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Abstract. The connection between a space of quadratically integrable functions
of real Variables q and a Hubert space of analytic functions of complex variables z
established by BARGMANN is used to introduce quantised field operators for which
the (5-functions of the commutation relations in ^-space are replaced by analytic
kernel functions in z-space, and a reference to distributions can be avoided. BARG-
MAOT'S representation is first somewhat modified, so that the derivative terms in
the field equations retain their form in the new representation. Local interaction
terms in g-space obtain a non-local appearance in 2-sρace. The transition to a
4-dimensional formulation in 2-space has to resort to a Euclidean metric. The
equations can be derived directly by starting from an action integral in z-space, and
applying a variational calculus in which variations are restricted to analytic func-
tions. Explicit analytic expressions are given for free field propagators.

Introduction

BARGMANN established in detail a correspondence between a space of
quadratically integrable functions of real variables and a Hilbert space
of analytic functions [1]. If one associates complex variables with crea-
tion operators of harmonic oscillators, the connection of analytic func-
tions of these variables with wave functions in configuration space has
been known for some time, but the scalar product of the analytic func-
tion space in BARGMANN'S representation and the related kernel func-
tions were new in quantum mechanics, and may still reveal unexplored
relationships.

BARGMANN [2], GLAUBER [3], KLATJDER [4] and others have at-
tempted a generalisation of the related concepts to the case of an infinite
number of complex variables connected with the description of a quan-
tised boson field in terms of infinitely many oscillator components. This
involves the interesting concept of "coherent states", but is not the line
to be followed in the present work.

The rather different approach, to connect spaces of analytic functions
with operators of quantum field theory to be followed here, is based on
the simple feature of Bargmann's representation that the ό-function
kernel of the unit operator is replaced by a reproducing kernel which is
an analytic function of its variables. If one succeeds in replacing the
δ -functions in the commutation relations of quantised field operators by
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analytic functions, and can avoid a reference to distributions and to the
related improper field operators, the advantages of analytic functions
may provide a powerful tool to attack some of the mathematical pro-
blems of quantum field theory.

As will be seen, in the framework of non-relativistic quantum theory,
the second quantised operators as functions of complex variables z will
have such analytic equal time commutation relations, and will be proper
creation and annihilation operators of normalisable single particle states.
Similar relationships can be established for relativistic fields, if one treats
the time variable on a separate basis, and performs the transformations
to complex variables only with respect to the space coordinates q.

If one aims at a symmetric 4-dimensional form of the equations in
z-space, an attempt of a direct transformation of the g-space equations
forces one to adopt a Euclidean metric, because of the sign of exponents
in Gaussian integrations. SCHWINGER [5], NAKANO [6], SYMANZIK [7]

and others have discussed field theory in Euclidean space, the connection
of which with field theory in Minkowski space-time can be established
by means of analytic continuations. According to SYMANZIK, the exist-
ence of the related Euclidean quantum field theory is a necessary con-
dition for the existence of solutions of a local theory in Minkowski space.
Restrictions on Euclidean field theories in 2-space derived from ana-
lyticity requirements would therefore have consequences in Minkowski
space too.

Bargmann's transformation to £-spaee is adopted in a somewhat
modified form, in which it appears more directly as a Gaussian averaging
process, the spread of which in g-space is exhibited explicitly by a length
a which can be chosen arbitrarily. Local interactions in g-space lead in
z-space to field equations and Green's function equations of a non-local
appearance, with an interaction kernel W. The kernel W itself depends
on the length a, but this is only a feature of the representation. As long
as the action integral in g-space is independent of a and the averaging
process, all physical conclusions will remain independent of it. One could
explore whether this representation does not suggest some modification
of the theory in which a fundamental length of physical significance
appears.

