ;v;s9t;λί),λ1 = lp1\p21;η = wί + -ΊTw2,φ = argw2 I (2.10)

of Ox on Ω1 = {τe R+, v e Rΐ, (s, t) e C2, p
11 e Rΐ, p21 e Cl9 \p21\ < j/τ

ηeC^φeR)} (arg w2 being a multivalued function of w2). Analogously,
we define the mapping 3 2

pi 2

) (2.10a)

of 02 on a corresponding domain Ω2.

Lemma 2.1. There exists an isomorphism

K(p;z;w) = Kj(τ;v;s,t;λj) 7 = 1,2 (2.11)

between D'(Oj) and the space D'(Ωj) of distributions periodic with respect to
φ (or φ') of period 2π.

The proof of this Lemma is given in Appendix B.
Our next step will be to prove, using the invariance conditions (2.6),

(2.7), that Kj do not depend actually on λj. First, we observe that it is
sufficient to differentiate Kj with respect to the set of variables λj, because
any "function" of the invariants (2.8) satisfies Eqs. (2.6) and (2.7) identi-
cally. We consider in detail only the case 7 = 1; the case 7 = 2 can be
treated analogously.

Inserting (2.11) (for j = 1) into (2.6) for a = 1 and into (2.7) for ά = 1
we find

' dKγ dKγ w2

χlίdκ^ dκ^wΛ_dκ^_
\cp dη p

hence

dKx dKx

Substituting (2.11) in (2.6) for α = 2 and taking into account (2.12) we
obtain

dp11 dη (p11)2 dη (p11)2

= 0.
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Since K1 does not depend on p2l,p21 ( = p12) (because of (2.12)) the co-
efficients to any power of p21 and p21 in (2.13) should vanish. Taking
into account that in the domain under consideration p11 > 0 and w 2 φ 0
we get

« ψ « « ' « L _ 0 . ,2,4a,
dφ dη dp11 p11 dη 2p11 dφ

Analogously, using (2.7) for ά = 2 we find

φ dη dp11 p11 dη Ip11 dφdφ dη dp11 p11 dη Ip11 dφ

From (2.14) and (2.12) we obtain the desired result:

dp11 dp21 dp21 dη dη dφ
(2 15)

As far as the domain Ωx is convex with respect to the variables λγ (for
fixed τ,v,s,t) we conclude that there is a distribution .#[ (τ v s, t)
e D'{R\ x R\ x C2) such that

K^τ, v; s, t; p11, p2\ p12, η, φ) = Jf^τ; v; s, t) in Ω1

or equivalently K(p;z,w) = Jf1(τ;v;s, t) in O1.
An analogous reasoning shows that there exists a function of the

invariants Jf2(
τ5 v;s,t)G D'(R^ x R | x C2) which coincides with K(p; z, w)

in O2. On the other hand each of the distributions jfj (/ = 1,2) is uniquely
determined by the "values" of K(p;z,w) in the intersection O1r\O2

(because the image of O1nO2 in the mapping (2.8) (/?, z, w) -^ (τ, υ, s, t)
is the whole domain R^ x R± x C2). Hence J ^ = JΓ2 = JΓ and we have
proved the following theorem.

Theorem 2.1. Any distribution K(p;z,w)e D'(V+ xC2xC2) satis-
fying the invariance condition (2.3) can be written in the form

K{p; z, w) - Jf (τ; v; s, t) (2.16)

τ, υ, 5, ί are ί/ze invariants (2.8) αrcd JΓ e Df(R^ x ^ x C2).

Remark. We have not used symmetric variables with respect to z

and w: ί, i; (2.8), M (2.9) and σ = —7=- = zεw, because the change of
1/τ

variables (τ, v, 5, ί) -> (M, V, σ, ί) is singular (for s = 0 its Jacobian vanishes).
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2.3. Irreducibility Condition. Homogeneous Invariant Distributions

In terms of the kernel j f (τ; υ; s, t) (2.16) the homogeneity condition
assumes the form

Putting ρ = ]/Q1Q2, a = Koq + α2), β = ̂ {ax - α2) we get

J f (τ; ρ2υ, ρeiocs, ρeiβt) = ρCί-1ρc

2

2-c*ei{k+a+k-β)X'(τ; v; s, t) (2.17)

where

fc±=fe1±fe2. (2.18)

Because of the one-valuedness of Jf either k+ are integers or Jf = 0.
Each Jf satisfying (2.17) can be written in the form

Jf (τ; v; s, t) = u^^v^^H(τ; 5, ί) (2.19)

where u is given by (2.9) (we recall that u and v are positive for p e V+ so
that H e D'(Rΐ x C2) is well defined). Due to (2.17) H satisfies the following
simple homogeneity condition

H(τ; ρeiaίs, ρeίβ) - eik+*eik-βH(τ; s, t). (2.20)

Introducing the variables r, v, α, j8 by

» - 1 ^ v ^ 1 ) ( 2 2 1 )

and treating for the moment // as an ordinary function we find

H(τ; 5, t) = eik+*eik-βHγ(τ, v). (2.22)

In order to give a precise meaning of (2.22) in the case when H is a
distribution we have to introduce a new class of generalized functions.

To simplify the problem we neglect for the moment the τ-dependence
and consider the space Xk+k_ of distributions φ(s,t)e D'(C2), satisfying
the homogeneity condition (2.20). Introduce the operator 9ΐfc+fc_ defined
on the space of test functions F e D(C2) by

oo 2 π 2 π

(9t» + *- f ) (v)= J r3dr J da j" dβeik+aeik-β

(2.23)
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(ϋk+k_ defines a continuous mapping F(s,t)->uk+k_(v) = (<ίlk+k_F)(v)
of D(C2) onto the space Xk + k_ of test functions uk+k_ of the form4

where v(v) is an infinitely smooth function on [ — 1,1]. We define a
topology in Xk+k_ by the (countable) set of semi-norms

ll«k+*-(v)||Λ= sup
dnv(v)

dvn
(2.25)

where v(v) is defined by (2.24).
It can be proved (by a reasoning similar to the one used in Appendix A

in the proof of the isomorphism between T)ι

χ and d_χ) that each φ(s, t)
eXk+k_ may be represented in the form

2 - , Ί e ) e e f k + k _ ( v ) (2.26)

where fk+k_ e Xk + k_ The exact meaning of (2.26) is given by the equality

{φ{s, ί), F(s, t)) = (Λ+ k.(v), (Kk + k_F) (v)). (2.27)

Let further ^ = ί^([—1,1]) be the space of infinitely differentiable
functions on the segment [—1,1] with topology defined by the set of
semi-norms in the right hand side of (2.25) (see also Appendix E). It is
easily seen that Xk' + k_ is isomorphic to Θ' (the dual of Q)\ Namely, to
each g(v)e 3)' we make correspond to fk+k_(v)e Xk + k_ by the following
rule: if uk+k _ (v) e Xk + k _ is represented in the form (2.24), then by definition

The generalized function fk+k_ defined in this way will be written in the
form

IM \k-\

l - v \ 2 / l + v\ 2

^ g(v). (2.28)

4 Let f(z) be an infinitely differentiable function of z and z in the complex plane Cι.
Then, it is easy (using the Taylor decomposition of/ around the origin) to prove that for
any integer n

where g is an infinitely smooth function on Rf. Applying (twice) this argument to the
integral (2.23) we see that the behaviour of uk + k_ in the neighbourhood of v = + 1 is given
by (2.24).
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Applying this result to H(τ;s,t) defined by (2.19) and (2.20) (after
smearing it out with a test function of τ) we obtain finally, the following
theorem on the general form of the invariant kernel K.

