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Abstract. We consider a boson field φ(x) under an interaction of the form
/ V(φk(x))dx, where φk(x) is the momentum cut-off field, and V(oc) is

\x\<τ
a continuous bounded function. Under a weak regularity condition on F(α), we
prove that the total energy operator is self adjoint, that the asymptotic fields exist
and that the scattering operator exists.

1. Introduction

The object of this paper is to study a wide class of quantum fields
where the interaction is given by a local relativistic interaction with
a momentum and space cut-off. The fields will be self interacting boson
fields, where the energy operator is given in the form

H = H0+ f V(φk(x))dx.
\x\£r

Ho is the free energy operator of a free boson field of strictly positive
mass m. F(α) is a real function of a real variable α, such that F(α) is
the Fourier transform of a finite measure. φk{x) is the free field with
a momentum cut-off at k. In two dimensional space time GLIMM [2] has
investigated the case where V is a semibounded polynomial, and he was
in this case able to remove the momentum cut-off. The case where
V (oή = λoc* and still in dimension two, can be treated more thoroughly,
as shown by JAFFE and GLIMM [3].

One can in this case after removal of the momentum cut-off prove
that the total energy operator is self adjoint on the intersection of the
domains of its free and interacting part. For the case where V (a) is
a semibounded polynomial but in dimension four and with a momentum
cut-off JAFFE, LANFOKD and WIGHTMAN [4] were able to prove that the
total energy is a self adjoint operator.

We shall prove that in the case V is the Fourier transform of a finite
measure, the interaction will be bounded, and so there is no problem
with the self adjointness of H. But the main object of this paper is to
prove existence of asymptotic fields, and the existence of the scattering
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operator. Some of the methods are related to the methods used in Refs.
[5-7].

2. The Total Energy Operator

We shall use the Fock space representation. The Fock space ^ is
a Hubert space where the elements are sequences of functions
/ = {/0, f1, . . .} where fn(p1, . . ., pn) is a symmetric function of
n-variables px, . . ., pn; pt ζϋ3. The inner product in !F is given by

(f>9)= Σ n l f ' ' ' ffn(Pl> ' '>Pn)9n(Pl, , Pn) " ^ Γ ' ' ' ~~&γ
n = 0 ^ ' ^

where ω(p) — (p2 + m2)1/2 and m > 0. The annihilation operator a(p) is
defined by

(a(p) f)n (p1} . . ., pn) = [n + 1) ω(^)~^ 2 fn+1{p, p1: . . ., pn) .

The creation operator α*(p) is the formal adjoint of cι{p), and we have

The free energy operator Ho is defined by

n

{HQf)n {px, . . ., pn) = Σ ω(Pi) fniPl, ' >,Pn)

Ho is obviously self adjoint on its natural domain of definition Z)o.
Let h(:L2{B3). It is well known that a(h) = / a(p) h(p) dp and

a*(h) = f a*{p) h(p) dp are closed operators with domains containing
D 0 5 and α*(Λ) is the adjoint of a(h). Moreover, a(h) + α*(J) is essentially
self adjoint on Do.

The cut-off field operators are given by

φh(x) = 2-V2 (2π)~3/2 / (e*** α(p) + e-^* α*(p)) Wfcίp)-1^ ^ ^

where ωfc(p)-1/a= ω(p)-1/2 for |p| ^ k and ω ^ ^ ) ' 1 7 2 = 0 for \p\ > k.
By the remark above φk(x) is a self adjoint operator with domain con-
taining Do, and it is essentially self adjoint on Do.

The interaction V is formally given by

V= f V(φk{x))dx.
\x\£r

We assume that V is the Fourier transform of a finite measure

V(a) = fe"'dμ{t), f d\μ\ < oo .
We now define

where the integrals are strong integrals, i.e. strong limits of approxi-
mating Riemann sums. That the strong integrals above exist follows
from the fact that eιt ^ ^ is an operator which is uniformly bounded and



218 R. HOEGH-KROHN:

strongly continuous in t and x. Since φk(x) is self adjoint, eιt^x) is a
unitary operator which depends strongly continuously on t, and

eitΦk(χ) = U(-x) eil**M U{x) ,

where U(x) is the strongly continuous unitary group defined by
h

(U(x) f)n(Vl, ...,Pn) = ei = ι fn(Pl, ...,pn).

Theorem 2 . 1 . Let μbe a finite measure on the real line. Then

F = / dx

where the integrals are strong integrals, defines a bounded operator on BF. Let

F(α) = fdμ{t)eitx .