Analytic Single Particle Wave Functions and Kernels

According to BARGMANN [1], quadratically integrable functions φ (q)
of a real variable q can be transformed into analytic functions f(Z) of
a complex variable Z by means of a transformation

= fdql(Z,q)φ(q) (la)
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with

A (Z, q) = π-V* exp [- \ (Z2 + Φ) + j/2£«] . (lb)

The notation has been slightly changed, so that the original symbols can
be used with the somewhat modified meaning given below. The scalar
product of two functions f{Z)> ff{Z) of the new function space can be
defined by the integral

W
where

dμ(Z) = ~^^- exp[- ZZ} (Id)

and Z = X + i 7, ZZ = X2 + 7 2 . This is equal to the scalar product

(φ,φ') = fdqφ*(q)φ'{q) (le)

of the two corresponding functions φ(g), φ'' {q)
With some care [1], the inverse operation

φ(q) = fdβ(Z)Λ(Z,q)f{Z) (2 a)

can also be defined, and the kernel A (Z, q) establishes a one-to-one
correspondence between the L2 space of functions φ(q) and a Hubert
space of analytic functions f(Z). One finds

/ dfi(Z)A(Z9 q)Λ(Z, qf) = δ(q-q')9 (2b)

fdqA(Z,q)A(Z',q) = ex$[ZZ'] , (2c)

and exp [ZZ'] plays the role of a reproducing kernel,

fd/l(Z)exv[ZZ']f{Z') = f(Z). (2d)

The transformation is closely related to the functions

φx,k(q) = (πα*)-V4 exp [ikq] exp [ - ^ ~ ] , (3a)

which represent wave packets of average position x and average mo-

mentum Hk. For wave functions of this form the inequality A q ' Δ f = ~o~~ ̂

of the uncertainty principle for the mean square deviation of the co-

ordinate q and momentum p = — ifod/dq becomes an equality [8], and

they are eigenfunctions of the operator q -f- ia2 p/h with eigenvalues

z = x + iα2λ;. They satisfy the relationship

t,iΛq') = δ(q-q') (3b)

and lead to a continuous decomposition [4]

φ{q) = f dxd(-k) ψχ;]k{q) f dq> φ^M) φ{qΊ ( 3 c )

of the functions φ{q).
18 Commun. math. Phys.,Vol. 12
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The complex variable z to be used will be related to the parameters
of the wave packet (3 a) by

z = x — ia2k , z = x + ia2k , (4a)

1 _ i _
x = γ{z + z), h = -^-{z-z). (4b)

BARGMANN'S choice of the transformation kernel corresponds to a value
a = l/]/2 of the positive real constant a which describes the spread of
the Gaussian wave packet. With

Z = W (4c)

one can write

A (Z, q) = exp \j^\ ψ£,k(q) exp [- -^r] . (4d)

The analytic functions f(z) to be considered will be related to the func-
tions f(Z) by

[] (5a)
With

A{z,q) = exp [- ~ Z*] A (Z, q) , (5 b)

they can be obtained directly from the functions φ(q) by the trans-
formation

f(z) = fdqA(z,q)φ(q). (βa)

The factor exp \ — -^Z2\ in the relationships (5a) (5b) is chosen to make

the transformation of differential operators simpler. The kernel A (z, q)
can also be written in the form

A (z, q) = (πa*)-V* exp [- ^~β] . (6 b)

The scalar product of two functions f(z), f (z) in the Hubert space of
analytic functions f(z) can be defined as

(f,f') = fdμ(z)mt'(z), (6 c)
with

dxd(-k) { }

= 2 π

This is the same as the product (lc) defined for functions f{Z), f'(Z)
which are related to f(z), f (z) by the relationship (5 a), and is equal to
the scalar product (le) of the functions φ(q), ψ [q)>
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The relationships (2 b) (2 c) take the form

fdμ(z)A(z, q)A(z, q') = δ(q - q') , (7a)

fdqA(z, q)A(z', q) = exp [- (* j / * ' ] • (7b)

The reproducing unit kernel is

ϋ(z-z') = exp[- {3>ϊJΎ], (7c)
and one has

fdμ(z')U(z-z')f(z') = f(z). (7d)

The correspondence between operators of the two function spaces is
defined by the unitary mapping A. Any integral operator kernel K(q, q')
of an operator acting on functions φ (q) corresponds in the 2-representa-
tion to a kernel

K(z, z ) = // dq dq' A (z, q) K(q, q') A (z', q') . (8a)

The (5-function kernel δ{q — q') of the unit operator is transformed
according to (7b, c) into the unit kernel U(z — z'). One finds the
relationships

δ(q-q')<->U(z-z'), (8b)

q')^~(z + z')ϋ(z-z'), (8c)

q')<->i^(z-z')U(z-z'), (8d)

(8β)