Theorem 2.2. An invariant distribution K(p;z;w)e D'(V+xC2xC2)
satisfying the homogeneity condition (2.2) does not vanish only for integer
k± (2.18) and in that case has the form

K(p;z;w) = (zpz^-^wpw) ' 2 " 1

 e

ik+aeik-β/(τ, v) (2.29)

where α, β, v are defined by (2.21) and (2.8):

/ x n t ~-x \zpw\2-p2\zεw\2

oc = arg(zεw), β = arg(zpw), v = — , (2.30)
zpzwpw

and
+ l / I + vV*1*-1

(j _ϊ, (2.31)

g(τ, v)e@'(Rΐ x [ - l , 1]) (the dual space to 2(R\ x [ - 1 , l]) =

Remark ί. The points C = (Ci,C2)
 o n t n e u n i t sphere | d | 2 + | ζ 2 | 2 = 1

may be put into one-to-one correspondence with the 2 x 2 matrices

l = ( ζl ζ-2)eSU(2) (2.32)
\-^2 (.1/

I then the invariant volume element on the group SU(2) has the form

-^2-3(1-\ζ\2)\dζ1dζ1dζ2dζ2\\. Let D[St/(2)] be the set of infinitely

smooth functions on the unit sphere in C2 with the natural topology. The
homogeneity condition (2.20) with respect to ρ leads to the following
representation:

K(p; z; w) = (zpzY^'iwpwY2-1 T(τ; ζ) (2.33)

where Γ(τ; ζ) e D'(R+ x 5(7(2)) and

(2.34)

Eq. (2.33) may be useful for the extension of Theorem 2.2 to other cases
(for instance, for space like p and zpzw pw Φ0 it is sufficient to replace
SU(2) by SU(1,1)). We shall refer to this remark in Section 4.2.
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Remark. Eq. (2.29) becomes formally identical with Eq. (1.14) of
Ref. [1], written for kγ ^ \k2\:

h(p2;v), (2.35)

if we put

U g(τ;v) (Z36)

and v = cos θ=(n(z,p\ n(w, p)) where n(ζ,p) (ζ = z or w) is the three
dimensional unit vector

nj(C, p) = W ζ ( lACσ/ - ^ Pj) • (237)

3. The Two-Point Function for Finite-Component Fields

3Λ. The Invariant Distribution F(x; ζ)

The case of finite-dimensional representations is contained in our
previous discussion. In fact, if c — |fc| is a positive integer the representa-
tion χ = [/c, c] is reducible, the set of homogeneous polynomials of z
and z (of degree (c + k — 1, c — k — 1)) forming an invariant (c2 — k2)-
dimensional subspace Eχ of the representation space. It is obvious that
all results of the preceding section (including representation (2.29))
remain true for this invariant subspace. Our present aim is to study in
more detail the two-point function for (irreducible) finite-component
fields using the fact that both F(x; z; w) and K(p; z; w) are polynomials
in z, z, w, w. The method of this section makes no use of the spectrum
conditions and, hence, applies to the description of the general form of an
invariant functional on DCR4) x Eχi x Eχ2. Therefore, we will be able to
write down the explicit covariant structure of the two-point function not
only in p but also in x-space. That will enable us to define the time-
ordered Green's function in terms of the two-point Wightman functions
(Section 3.3).

It is convenient to denote the finite dimensional representations of
SL(2,C) by the pair of non-negative (half) integers (i,j) connected with
the pair [k, c] by

2ί = c + fc-l, 2j = c-k-l. (3.1)

It is well known that the direct product of two irreducible finite-dimen-
sional representations (i^ji) and (i2 J2) can be decomposed into a direct
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sum of irreducible representations:

(Wi)x(W2)= l l 9 %2 (U). (3.2)
i = |ii-i2 | j = \h-h\

Hence, the study of the two point function F(x;z,w) of two finite-
component fields can be reduced to the investigation of a distribution
F(x; ζ) = F(iJ)(x; ζ) with the following properties:

a) As a "function" of x (for fixed ζ) F(x; ζ) e D'(R4\

b) F(x; ζ) is a homogeneous polynomial of ζ, ζ(ζ e C2) of degree (2i, 2j),

c) F(AxA*;ζ) = F(x;ζA), AeSL{2,C). (3.3)

Following the procedure of Section 2.1 we derive from (3.3) six
differential equations for F:

* ^ - ' l o - o ' 1-12 bSά (14)

3 f d[b{ (3.5)
I 0 0 \

dxca dζf,)

I Summation has to be carried out over all indices in Eq. (3.5); τ 3 = τ f

(x °Y
The covariant structure of F(x; ζ) can be described in the following

way.

Theorem 3.1. Any invariant distribution F(x;ζ) satisfying conditions
a)-c) above can be written in the form

(3.6)

where F(x) (resp. T(x)) is a scalar Lorentz invariant distribution of
D'(R4). In the non-trivial case i=j for a given F(x;ζ) the distribution
F(x) (resp. T(x)) is determined within the accuracy of 2) arbitrary constants.

5 We use different notations (σj)
αb, (τ7 )J, (τf)b

ά for the same numerical matrices because
they refer to different transformation properties under SL(2, C). Their equality is basis
dependent (it is only invariant under transformations of the 517(2) subgroup of SL(2, C)).
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More precisely, if F0(x) is a given solution of (3.6), then the general solution
has the form

F(x) = F0(x) + Σ Cι(Πjδ(x). (3.8)
ι = o

We give the proof of this theorem in Appendix C.

3.2. Covariant Structure of the Two-Point Function
for Finite Dimensional Representations of SL(2, C)

Let the covariant two-point function F(x;z,w) be a homogeneous
polynomial in z, z and in w, w of degree (2ίl5 2jx) and (2i2,2j2), respectively.
Using the decomposition (3.2) and Theorem 3.1 we can write

F(x; z,w) = Σ ^iιjl'i2j2)(x; z, w)Fn(x), (3.9)
n

where 0>n is an invariant homogeneous polynomial of degree n in x and
of the same degree as F with respect to the remaining variables (it cor-
responds to the term (i,j) in the right hand side of (3.2) with i =j = n/2),
Fn(x) are Lorentz invariant distributions. The summation in (3.9)
is carried out in the range n0 = 2max(|i ί — i2\, l/Ί — j2\) = n — no + 2fe
^ 2min(i1 + i2Ji +7*2)- (If this range is empty then F vanishes identically.)
Here k = 0,1,.. ., femax so that n takes either only even or only odd values.
(We mention that a non trivial invariant function F exists only if the
difference between I = i1 — i2 and J =j1— k2 is an integer.)