If F(α) is real then V is self adjoint, and if V(oc) is positive then V is
positive.

Proof. We have already seen that the strong integrals denning F
exist. That μ is a finite measure implies that F is a bounded operator.
That F(α) is real implies that μ(—t) = μ(t), which again gives us that F
is self adjoint. Let F(α) be a positive function, and let Eλ(x) be the
spectral resolution of φk{x). For / ζ J^ we get

(/,7/)= / dxfdμ(t)fd(f,Ex(x)f)e"*

= / dxfd(f,Eλ(x)f)V(λ)
\x\£r

which is positive since V (λ) is positive. This proves the theorem.

3. The Asymptotic Fields

We now assume that F (α) is a real function. Since F then is a bounded
self adjoint operator we get that

H = Ho + F

is a self adjoint operator with the same domain Do as Ho. Therefore
eitH as well as eitH° leaves Do invariant. For h ζ L2 we define

af(h) = e~ίtH eitΞ° a#{h) e-itH° eitH

where a^(h) stands for a*(h) or a(h). aψ(h) is unitarily equivalent to
the closed operator a#(h), hence it is a closed operator. Since eίtΞ and

e-ί t E0 i e a v e s j)Q invariant and D o is contained in the domain of α# (h), we
find that Do also is contained in the domain of άf(h).

Lemma 3.1. Let D1/2 be the domain of Hi12. Let h £ L2(RS), then aψ(h)
is a closed operator with domain containing D1/2. Moreover aψ{h) maps
D1f2 into β? uniformly bounded in t and h with respect to the natural norm
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in D^z Let g and h be in L2(R3), then aψ{h) maps Do into the domain of
aψ{g), and aψ(g) aψ{h) maps Do into 3F uniformly bounded in t, g and h
with respect to the natural norm in Do.

Proof. Since V is bounded there exist two constants a and b such that

D1j2 is the completion of Do with respect to the norm (/, (Ho + 1)
Using the inequalities above we see that the norm giving the domain
of HQ12 is equivalent to the norm giving the domain of (H -f α)1/2.
Therefore D1/2 is also the domain of (H + α)1/2, so that eι t H as well as
eitH° leaves D1/2 invariant. It is well known that D1ι2 is contained in the
domain of a#(h), and for / ζ D l / 2 , \\a#{h) f\\ ^ c \\h\\2 \\(H0 + I)1/2 /||
where c is a constant depending only on m. Hence we get that D1/2 is
contained in the domain of aγ{h) and for / ζD1/2,

{H + a)

This proves the first part of the lemma, to prove the second part we
proceed as follows. It is well known that a#(h) maps Do into the domain
oίa#(g) a n d f o r / ζ D 0 5

\\a#(g)a#(h)f\\^c'\\M2\\g\\\\(H0+l)f\\

where c' depends only on m.
Since e~έ * H° and e* * H leaves Do invariant, we see that ά^ (h) e-i tHoetiH

maps D o into the domain of a#{g). Hence a^(h) maps D o into the
domain of άf(g) and for / ζ Do

af(h) f\\ g c' \\g\\, \\h\\2 \\(H0 + 1) β»*. e«H /||

= c' \\g\\Ahl\\(H + a') f\\

^c'\\g\\2\\hl\\(H0+b')f\\.

The last two inequalities comes from the fact that V is bounded.
This proves the lemma.

Let φ and ψ be in Do and h in L2(EZ). Consider the function of one
variable t given by:

(φ, af(h) ψ) = (e-iiH* eitH φ, a#{h) e-itB» eitΞ ψ) . (3.2)
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Consider also the function of two variables given by

(e-isH0 eisH A a#(h) e-itH0 eitH φ)

(3 3)
= (α#(ft)* e-isH° eisH φ, e~itH° eίtE ψ) .

We see that for s = t this is the function given in (3.2). Since eitH

leaves Do invariant, we find that (3.3) is diίferentiable both with respect
to s and t. The partial derivatives are given respectively by

-itH° eitΞ ψ)
and

(a#(h)* e~isH» eisH φ, e~itE« iV eitπ ψ) .

Using that V is a bounded operator and a^(h) as well as afe(h)* are
closed operators with domains containing Do, and that e~ίtH° as well as
eίtΠ leaves DQ inΛ^ariant, we get that both the partial derivatives are
continuous in s and t. This gives us that (3.2) is a differentiable function
of t and

, af(h) ψ) = (e-itH*iVeitH φ, a#{h) e~itH° eitH ψ)

e~itH° eitH φ, e~itH° i V eίtH ψ) .