In the last correspondence, the factor multiplying the unit kernel

U(z — z') is, for z = z' and with -^ (z + z) = x, a Gaussian average of

V(q). The relationships (8 c, d) can also be written in the operator form

(9a)

p = — — <-> — —- . (9b)
^ % dq i dz v '

The simple transformation (9 b) of the differential operators ensures
at the same time a very simple connection between Fourier representa-
tions of the functions φ(q) and f(z). In writing

( 1 O a )

18*

γ^ f dKexp[iKz]ϊ(K) , (10b)
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the transformation (6 a, b) gives after elementary integrations

J(K) = (ϊπaψ* exp [-}α 2 p] φ(K) . (10c)

Functions 9?fe, fe #3) of three real variables are transformed into
functions f(zv z2, 23) by means of a kernel

AW (z, q) = A {z1, qj A (zt, q2) A (za, qs) . (lla)

In the space of analytic functions f(zv z2, zz), the scalar product is
defined by integrations with d3μ (z) = dμ (z±) dμ (z2) dμ (z3) and the repro-
ducing unit kernel is

- z') = ϋ(Zl - z[) ϋ(z2 - %) U(za - z'z) . (lib)

BABGMANISΓ actually establishes the corresponding relationships for func-
tions of ̂ -variables, and thus for the 3n variables resulting after a trans-
formation of the wave functions of configuration space.

Second Quantised Operators

For non-relativistic particles, in terms of a complete system of single
particle states φκ(q) and corresponding creation and annihilation oper-
ators ακ, α+, the quantised field operators Ψ[q\, Ψ*[q'] can be written
in the form

ΣψH(q)«i, Ψ*kΊ = Σφi^')^ (12a)

In the case of fermions, the field operators satisfy the anticommutation
relations

{Ψ[qlΨ*[q'l}+=δW(q-q'),

The variables q stand for the three space coordinates. Internal variables,
like spin, should be included, but these will not enter into the trans-
formations.

In applying the same transformation

fκ(z) = fd*qAW(z,q)φκ(q) (13a)

to all single particle wave functions, the operators (12 a) are transformed
into the operators

ψ* (?) = / cPq' Ψ* [q1] A W (?, q') , '

which can be expanded as

"^(2) = Σ /«(



Analytic Field Theory 259

in terms of the same creation and annihilation operators aκi a£. The new
field operators depend on the complex variables z and satisfy the anti-
commutation relations

{Ψ*(z'),Ψ*(z)}+ = 0.

These follow by transforming the relations (12 b). The δ-function in
these is replaced by the unit kernel U^(z — z') which is an analytic
function of the variables z and zr.

Whereas Ψ[q~\, Ψ* [#'] are improper operators related to distributions,
apart from a normalisation factor, ψ* (z) is the creation operator of the
single particle state ψx^iq) which corresponds in 3-dimensions to the
wave function (3 a).

The number operator can be transformed into the form

N= f<Pμ{z)Ψ*(z)Ψ{z). (14a)

If one includes the weight factor in the definition of a phase space
density operator

ρ(z, z) = ρ(x; k) = exp [(^p)*] ψ*® ψ& ' < 1 4 b )
one can write

^-Lj-J-^a fc). (14c)

In contrast to density operators in g-space, ρ(z, z) is a proper operator,
and one finds

ρ(s,z)ρ(z,z) = ρ(z,z) . (14d)

That is ρ(z, z) is a projection operator, with eigenvalues 1 and 0 and all
its expectation values are non-negative.

The connection between one particle operators in the q and z repre-
sentations is given by the correspondence

ffd*qd3q'Ψ*[q]K(q,q')Ψ[q']
(15)

where the kernels K and JΓ are related to each other according to the
transformation (8 a).

The total momentum operator

P i = I dzμ(z) gj{z, z ) , j = 1, 2, 3 (16a)

can be expressed in terms of the momentum density operator

In analogy to (14 b), one could define a phase space momentum density
18a
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operator g$ (x h) = exp [— a2 k2] g^. In considering z and z as independent
variables, one can write

M k k ) ψ * ® ψ{z))' (16c)

so that the phase space density operator determines the momentum
density. Note that

l_/_9 M = i L n*A\
i \dz} dzj a2 dkj ' [lΌa)

With the correspondence V\±-+ V% the kinetic energy of a system is
described by the operator

T=-^fd*μ(z)Ψ*(z)F2ψ(z). (17a)

A two-body interaction potential F ^ ) , #(2)) corresponds in general to
a non-local kernel ^(Zft), 2(2) z[^, z[2)) in 2-space, and to an inter-
action energy operator

'a)) d*μ{z{2))

The Hamiltonian of a non-relativistic system of fermions, in the absence
of external fields, can be described by the operator H = T + F. One
could attempt to find models with an interaction which is simpler in the
^-representation.