By standard methods of reduction of the direct product of two finite-
dimensional representations (e.g. using Young's symmetrization and
antisymmetrization) we obtain the explicit expression for the poly-
nomial 3Pn\

•^τ) TO lzwJ TO ( w r

-.(l+,,-, 2)<l-.> + i i)-
„ , _ - , ^, ., (3'10)

v (zicz)Pl (zxvv)^1 (wjcz)p2(wxw)^2
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the summation in (3.10) is carried over those non-negative integers

PuPi^q^ qi f° r which

Pi + qi = y + h ~ h> P2 + <l2 = -j-h+ h >

Pi + Pi = y +Λ ~725 ^1 + <?2 = y ~7i +Ji

We assume that / = i\ — /2 ^ |J | where J =7^ — 72. (The other possibili-

ties are treated analogously.) Putting further q2

 = q\qi = ~z—J — q,

Pi=J + I + q,p2 = -^—I — q I dividing and multiplying by (x2\zεw\2γ~I

and using (3.10) we obtain

v ' ' v (3.11)

zswyι+J2-I(zxz)I+J(zxw)I-J x i f Γ/' / + J )(κ:),

where

zxz wxw + Izicwl2 zxz wxw + Izxwl2

2Ί i2 = ~ - ~ - 1 ~ - ,

x \zεw\ zxz wxw — \zxw\

and p/α '^ is the Jacobi polynomial:

A formula analogous to (3.9) and (3.10) can be derived just as well with
d/dx instead of x.

33. Application to the Definition of the Time-Ordered Green's Function
for Arbitrary Spinor Fields

Let φ and ψ be local finite-component fields transforming under the
representations (il9j\) and (i'2,72) respectively, with integer'/ — J(= h — i2

—Ji +J2Y Our task will be to show the existence of a Lorentz invariant
time-ordered Green's function Gφψ(x;z,w) defined by

Gφψ(x; z, w) = Fφψ(x; z, w) = <0| φ(y z)ψ( - y ; w ) |0>

for x°>0,

Gφψ(x; z,w) = σFψφ(-x;w, z) for x ° < 0 ,

(3.14)
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where

σ = ( - l ) " ' ( = ( - l ) " ' ) , ka = ia-jΛ, α = l ,2.

Locality implies that

Fφψ(x;z,w) = σFψφ(-x;w,z) for x 2 < 0 . (3.15)

We shall again make use of the reduction (3.2) and (3.9), so first we study
the reduced problem.

Let F1(x;ζ) and F2(x;ζ) be two distributions satisfying conditions
a)-c) of Section 3.1 with i=j = n/2 and let further the locality-type
condition

Fί(x;ζ) = F2(x;ζ) for x 2 < 0 (3.16)

be fulfilled. We shall prove that there exists an invariant distribution
F(x; ζ), which satisfies a)-c), such that

F(x;ζ) = F1(x;O for xer+=R^\Z9

F(x;ζ) = F2(x;ζ) for xeτT_ = - τ r + .

To do this we use representation (3.6) for Flf2(x',ζ):

Fa(x;Q = (ζxζyFa(x), « = 1, 2 (3.18)

where Fα(x) are Lorentz invariant distributions and

F1(x) = F2(x) for x 2 < 0 . (3.19)

Thus, our problem is reduced to the solved [9] problem of existence of a
scalar function F(x) satisfying

F{x) = Fι(x) for xeτr + , F(x) = F2(x) for xeΨl . (3.20)

[Eq. (3.20) defines an invariant distribution in K4 = R4\{0}. In view of
Proposition C.I (Appendix C) it can be continued to a Lorentz invariant
distribution in the whole K4.]

In the case when Flj2(x;ζ)e S'(R4) and when the strong spectrum
condition

suppF1{p;ζ)CV+, suppF2(p;ζ)cV_ (3.21)

is satisfied it is more convenient to use the representation (3.7) for Fx 2

a n d F ( x ; 0 :

> = { ζ i d x ζ γ τ ( x ) « = - - - « ( 1 2 2 )
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The functions Tα and T are determined by (3.22) within the accuracy of
arbitrary polynomials in x2 of degree6 n — 1. They can be chosen in such
a way that

T(x) = 7\(x) for x e r+, T(x) = T2(x) for xeΠ. (3.23)

Using the spectrum condition (3.21) we can get rid of the polynomial
arbitrariness in the choice of Ta and T by requiring fast decrease of these
functions for large space-like x:

TΛ(x) = ha(x2) for x2<0; ha(τ)-+0 for τ->-oo. (3.24)

(We remind that ha(τ) is an analytic function for τ < 0 so that the limit in
(3.24) can be understood in the usual sense.) Indeed, Fa(p\ ζ) = (ζpζf fa(p)
and, hence, in view of (3.21) fa(p) can be chosen in such a way that
supp fl2(p)e V±. For this choice of Tα the boundary condition (3.24)
is fulfilled automatically as can be seen from the representation

i = J K^Y-λx^ρ^dλ for x 2 < 0 , (3.25)
μλ

where Kχ(z) is the first Macdonald function and μ > 0 (see also [10]).
One can prove that Ta(x) goes to zero for x2->— oo also, for a weaker
form of the spectrum condition: supp F12(p', 0 C V± under the additional
assumption that Fa(p; ζ) are measures in R4 vanishing for p = 0 (this last
condition is non-trivial only for n = 0).

Now we come to the general existence problem for the invariant
Green function satisfying (3.14). Using (3.9) and arguing in the same way
as above we obtain

Gφψ(x; zM^Σ ^ίdl'i2j2)(j^>z'

where Gn(x) are Lorentz invariant scalar distributions. Eq. (3.14) deter-
mine Gφψ within the accuracy of an invariant distribution with support
at the origin. Even if we fix this arbitrariness the distributions Gn(x)
still are not uniquely defined by (3.26) (each Gn being determined only
up to a polynomial of x2 of degree n — 1). The choice of Gn can be fixed
however if we assume as above (in a theory with spectrum conditions)
that Gn goes to zero for large space-like x.

Remark. As well known (see e.g. Streater and Wightman [3], Theo-
rem 4.7) locality (3.15) and spectrum conditions for finite-component
fields imply

Fφψ(x; z, w) = ( - l)*' + 2IFφφ(x; w, z) (3.27)

See Appendix C (in particular Eq. (C.12)).
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where / is the number of anticommuting (Fermion) fields and / has the
same meaning as in (3.11). In our case ( —1)2 / + *f = σ(— 1)"° where n0 is
the lower limit of the summation in (3.9) and σ is the sign in (3.15). Indeed,
using the fact that the scalar distributions Fn(x) in the decomposition
(3.9) are even functions of x for x2 < 0, we readily get the following
equivalent form of the locality condition (3.15):

Fφψ(x;z,w) = σ(-iyΌFψφ(x;w9z) for * 2 < 0 .