It is well known that the commutation relations of Ho and a
may be given in the form

eitH* a#(h) e~ίtH° = a#(h±t) (3.4)

where + goes with α* and — with a and ht(p) == eίtωW h(p). Using this
the formula above may be written.

Tfi- (Φ, af(h) ψ) = (iV e«* φ, a#(h± t) e«* ψ)

+ (a#{h± t)* eitH φ, iVeitH ψ) .

Lemma 3.6. Let \μ\ be the absolute value of μ. If \μ\ has a first order
moment, then for h ζL2(Rs), V leaves the domain of a^(h) invariant and

\\[a#(h), V]\\ g C • sup |/ A(p) ωh{p)~^ e'" dp\ .

The constant C depends only on the first order moment of \μ\ and on r.
Proof. From the commutation relations of a^(h) we get

= is[a(h), φk(x)] e

= 2-V2(2π)-2/3 is f h(p) ωk{p)-V* e-tv* dp e4»**<*>.

So that [a{h), e

ίsφ*(x)] is a bounded operator, and therefore eisφk(x)

leaves invariant the domain of a(h). Since eίtφk<^x) is strongly continuous,
V ψ may be approximated strongly by Riemann sums of the form



Fields with Cut-Off Interactions 221

Σ Cnm eiSnΦk<>Xm) ψ. Let ψ be in the domain of a(h), then
nm

Φ) Σ °nm eiSnMXm) Ψ = Σ Cnm eis»**i*Ja(h) ψ
nm nm

+ Σ °nm 2~1/2 (2π)~3/2 isn f h{p) ωk(p)"^2 eriXmΊ> dpeίs* ^ ^ ψ .
nm

Since \μ\ has a first order moment, we see the right hand side con-
verges strongly to

Va(h) ψ + 2-V2 (2π)~3/2 / dx f dμ(s) is

φ*W ψ .

Since a(h) is a closed operator we get that the left hand side con-
verges strongly to a(h) Vψ, and that V ψ is in the domain of a(h). By
a direct estimate of the norm of the second term above, we see that the
lemma is proved for a(h). The proof for a*(h) is the same up to trivial
modifications.

λVe use the lemma to write (3.5) in the form

-ji-iφ, of (A) γθ = (φ, er«π [a#(h±t),iV] e«« ψ) .

Using that aft (h) is a closed operator and the fact that V leaves the
domain of ά^(h) invariant, we see that e~itH [a^(h± t), i V] eitΠ ψ is
strongly continuous for ψ £ Do. Integrating both sides of the identity
above we thus get

(φ, af(h) ψ) - (φ, a#(h) ψ) = (φ,fdse-i°H [a#{h±s), iV] e' »

Using the estimate for the norm in Lemma 3.6, we find that the integral
above gives a bounded operator. This gives the formula

af(h) - a#{h) = fds e-isΠ [a^(h±8),iV] eisH (3.7)
o

where the integral is taken in the strong sense.
Theorem 3.8. Let hζL2(R3) and φ^D^. Then af(h)φ converges

strongly as t tends ίo ̂ c o . The limit operators a^(h) are closable operators
defined on D ^ , and α ± (h) maps D1/2 into ^ uniformly bounded in h with
respect to the natural norm in Ώλι%. If we denote the closure of a^(h) also
by (pfi(h)} then α^ (h) and a±(h) is the adjoint of each other.

Proof. Let Lo be the dense subspace in L2, consisting of functions h,
such that h = 0 in a neighbourhood of p = 0, and h(p) cok(p)~1^ is in
C™. I t follows from the estimate in Lemma 3.6 that for h ζL0

| | [#^(&± e), i V]\\ tends to zero faster than any inverse power of s. By
(3.7) aψijb) — aft(h) converges in norm as t tends to ±00. Since φ ζ Dί/%,
hence in the domain of a^ (h), this gives that of (h) φ converges strongly.
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By Lemma 3.1 aψ{h) φ is uniformly bounded in t and h hence we get
that aψ (h) φ converges strongly for all h ζL2. By the same lemma aψ (h)
is uniformly bounded in t and h as a mapping from D1/2 into J^. Hence
the limits α^ (h) must also map D1/2 into ^ uniformly bounded in h with
respect to the natural norm in ΌΛj2. Let φ and ψ be in Dxi2. Since

(af(h)φ, ψ) = (φ,at(h) ψ)

we get by strong convergence that

(α* (Λ) φ, ψ) = (^, α ± (fc) γ>) .

Hence the adjoint of a^(h) is densely defined, and therefore ά^(h) is
closable. It follows also from this identity that αξ. (Λ) and α ± (ft) are the
adjoints of each other.