Field Equations. Green's Functions

As an example, a 4-component spin 1/2 fermion field Ψ, Ψ in inter-
action with a neutral scalar boson field Φ will be considered in the
following, with a local interaction density in g-space of the form
gΦ[q] Ψ[q] Ψ\<ϊ\- The canonical formulation of relativistic field theory,
with a Hamiltonian and equal-time commutation relations, imitates con-
cepts of a non-relativistic theory. In the same spirit, in a given reference
system, one can attempt first to transform the fields to the z-representa-
tion only with respect to the three space coordinates. The equations will
not have an invariant form, but their content will be equivalent to the
formulation in q-space.

The Hamiltonian of the model considered can be obtained in terms
of z-space fields by a straightforward transformation of the g-space
Hamiltonian, in the form

H = fd?μ(z) Ψ(z, t)(-y iF, + m) Ψ(z, t) (18a)

+ g fff d*μ(z)d*μ(zf)d*μ{z") W^(z,z'9z") Φ(z,t) Ψ(z\t) ψ{z",t).



Analytic Field Theory 261

The transformations from q-space field operators are given by the
Eqs. (13b). The real field Φ[q, t] can be transformed by the analogous
equations either into Φ(z, t) or into Φ(z, t), and the integrands of the
terms of (18 a) could be symmetrised with respect to z and 2. Units with
% — \} c = 1, will be adopted. The local g-space interaction appears in
a non-local form in z-space, described by the kernel

(z, z', z") = / d*q AW {z, q) AW (zf, q) AW (z"9 q) , (18b)

which is symmetric in z, zf, z". A straightforward integration gives

if (3) («, »', z") = (π ( y α) ) exp [ ^ ^ j .

(18c)

The equal-time canonical commutation and anticommutation rela-
tions are transformed into

{Ψ{z, t), Ψ(z', t)}+ = γ0 Z7W [z - z') ,

(z',t)}+ = 0, {Ψ(z,t),Ψ(z',t)}+ = 0,

[Φ(z,t),Φ(z',t)] = 0.

The field equations result from

Ψ=i[H,Ψ], ~Ψ=i[H,Ψ], -^Φ = ί[H,Φ] (19c)

in the form

9 If d3μ(z') d*μ(z") WW{z, z', z") Φ{z', t) Ψ(z", t) = 0 , (20a)

γoijt+y ir* + ™)

+ 9 If dzμ{z') d?μ{z") Ψ{z", t) Φ{z', t) WW{z, z\ z") = 0 , (20b)

zf) d*μ{z") WW(z, z\ z") Ψ(z\ t) Ψ(z", t) = 0 . (20c)

The field Φ(z, t) satisfies Eq. (20 c) with z replaced by z. A direct trans-
formation of the g-space field equations into 2-space would give the same
Eqs. (20a, b, 0).

If one wishes to make a similar transformation for the time variable t,
one finds that the exponents of the Gaussian factors of the transformation
(6 a, b), of the metric (6d) and the unit function (7 c) have all to be taken
with the sign given in these expressions, and the opposite sign would
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lead to divergent integrals. One would then obtain total exponents of the
type ql + q2, -1- q2 + t2 and z\ + z\ + 2§ + z2, with no simple invariance
properties. Instead, one can attempt a transition to 2-space within
a Euclidean metric and connect the results with physical conclusions in
aMinkwoski metric by means of analytic continuation. In writing g4 = it,
and considering g4 as a real variable, the transformation

Ψ(z) = ψ{z; zύ = / dqt A (z4, ί 4) y(β; ? 4) (21 a)

will define fields Ψ(z) depending on four complex variables z, and the
relevant functions will contain the Euclidean invariant form z2 = z\ -f 2;|
-f 2̂ | -f z\. The interaction kernel in 2-space which describes local ^-space
interactions will be