Because of the spectrum conditions both sides can be continued analy-
tically in the forward tube R4 + iV+. Going afterwards to the real limit
we obtain (3.27) for any x. Eq. (3.27) allows us to fix the freedom in the
definition of the Green's function (3.14) in the origin in such a way that

Gφψ(x;z, w) = σ(~lpGψφ(x; w, z). (3.28)

Using (3.27) and the properties of the polynomials (3.10) one can derive
the following representation for the vacuum expectation value of the
fields (anti-)commutator:

λ (3.29)

w j Dn{χ. φ> ψ)= £ 3

where Dn are odd Lorentz invariant scalar distributions. In view of
[7] (Section 9) each Dn may be written in the form

00

Dn(u;φ9ψ)=$ Dλ(u)ρn(λ;φ,ψ)dλ (3.30)
o

where Dλ(x) is the Pauli-Jordan function (i.e. the commutator of a free
real scalar field of mass yλ) u(x)e S(R4) and ρn(λ;φ,ψ)eS'(R^). The
existence of a unitary representation U(a, 1) of the group of translations
satisfying (1.1) implies that F(p; z, w) is a measure on R4 (or, equivalently,
that Qn(λ) in (3.30) are measures on Rt). We mention that for φ = ψ the
representation (3.29) is a consequence of Lorentz invariance alone
(locality and spectrum conditions are not needed for its derivation,
because in this case (3.27) is a simple consequence of (3.9) and (3.10)).

4. Decomposition of the Two-Point Function with Respect to Spin

4.1. Elementary Invariant Kernels
and Poincare Decomposition of the Two-Point Function

Now we return to the study of the spectral function (1.3) for arbitrary
fields φ and ψ transforming according to the irreducible representations
χ1 and χ2 (in a theory with a mass gap).

21 Commun math Phys.Vol. 14
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Let ξ>φ* and 9)ψ be subspaces in the Hubert space of states defined as
the norm closure of the linear hull of vectors of the type

φ(u;f)*\θy and ψ{υ;g)\θy, (4.1)

respectively, where u and v vary in S(R4) and fe D _ χ i , g e D_Z 2. Let ξ)x

be the set of their common elements

S I = S Φ * Π S V . (4.2)

The unitary representation U(a, A) of the quantum mechanical Poincare
group (satisfying (1.1)) is, in general, reducible in § : . The decomposition
of ξ>x into irreducible invariant subspaces gives rise to a spectral repre-
sentation of the two-point function which is a generalization of the well-
known representation [11].

Let φ and ψ transform under the irreducible representations [fc1? c{\
and [fc2,c2] of SL(2, C\ respectively (/q — k2 being an integer). Then it
can be shown that the representation U(a, A) is simply reducible in § x so
that we can write 7

Si = ΘίS«s<*ρβ(m) (4.3)

where k = max(1^1, |/c2|), and ρs(m) (s = k, k + 1,...) are positive measures
on (0, oo). Each of the irreducible spaces § m s can be identified with the
space of functions Ψms(p; ζ) on the hyperboloid H^ = {p | p2 = m2, p° > 0}
which are homogeneous polynomials in ζ e C2 of degree 2 s. The scalar
product in § m s is defined by

d3p
^ O (44)C ~ dζj ym2+p2

where

p = ε(tp)ε-1. (4.5)

The decomposition (4.3) makes correspond to each Φ e § t a vector
function (depending on the variables m and 5) Φms = £ m s Φ G § m s such that

<Φ\Ψ}= Σ ί < ^ m s Φ | £ m s ^ > m s ^ s ( m ) . (4.6)
sίk

We shall write, in particular,

)*|0> = Φm,(p,ζ;u,f) (4.7)

g)\θy = Ψms(P,ζ;v,g). (4.8)
7 Concerning the definition of the decomposition of a unitary representation of a

group in a direct integral see [2] (Section 4.3.7).
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where Π1 is the projection operator on $x. Translation in variance
implies

J p;ζ;f), (4.9)

piC;g). (4.10)

The invariant kernels χj(p; ζ; z) (corresponding to the functional χ7)
are homogeneous distributions of z e C2 of indices [kj, cj\. Taking into
account that χ; is a homogeneous polynomial in ζ (of degree 2 s) we find
that χj Φ 0 only for s — |fcy| = 0 , 1 , , and in that case

φ ; ζ; z) = Aj(zpzy-8-1{ζpzr-kj{ζεzY + kj (4.11)

(We mention that (4.11) is a special case of (2.29) or (2.35).)
Inserting (4.9)—(4.11) in the integrand of the scalar product (4.4) we

obtain the contribution from § m s to the invariant kernel K(p; z, w) (2.29)
of the two-point function (1.3):

Kms(p; z, w) = AmX(p)(J^p^\zp^Hwpwr

where δ^n(p) = θ(p0)δ(p2 — m2). Proceeding in the same way as in the
derivation of (3.11) we obtain the following expression for the elementary
invariant kernel Kms (in the case kx ^ |/c2|):

Kms(p; z, w) = Bmsδ
+

m(p) (zpzrHnpήY

-k2P^k2^-k2)(v) [ ' j

where v is given by (2.30), Pj?tβ)(v) are the Jacobi polynomials and

The invariant kernel (2.29) can be expanded in terms of the elementary
kernels (4.13):

K(p; z, w) = £ J Kms(p; z, w) dρs(m). (4.14)

This expansion corresponds to the following decomposition of/(τ v)
(see (2.29) and (2.37))

/(τ,v)=

where
fc = max(|fc1|,|fe2|) (4.16)

{/s(τ)} is a sequence of complex valued measures and P^(v) are the
generalized spherical functions [12] related to the Jacobi polynomials by

( S ~ f e ) ! ( S - r rv;; / ± v \ f x I v \ {k_lk + l)( ,

(4.17)
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[In contradistinction to (4.13) the representation (4.15) is valid for any
/q,/c2 (not only for /q ^ |fe2|). As shown in Vilenkin [12], Section 3.3.6,
Pku-k2 depend only on \k+\ and |fc_|.]

We prove in Appendix E that each distribution f(v)eXlί + k_ (see
Section 2.3) can be expanded in a series of the type (4.15) with a sequence
of coefficients fs of polynomial growth (with respect to s). In our case
f(τ;v)e(D(Ri)(g)Xk + k_y depends also on τ and the expansion (4.15)
makes sense if and only if the sequence of distributions fs(τ) e D'(R^) is
polynomially bounded in s (i.e. if

is polynomially bounded numerical sequence (in s) for each test function
ueD{R+)).

4.2. Remark on the Positive-Definiteness Condition

The positive-definiteness of the metric in the Hubert space imposes
the following condition on the spectral function for two Hermitian
conjugate fields φ and φ* (for which [fel5 cx] = [ —fc2, c2] = LK c]):

(Kφφ*(p; z, w), F(p; z)F(^)) ^ 0 (4.18)

for any F e S(RA)®D(C2). It turns out that the decomposition (4.14) and
(4.15) is a decomposition into elementary positive kernels so that con-
dition (4.18) is equivalent to the positivity of the measures fs(τ) (for
h — ~^2 = fc) This is a consequence of our derivation of (4.14). Indeed,
the scalar product (4.4) is explicitly positive-definite and hence (4.12)
is a positive kernel (for [fel5 c{] = [ — /c2, c2~\) provided that y4m s>0
which leads to

Λ W ^ O . (4.19)

Another proof of the equivalence between (4.18) and (4.19) can be
worked out using the general methods of decomposition of invariant
positive Hermitian functionals on D(W) where 9JΪ is finite dimensional
homogeneous space (see [13]). In our case such a positive Hermitian
functional is the two-point function in coordinate space

W(x9z\y, w) = Fφφ*(x - y; z, w). (4.20)

The role of the homogeneous space 9JΪ (with respect to the group of
Poincare) plays the direct product R4 x C 2 . We are assuming in addition
that F is a tempered distribution with respect to its first argument in
order to be able to perform Fourier transformation (without intro-
ducing analytic functionals). If we restrict ourselves to the p-space only
(as we actually did in Sections 2 and 4.1) then the whole treatment can
be generalized to non-tempered spectral functions in momentum space.
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Using our Remark 1 at the end of Section 2 we can give a purely
group theoretical interpretation of the decomposition (2.33). Indeed, in
terms of the distribution T(τ;ζ)eD'(Rΐ xSU{2)) defined by (2.33) and
(2.34) we can rewrite (4.15) in the form

T(τ;ζ)= Σ/sMKO (4.21)

where D^n(ζ) are the matrix elements of the representation (s) of SU(2)
in the canonical basis (see [12] and Appendix B in [1]). By using standard
methods of harmonic analysis on SU(2) and the argument in Appendix E
one can obtain a generalization of Theorem E.I to the case of arbitrary
distributions T(ζ)e D'[S£/(2)] (not necessarily of the type (4.21)).

We mention finally that (4.15) implies the following extremal property
of the generalized spherical functions Pξk(v) (or of the corresponding
Jacobi polynomials P{

s

0^k)(v) see (4.17)). Take for simplicity the special
case when K in (4.18) is a continuous function of p and fix the vector p
along the time axis. The preceding discussion implies the following
result. Let Cl be the convex cone of generalized functions f(v)eX'02k
satisfying the positivity condition

$S (zw)2kf(\zw\2 - \zεw\2) F(z) F(w) dAz d4w^0. (4.22)

Then any extreme vector8 of this cone is proportional (with a positive
factor of proportionality) to one of the generalized spherical function
i?Λ(v)(s^|fe|). In the special case fc = 0, when Ps

oo(v) = P(

s°>
O)(v) = P0{v)

are the Legendre polynomials, this result reduces to a known property
of the zonal harmonics (see e.g. [14]).

Acknowledgement. The second named author (I. T. T.) would like to thank Dr.
C. Kaysen for his hospitality at the Institute for Advanced Study in Princeton where the
present paper was completed.

Appendix A. Isomorphism between T)'χ

and the Subspace of Homogeneous Distributions of Index — χ of D'(C2)

A.I. Synopsis on the Decrίptίon of the Irreducible Representations
of SL(2, C) in Terms of Homogeneous Functions ([2])

Let X)χ be the space of single-valued infinitely differentiable functions
of z = (z l5 z2) eC2 = C2 \{0} homogeneous of index χ = [fe, c]:

= Qc~ιf{z) for ρ > 0 ,

= eikaf(z) for α real. ( ' '
8 We recall that a point x of a convex set C is called an extreme point of C if it is not

an internal point of any segment lying in C. A vector x of a convex cone K is called extreme
(or non-decomposable) in K if it defines an extreme point in the intersection of K with a
hyperplane which does not cross the origin.
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The condition of single-valuedness implies that k is integer or half-
integer; c is in general an arbitrary complex number.

We introduce topology in D χ by the denumerable set of norms

n = S U P
\z\=ί Σ

re

max ( δ N

k2

\ α γ 3 Y2/ a N

/ [dzj \dzly

= Z,Z1+Z2Z2.

ΐ ( d )
1 \dz2)

(A.2)

(With this topology T>χ is a complete nuclear space.)
The representation χ of SL(2, C) is defined in Ί)χ by

x = f{zA). (A3)

This representation is irreducible in D χ if and only if the pair [fc, c] does
not satisfy one of the following relations:

c-|fc| = l ,2, . . . , (A.4a)

— c —|fc| = 1,2, ... . (A.4b)

In the exceptional cases (A.4) the representation χ has a generalized
triangular form: it is reducible but not fully reducible (i.e. decomposable)
[2]. In the case (A.4a) the space T)χ contains the finite-dimensional
invariant subspace Eχ of homogeneous polynomials of z and z. For all χ
different from (A.4) the representations χ and — χ are equivalent [2].

A.2. The Mapping of D(C2) on X)χ and its Adjoint

We define the continuous linear mapping Iχ from the Schwartz space
of test functions F e D(C2) onto D χ ( a / ) :

f(z) = (IχF) {z)^^] dρ f daF(]/ρe^z)ρ-ce-ik« . (A.5)
o o

To prove that the image of D(C2) under the mapping (A.5) is the whole
space T)χ we choose some h(ρ) e D(0, oo) for which

Ί!*ώ l (A.6)Q

o Q

and for any given / e T)χ put

F(z)=f(z)h(\z\2). (A.7)

With such F Eq. (A. 5) is verified immediately. (It is clear that the mapping
Iχ is not one-to-one.)

Now we define the adjoint mapping φ-^Φ = /*φ from D'χ into
D\C2) by

(Φ,F) = (φJχF)(FeD(C2)). (A.8)
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It is easily checked that the Φ defined by (A. 8) belongs to the space d-χ of
homogeneous distributions of index of homogeneity — χ = \_ — k, — c]\
for a = ]/ρei%

Φ(az) = ρ-c-1e-ikaΦ(z). (A.9)
Indeed,

FTτ(φ,χ()) ρ ( , )

We shall prove that in fact the mapping I* is an isomorphism between
T)'χ and d_χ. We have seen already that for each φ e T>'χ there is
aΦ = I*φ e d_χ. Now we shall need the following lemma.

Lemma A.I. Each distribution ΦeD'(D2) satisfying the homogeneity
condition (A.9) vanishes on the subspace

£χ = {F(z)eD(C2)\IχF(z)^0} (A.ll)

(i.e. on the kernel of the mapping (A.5)J.

Proof 9. In view of (A.9) for any two test functions F(z), G(z) e D(C2)
the following identity holds:

{z\ F(z) • oί^Jj [ = ρ(Φ(αz), F(az) G(z))] ( A n )

= ρ-ce-ik«(Φ(z), F(az) G{z% [a = Yρέ-).