2, z', 2/;) = / #^i( 4)(2, g) ^4W(z', g) AW{z'\ q) , (21b)

where dtq = # ^ ĉ g4 and l̂̂ 4) (2, g) •= A^ (z, q) A (z^, q^). Integration

(21c)
With dV(z) = <Pμ{z) dμfa) and

_ F = = y i . . a _ + . . . + y i ^ _ ( 2 ld)

d2 a 2

-Π. = liΓ+ + l4-. ( 2 1 e )

where γv . . ., γi are anti-Hermitian, the Euclidean equations corre-
sponding to Eqs. (20a, b, c) can be transformed into the form

(i Vz + m) ψ(z)
(22a)

+ gffd*μ(z')d*μ(z")Wl*>(z,z',z")Φ{z')Ψ(z") = O,

') d*μ(z") W^{z, zf, z") ψ{z") Φ{zr) = 0 , '

-9 If d*μ(z') d*μ(z") W&(z, z\ z") ψ(?) Ψ{z") = 0 . ^ ^

The same equations could be dirived from an action integral in
4-dimensional 2-space, obtained by transforming the action integral of
Euclidean q- space

(23a)
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into z-space, that is from

I = - f d*μ(z) Ψ(z) (V, + m) Ψ(z)

{- Φ(z) V*Φ(z) + κ*Φ(z) Φ(z)} (23b)

- g fffd*μ(z) &μ{zf) d*μ(z") WW(z, z\ z") Φ{z) ψ{zf) ψ(z") .

At least within the framework of a c-number theory, the equations

0 0 0 ( 2 3 ^

would give (22 a, b, e). This assumes, however, a variational calculus in
which variations are restricted to analytic functions of the variables z
with the reproducing kernel £7<4) (z — zf). That is, variations δΦ(z) of the
function Φ (z) have to satisfy the identity

δΦ(z) = fd*μ(z') m*>(z - zf) δΦ(zf) , (24a)

and the unit kernel TJW (z — z') = C7(3) (z — z') U(z^ — Z4) appears instead
of the δ -function in expressions like

Starting from an action integral in z-space, the Green's function equa-
tions of quantum field theory can be obtained by means of a simple
formal quantization with the help of external sources [9, 10], without
reference to q-space. In introducing analytic source functions £(z), η(z),
J(z), where ξ, η are anti-commuting quantities, and replacing the action
integral / by

/' = / + / d*μ(z) {|(2) Ψ(z) + Ψ(z) η(z) + Φ(z) J(z)} , (25a)

the corresponding c-number field equations would have in addition to
the terms of the Eqs. (23 c) additional inhomogeneous source terms. The
generating functional

,J] (25b)

of the Green's functions satisfies the equations obtained by applying the
inhomogeneous equations on χ, after replacing the fields by functional
differential operators according to

Ψ(z)->iτ|. τ, ψty-+L-A— φ(z)-+i-JL^. (25c)
v ; δξ(z) ' v ' % δη(z) ' v ' δJ(z) v '
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One obtains the equations

i ^ - g ff d'μ(z') d*μ(z") W& (z, z', z") -~ψy γ^}

llv,Jl = O, (26a)

?,«/] = 0 , (26b)

(26e)

If one expands χ [f, τy5 J ] in a power series

- Σ ^γjj^ I'" I dAΦσ>) ^ « n )

(2βd)

• >?«/")) nizo)) J(zω)

the Eqs. (26a, b, c) define the coupled equation system of the Green's
functions G. With the help of simple identities, some of the variables z
related to the sources J (z) can be changed into variables z, according to
convenience. The functions G are simple ^-transforms of the corre-
sponding time-ordered Green's functions in Euclidean g-space.