We integrate both sides of (A.12) with \dada\ =^dρda. Then the left-
hand side can be interpreted as the value of the distribution H(z;a)

1 ~ - fz\
= Φ(z)x — e D'(C2xC1) applied to the test function F(z) Gl— an

analogous meaning can be given also to the right-hand side. In view of
the commutativity of the direct product of distributions we obtain

Φ(z),F(z) [G(^\^da\ = (Φ(z), G(z)(IχF)(z))

9 The argument goes similarly to Araki's proof of Lemma 2 of [15] (p. 272). This
lemma of Araki may appear useful for the study of Lorentz invariant distributions of
n 4-vectors. Therefore it would be of interest to refine its original proof: Araki assumed
that for any f{x)eD{R4n) the function f{x) = \f(Λx)sΛ obtained from / by integrating
over the Lorentz group is a multiplicator in D(R4n). One can only clame that f(x) is a
multiplicator in D(R4n\{0}); in general f(x) may be singular at x = 0. Hence, the possibility
of going to the limit R -> oo in the identity

F, J f(Λx)g(x)dΛ) = (F, J f(x)g(Λ-ιx)dΛ
\\Λ\\<R / V \\Λ\\<R

should be studied more carefully.
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where IχF is given by (A.5). Now, putting G(z) = h(\z\2) where h(ρ) satisfies
(A.6), we obtain (Φ, F) = 0 if IχF = 0 which proves our statement.

It follows from this lemma that for each Φ e d_χ there exists a linear
functional φ on T)χ such that

(φ,f) = (Φ,F) for f = IχF (A. 14)

(Lemma A.I shows that the definition (A. 14) for (φ,f) does not depend
on the choice of the solution F of the equation/ = I^F; the functional φ is
defined on the whole T)χ since the image of D(C2) under Iχ coincides
with £) r ) The continuity of φ is a consequence of some general theorems.
It is evident also from the formula:

(φJ) = (Φ(z\h(\z\2)f(z)). (A.15)

where h(ρ) is chosen as in (A.6). Hence, φ e T)'χ.
The representation (A.3) of 5L(2, C) in Ί)χ generates a representation

(A) in ϊ>'χ by

The isomorphism I* between Ί)'χ and d_χ permits us to define the
representation of SL(2, C) also in d^χ by putting

Using (A.8) and (A. 16) we obtain

(ΦA(z\ F(z)) - (rχ(A)φ, IχF) = (φ, T^A'1)!^)

- (φ, I^FizA'1)-]) = (Φ(z\ FizA-1)) = (Φ(zA% F(z)),

i.e. ΦA(z) - Φ(zA).
Thus, the representation (A. 17) of SL(2, C) in d_χ is an extension of

the representation T_χ defined by (A.3) in X)_ r

Appendix B. Regularity of Mapping O1-*Ω1 (Proof of Lemma 2.1)

It is rather complicated to check directly that the change of variables
(2.10) (2.8) is a regular one. In order to simplify the proof we shall perform
it in several steps. We shall restrict ourselves to the discussion of the first
case (i.e. of the mapping of O1 = V+ xC2xC1x C1(w2 Φ 0) on Ωj.

Our first substitution is

p2ί p21

ζ z + z z\η = w + w

It is one-to-one, infinitely differentiable mapping of Oλ onto itself with
Jacobian equal to 1.
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Next we put

τ(β; ζ, z2;η, w2)-+(p;s = ]/τ(ζw2-ηz2), t = pnζη + -ΎΓz2w2; η, w2

where τ — άetp — p2. The Jacobian for this (one-to-one, C00) change of
variables is

D(s9s;t,t)

D{ζ,ξ;z2,z2)

D(s9 τ
= τ(pnηη+ -ΎΓw2w2) =p2(wpw)2>0.

Further, using that w2 Φ 0 in Ox we put

w2 = ρeiφ (ρ > 0, — oo < φ < oo).

Thus we establish an isomorphism between D'ψ^) (^K(p; z; w)) and the
space D'(V+ xC2xC1xR^ x KJ of distributions K(p; s,t;η;ρ,φ) peri-
odic of period 2π with respect to φ (cf. [16]).

Finally, we make one more (regular) change of variables

( p 1 1 , p 2 2 , p 2 1 ;s,t;η;ρ, φ)^>(τ; p 1 1 , p 2 1 υ; s, t η φ)

w h e r e υ = p 1 1 η η - { Γ Γ ρ 2 ( = wpw). This way we come to the set D'iΩ^

and this completes the proof of Lemma 2.1.

Appendix C. General Form of Covariant Tensor-Valued Distributions
(Proof of Theorem 3.1)

The proof of Theorem 3.1 is based on the following two lemmas.

Lemma C.I. Let F(x;ζ) satisfy the conditions a)-c) of Section 3.1.
Then there exists a (unique for the non-trivial case i =j) pair of invariant
distributions /±(τ)eD'( JR 1) which coincide for τ < 0 and are related to
F(x;ζ)by

F{x',ζ) = {ζxζ)^f±{x2)δij for x e f ± (C.I)

where the domains i^+ are determined in (3.17).

Proof. We shall limit ourselves to the consideration of F(x;ζ) in
i^+. Because of the invariance condition (3.3) it is sufficient to prove
(C.I) in the domain

X+ ={xeR4\xμ>0 μ = 0,1,2,3}, (C.2)

since

n= U
ΛeL%
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F(x; ζ) being a polynomial in ζ and ζis uniquely determined as a function
of ζ by its values in the domain

Z+={ζeC2\ζσμζ>0, μ = 0,l,2,3}. (C.4)

In analogy with the reasoning in Section 2.2 we substitute (for fixed
ζ e Z+) the variables x 1 1 and x22 by τ = detx and u = C-̂C This change
of variables is legitimate in the domain {x e X+, ζ e Z+) because it is one-
to-one infinitely differentiable, its Jacobian being

D(xx\x22)

Substituting F(x; ζ) = G(τ, u; x 1 2 ; ζ) in the differential equations (3.4),
(3.5) we find

r22 d G r δG _ π 22
a 12 ^ " a T " " ' a 21 ^ T F
OX θζ2 OX θζ2

22 _ ~ _ ~ _ r — Π V 2 2 ^ w F ^ w _ A

3x dζx dx dζx
(C.5)

12 δG 21 3G j, δG c, dG Λ

dx21 ς i δζ ς 2 ac '
V

δx12 dx21

G 1 2 δG
21 ~ a 12
2 1 δ x 1 2

^ δG 7 δG
/ 1

a 1

δx1 Ci ζ 2

We consider (C.5) as a linear system of six homogeneous equations

with respect to the six unknown variables ax 1 2 ' dx21 ' 3d ' δζ2 '

——, —=—. Its determinant

is negative in the domain (C.2), (C.4). Hence the derivatives of G with
respect to xn,x21,ζ and ζ vanish in this domain. Therefore in a suffi-
ciently small neighbourhood of any point (x(0), £(0)) e X+ xZ+ there
exists a distribution g(0)(τ, u) such that G(τ, M; X 1 2 ; Q = g(0)(τ, M) or
equivalently

0 2 (C.6)

On the other hand the group SL(2, C) of transformations (x, ζ)
-^>(AxA*,ζA~ι) acts transitively on the set {(x;ζ)\x2 =τ,ζxζ=u>0}
(see Appendix D) and hence (3.3) and (C.6) imply that g(0)(τ, u) does not
depend on the choice of the point (x(0), ζ{0)). Thus there exists a g(τ, u)
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eD/(R1 xRt), such that

F(x,ζ) = g(x\ζxξ). (C.7)

The homogeneity condition gives F(x; λζ) = λ2ίλ2j F(x; ζ) for any
complex λ. Therefore g(τ, u) = 0 for ί Φ j and

g(τ,u) = u2if+{τ) f o r i=j.

The validity of Eq. (C.I) in τT+ niT_ shows that /+ (τ) = /_ (τ) for τ < 0.
This completes the proof of Lemma C.I.

As a consequence we obtain for x Φ 0

(C.8)

where F{x) e D'(R4) = Df{R4\{0}) and F(x) = f±{x2) for x e r±\
Next we study invariant functions F(x;ζ) with support in the origin.

Lemma C.2. // F(x;ζ) satisfies the conditions of Theorem 3.1 and
suppF(x; ζ) = {x = 0} ίften

FίV Π — (HxΠ2j V r.Π^ίjc^. ίC9)

Proof. Since F has a compact support it belongs to S'(R4) and its
Fourier transform F(p; ζ) is a polynomial both in p and (ζ, ζ). From the
invariance condition (or Lemma C.I) we find easily that

F(p;ζ) = {ζpξ)2i I ak{p2fδir (CIO)

Using the identities

(ζdpζ) (ζpζ) = 0, Cδ/p 2 = 2ζpζ, (Cll)

we find

( W ( P 2 f = 0 for n > ^ r , (C.12)

^ for w^fc, (C.I 3)

so that

Hence for i =j = n/2

which is equivalent to (C.9).
The representation (3.6) is a simple consequence of Lemma C.I (or

Eq. (C.8)) combined with the following proposition C.I and with
Lemma C.2.
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Proposition C.I. (Garding and Roos, see [7] Section 8, in particular
the proof of Theorem 8.1.), Each scalar Lorentz invariant distribution
F (x) E D'(R4\{0}) can be continued to a Lorentz invariant distribution in
D'(R4).

For F(x;ζ)e S'(R4) representation (3.7) is trivially obtained by
applying (3.6) to the Fourier transform of F(x; ζ). In the general case (for
F(x;ζ)eD'(R4)) let f+^eD'^) be the distributions defined by (C.I).
Then there exists another pair of distributions h+(τ)eD^RJ which
coincide for τ < 0 and satisfy the equation (ζdxζ)nh±(x2) = (ζxζf f±(x2)
for xφO, or in view of (C.ll) {d/dτ)nh±{τ) = 2~n f±{τ). This proves (3.7)
for xφO. The validity of this representation in the whole R4 is then a
consequence of Proposition C.I and Lemma C.2.

The freedom in the choice of F(x) and T(x) in (3.6) and (3.7) is fixed
by (C.12) and (C.13).

Appendix D. SX(2, C) Orbits in # 4 x C 2

We will study in this appendix the structure of the orbits in the set
{(p,z)\peR4{ = R4\{0}), ZEC2} generated by the SL(2, C) transfor-
mations

(P,z)^(ApA*,zA~1). (D.I)

We shall see in particular that if p2 ^ 0 some "singular" orbits appear at
the surface zpz = 0. These additional orbits do not play any role in the
study of the covariant two-point function for finite-component fields
which is a polynomial in z. Their existence shows however that the strong
form of the spectrum condition is an essential assumption for our
discussion of the general case (Section 2 and Appendix B). It may serve
also as a preliminary step to the study of the general form of an invariant
distribution of D'(R4 x C2). [Similarly, the SL(2, C) orbits in R 4 x C 2 x C 2

are of interest for the study of invariant distributions of £/(R4 x C 2 x C2).]
We say that a set of invariant functions {φj(p,z)}j = l,...,N is

complete for some values cij of φ } if the invariant surface

SWfa, ...,aN) = {(p, z)eR4xC2\Ψj{p, z) = apj = 1,..., N} (D.2)

is a homogeneous space for the group of transformations (D.I), or, in
other words, if 5L(2, C) acts transitively on 2ft, i.e. if for any (p, z)eyR
and for an arbitrary fixed (q, ζ) e ϊft there exists an A e SX(2, C) such that

(P,z) = (AqA*9ζA-1). (D.3)

Each invariant function defined on a submanifold of R4 x C 2 is a
function of the complete set of invariants on this submanifold.
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In what follows we shall find a complete set of invariants on any
invariant surface defined by the two known invariants

, z) = detp = p 2 and φ2(p,z) = zpz. (D.4)

Proposition D.I. The set of invariants (D.4) is complete if and only
if a2 = φ2(p, z) + 0.

Proof. Let ζ'qζ'= ζqζ = a2 Φ 0. Then there exists a transformation
BeSL(2,C) from the stability subgroup of q (i.e. satisfying BqB* = q)
such that ζ = ζ'B. This transformation can be constructed explicitly
if we take, e.g., the following special values of q and ζ:

qι =

qn = sgna2
Q

(for q2 = aγ >0)

(for q\ = fll = 0)

(for ^2

Π - αt <0)

(D.5)

The stability subgroup is SU(2) for ^ l 5 E(2) I i.e. the set of matrices B

ίeia c \ ' . \
of the form B = I _ ί α I where α is real and c is any complex number I

for qu, and 5ί7(l, 1) for qm. Since det§ = detp = ax and zpz = ζqζ = a2

there exists a Lorentz transformation connecting p and g: p = DqD*
(D e SL(2, C)). Indeed, for ax < 0 that is a consequence just of the equality
p 2 = q2 = aί (< 0), and for a1 ^ 0 we have to use in addition that
sgn/?0 = sgng0 = sgnα2. Substituting p in the equality zpz = ζqζ by

we obtain

(D.6)

Applying the statement in the beginning of the proof to (D.6) (by putting
ζ' - zD) we find that there exists a B e SL(2, C) such that £<?£* = § and
ζ = zDB. Now it is clear that the transformation A = DBeSL(2,C)
satisfies (D.3) and, hence, the set 9Jί(α1? α2(φ0)) = {(p, z) e j£4 x C21 ψj = ap

7 = 1,2} is a homogeneous space.
On the other hand if a2 = 0 (which is possible only for p 2 = 0 because

- zσμ
(D.7)

is a light-like vector) the invariants (D.4) do not form a complete set. The
above proof does not work in that case because the group which lives the
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equation

O (D.8)

(with fixed q) invariant is larger than the corresponding stability group of
q. (It consists of all Ffor which VqV* =λq where λ = λ(V) is an arbitrary
real number.) However, it is easy to find an additional invariant function
in this singular case which completes the set of invariants (D.4). The
explicit expression for this additional invariant depends on the type of
the vector p.