The relationship between Green's functions and scattering amplitudes
is similar to that in g-space. In quantum electrodynamics, the Green's
function equations and their perturbative solution have been studied in
some detail [11]. In terms of Fourier representations, the expressions
obtained are almost identical to those in g-space, due to the simple
relationship corresponding to (10a, b, c). In z-space, on the other hand,
the equations contain the non-local kernel W^{z, z', z"), and a theory
corresponding to local g-space interactions can be considered as embedded
in a theory with more general W^ kernels. One simple modification of
TF<4> which has been studied leads to finite self-energy and vertex expres-
sions and, in the limit, to a simple regularisation of electrodynamics.
This should be reported by one of the authors (D.K.S.) in a separate paper.
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Free Particle Propagators

The effect of the analytic representation can be exhibited explicitly
in the case of the free particle propagators. For a scalar field, the free
one-particle Green's function A {z, z') satisfies the equation

( α + κ*)A(z, ?) = UW(z - %') . (27a)

The solution of the corresponding equation for a spin 1/2 field,

(%VZ + m) 8{z, z') = UW{z - z') (27b)

can be constructed from A (#> z') by writing

S(z, z') = ( - »F, + m)Aκ = m(z, z') . (27c)

As in g-space [12—14], a convenient parametric integral form of
/\(z,z') can be obtained by introducing a "proper-time parameter" s,
and solving the equation

ί - ^ - Δ O * , ?;s) = (Πz + κ2)A(z, z' s) (28a)

Λvith the initial condition

Δ(s , »' * = 0) = ^ ( 4 ) (* ~ *') (28b)

Proceeding in a similar way as in q-space, one finds

A Green's function solution of Eq. (27 a) is given by

A{z, z') - i fdsAiz, z' s) . (28d)
0

As in Euclidean q-space, and in contrast to Minkowski q-space, the
0

integral i f dsA{z, z' s) defines the same Green's function. Apart from
— 00

a factor, the integrand (28 c) would reduce to the corresponding g-space
function for α2 = 0. Its essential singularity has been deplaced from
s — 0 to s — iα2 in the complex s-plane and is avoided by the integration
path.

The integration can be directly performed for zero rest mass, κ = 0.
In writing D(z, z') for the function A{z, z') for κ = 0, and introducing
the notation

X = (z - z'f , (29a)
one has

D(z,z') = D(X), (29b)
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with

D (X) = % as , 9 , . s - exp — - —$—:—

or

J ^ l { [ ^ ] l ] . (29d)
This is an analytic function of z and z' for all finite values of the complex
variables.

For κ φ O , with the expressions (28c, d), one still has

A(z,z')=A(X), (30 a)

and from the Eq. (27 a) one derives the differential equation

(30b)

For X = 0, the expression (28 c, d) gives the finite value

o (oϋc)

= κ2 α4 exp [κ2 α2] Γ ( - 1, κ2 α2) ,
where

oo

/y e x p ^ y ] (30d)

is the incomplete jΓ-function. In the limit of large real positive X, the
same expression gives

lim Δ(-Σ) = 0 . (30e)
X->oo

The solution of the differential Eq. (30 b), with the boundary conditions
(30c, e), can be constructed for real X by standard methods [15].

If one multiplies the Eq. (30b) by X1/2, it is transformed into the
Sturm-Liouville form

} = -χ i μ

and the boundary conditions become

XV*A(X) = 0 for X - 0 and X - oo . (31b)

The corresponding homogeneous equation,
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has the two independent Bessel function solutions

(32 c)

χyη,

which satisfy the boundary conditions

SΌ(O) = O, ^ ( Z = OT) = 0 . (32d)
The Wronskian of the two functions is — \jX which, combined with the
factor 4:X in the first term of the differential Eqs. (31a), (32a), leads to
the Green's function

for (32 e)

~ K± (x

The corresponding solution of the inhomogeneous differential Eq.
(30 b) is accordingly

Δ(X) = Co(X) Kj, (xXW) + C^ (X) I, (κZV») , (33a)
with

x

[&r] , (33b)

Coo (X) = 4 ^ f dYK^κ 7V2) γi/2 e X p [- ^ j . (33 c)
x

The solution can be checked to satisfy the boundary conditions (30 c, e).
Since the integral representation (28 c, d) is valid for complex X = (z — z')2,
the solution can be extended to complex values of the argument. For
κ = 0, the expression (33 a) of /\{X) can be shown to reduce to the
expression (29 d) of D(X). The Bessel function K^κX1!2) is singular at
X — 0, but the function/\(X) has been constructed using the boundary
condition that it should be finite at that point. The two terms of the
expression (33a) of /\{X) are multi-valued functions, but the sum of the
two terms gives a single-valued analytic function for all finite values of
X. These last points have been investigated in detail by Dr. R. B. JONES.

The authors would like to express their thanks to Dr. R. B. JONES for helpful
discussions and contributions.
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