For p2 = ax = 0, p and ξ(z) (D.7) are two real orthogonal light-like
vectors, and therefore, they are collinear. The factor of proportionality is
the third invariant we are looking for in this case:

φ3(p,z) = — z σ o z = ••• = — zσ3z. (D.9)
Po P3

For p2 = dγ < 0 the two three-dimensional zero-length Lorentz vectors5

zpτfz and ]/ — a1zε~1τfz (D.10)

[transforming under the representation [ — 1,2] ((0,1) in the notation
of Section 3.1) of SL(2, C)] are collinear with a phase factor of propor-
tionality. To see this we mention that the equation zpz — 0 implies

zp = C(p,z)zε~1, (D.ll)

which makes evident the collinearity of the vectors (D.10).
To evaluate C we take the complex conjugate of (D.ll) and multiply

by ε from the right. Using the hermiticity of p and (4.5) we find

zεp = C(p,z)z. (D.12)

Multiplying (D.ll) by p (see (4.5)) from the right and using (D.12) and the
identity pp — aγ 1 we obtain

(in particular we see that C = 0 for light-like p so that the 3-vectors (D.10)
vanish in that case). Thus, we can write down the third invariant for

— — 1 ^ —

Φ 3 (P, z) = V a \ Z l - T j Z = eι\ j = 1, 2, 3 . (D.13)
zpτfz

It is not difficult to check that the set of invariants {φu φ3} given by
(D.4) and (D.9) (resp. (D.13)) is complete on the surface φ2 =0.
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Appendix E. Expansion of Generalized Functions of Q)'([—1,1])
in Jacobi Polynomials

We define ^ ( [ — 1 , Y]) = @ as the space of infinitely differentiable
functions υ(v) on the closed interval [ — 1,1] with topology defined by
the countable set of semi-norms (cf. (2.25))

ak(v) = sup
- 1 ^ v ^ l

dkv(v)

dvk
(E.I)

(For ao(v) we shall use also the notation ||u||.)
Let {Piα'/?)(v)}^0=o be the set of Jacobi polynomials [17] (with

oc, β > — 1) satisfying

1

\ n ' m / I I r\ I 1 r\ I *• n \ ) m \y)UV '^H ntn

ίx

 V J V y (E.2)
Γ(α + ^ + l)Γ(iS + n + l)

n! (2n + α + β +1) Γ(α + β + n +1) / '

(We are actually interested only in the case when α and j8 are non-negative
integers.)

We shall prove the following theorem.

Theorem E.I. Each generalized function g(v) e & can be expanded in
a series

g(v)= Σ g / ^ T ( ^ 1 ] V w(v)= Σ B»Φ) (E.3)

convergent with respect to the topology of 2r. Here tn(v) is a functional on
Q) defined by the integral

Pί*'β)(v)υ(v)dv,

{gn} is a sequence of complex numbers of (at most) power growth:

\gH\ £A(1+ ήf, n = 0,1, 2,... (A = A(g), q = q(g)). (E.4)

Conversely, each sequence {gn} satisfying (E.4) defines through (E.3) a
continuous functional on Q).

Proof. Letve@ and let

EM = wf\\v(v)-PMl n = 0,1, ... (E.5)
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where the infimum is taken over all polynomials of power p ^ n. The
classical Jackson theorem (see [18] or [19], Section 5.1.5) implies

sup[nr + 1En(v)~] ^arar + 1{v)<oo, r = 0, l , . . . n>r (E.6)
n>r

where ar are some positive constants (depending only on r).
We shall show that the set of semi-norms

bo(v) = aΌ(υ) =\\υ\\; br{v) = sup[nr£n(i;)], r = 1,2,... (E.7)
n>r

is equivalent to the set (E.I). It is readily seen from (E.6) that the semi-
norms (E.7) are majorized by the semi-norms (E.I). To see that the
inverse is also true it is sufficient to make use of the following theorem
of Dzjadyk10 ([20], Theorem 3; see also [19], Section 6.2.3).

Let the function v(v) defined on [ — 1,1] be such that for some r, Λ7, λ
(r, iV = 0,1, . . . , 0 < / l < l ) and for each n>N there exists a polynomial
Pn(v) of degree p ^n such that

[v(v) - PB(v)] Z M(υ) Πj γΐ

where M(v) is a positive constant (which does not depend on n). Then v(v)
has rth derivative and

sup |^(v) | = φ) ύ βr.s.xWυW + yr.s.χM(f) (E.9)

where β and y are suitable constants.
Let ϋ b e a test function from Q) and r be a natural number (r ^ 1);

then, in view of (E.7)

En(v) g n~2r~ι b2r + ί(v) for all n > 2r + 1 .

Let Pn(v) be the polynomial (of degree p ^ n) of least uniform deviation
from v(v) on [ — 1,1]; then

\υ(y) - Pn(v)\ g En(υ) ύ [ / )

This means that condition (E.8) of Dzjadyk theorem is verified (with
JV = 2r + 1 , λ—j) and hence in view of (E.9)

We have reformulated Dzjadyk's theorem in a form convenient for our applications.
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Therefore, the sets of semi-norms (E.I) and (E.7) are equivalent. Let
vn be the Fourier coefficients of the function v(v) e 2f\

vn =

- 1

We shall need the following estimate for the Jacobi polynomials ([17])

K^PJi^iv^^Aiί+ήf for | v | g l (E.11)

where A and q are constants (a similar estimate without the factor h~1 in
the left-hand side is implied by (E.ll)). Taking into account that tn(v)
in (E.3) is orthogonal to any polynomial of degree p 1Ξ n — 1 and using
(E.ll) we find the following upper bound for \vn\:

Sη.β sup IP^^E^iv) (E.12)

(here Pn_i(v) is a polynomial of degree p ^ n — 1 of least uniform devia-
tion from v(v) on [—1,1]). From (E.12) and (E.6) it follows that the
coefficients vn are decreasing (in absolute value) faster than any negative
power of n. Hence, the series

f ftΓSiΫ^M (E.13)
ι = o

is uniformly convergent to some continuous function ^(v); the com-
pleteness of the Jacobi polynomials [17] implies that vx = v. This allows
us to obtain an inequality in the inverse direction to (E.12):

n I!

1 = 0 oo (E.14)

= Σ ^Γ1!^/! ll^/α'^(v)ll =A Σ l̂ /l (l "i" 0€

l=n+ί l=n+l

Analogously, ^

From (E.12), (E.14), and (E.15) one concludes that the set of semi-
norms

() [

is equivalent to the set (E.7) and, consequently, also to the set (E.I). This
implies that each (continuous) linear functional on Q) has the form

00

(g,v)= Σftc, (E.17)
/ = 0

22 Commun math. Phys., Vol. 14
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where gn is a polynomially bounded sequence, and conversely, each
series of the type (E.17) defines together with (E.10) a continuous linear
functional on S>. This completes the proof of Theorem E.I.
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