From now on άζ(h) denotes the closed operators.
Theorem 3.9. Let g and h be in L2(BS). Then ά^(h) maps Do into the

domain of a^(g), and a^(g) a^(h) maps DQ into £F uniformly bounded in
g and h with respect to the natural norm on Do. ά^(h) satisfies the same
commutation relations on Do as do a^(h) on Do.

H and α^ (h) satisfy the same commutation relations as do HQ and aft1 (h)
in the sense that

eitΈ a±{h) e-itH = a±(h_t)

eitΉ a*±(h)e-itΉ = a*± (ht)
on D1/2.

Proof. Let φ and ψ be in D o . By Theorem 3.8 (φ, af{g) άf(h) ψ)
converges to (a^(g)* φ, ά^(h) ψ). By Lemma 3.1

\(φ, af(g) af(h) ψ)\ £ C \\g\\, \\h\\z \\φ\\ \\(H0 + 1) ψ\\ ,
hence

| (αf (g)* φ, o f (A) ψ)\ 'S C \\g\\2 | |A| | 21^| | \\(H0 + 1) Ψ\\ .

From this we get that a^(h) ψ is in the domain of ά^_{g), and the
uniform boundedness with respect to g and h. Moreover we see that
(φ, aγ{g) aγ(h) ψ) converges to (φ, a^(g) aή^Qi) ψ). This gives us that
(φ> [af{g)> afW] ψ) converges to (φ, [a^(g), w£(h)] ψ). The fact that
\aγ{g), aγ{h)~\ is bounded and independent of t proves the first part of
the theorem.

To prove the second part of the theorem we observe that

on i)1/2 Since e~ίtH leaves Όxj2 invariant, we may take the strong limits
on Dj/2 of the identity above, and this proves the rest of the theorem.

Theorem 3.10. Let φ be an eigenvector of H. Then for any h in L2

a±(h)φ = 0.
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Proof. Let λ be the corresponding eigenvalue. Then

at(h) φ = e-tΠH-λ) a(h_t) φ t

Since φ is an eigenvector of H it is in Dλj2. Hence it is enough to
prove that a (h_ t) tends strongly to zero on D1/2 as t tends to db oo. By
the estimate μ { h ) ^ ^ Q | A | > ^ + 1 ) 1 / 2 ^

it is enough to prove that a(h_t) ψ tends strongly to zero when h is in
a dense set in L2 and ψ is in a dense set in Dλj2. So let h £ C™ and
$, (jή = 0 in a neighbourhood of £> = 0, and let ψ = {ψ0, ψ±, . . . ψn, 0, 0...}
where ψn ζ C™. From the definition of a(h) we find that \\a(h_t) ψ\\ tends
to zero faster than any inverse power of t. This proves the theorem.

4. The Asymptotic Decomposition of II and the Scattering Operator

Let Y\ be the set of vectors in J^ which is annihilated by a± (h) for
all hζL2(R3). Since a±(h) are closed operators V°± is a closed linear
subspace of #". From the commutation relations of a± (h) and H, as given
in Theorem 3.9, it follows that Y°± is an invariant subspace for H. Hence
DOΓΛ V°± is dense in F^_. From the commutation relations of ά^(h), as
given in Theorem 3.9, we see that a^. (h) are bounded operators on
Do ΓΛ V°± for all h ζL2(E3). Since a^(h) are closed operators for h ζL2

we get that V°± is in the domain of a\ (h) for h ζL2. Let F ί be the
smallest closed subspace of J^ containing α^ (h) V°± for all h £ L2. I t
follows from the commutation relations of α^ W a n ( ^ ̂  ^ n a ^ V± reduces
H, and hence Do r\ Y\ is dense in Y\. Using the commutation relations
for a^(h) we get that a\ (h) as well as a± (h) are bounded operators on
Do Γ\ V\., hence Y\_ is in the domain of α̂ _ (h) as Λvell as α ± (h) for all
h ζL2. I t follows also from the commutation relations of α^ (ft) that
V°± Γ\ Y\ = 0. We now define F ^ as the smallest closed subspace con-
taining a?± (h) V1^1 for all h £ L2. I t follows as above that Y\ reduces H
and is contained in the domain of ά^Qi). I t follows also from the com-
mutation relations of a^ (h) that for all h £ L2, a± (h) maps Yn

± into
n

Y7^1, and that Σ ^ ± ̂ s ^ n e largest closed subspace annihilated by all

operators of the form a± (h^ . . . a± (hn+1) for h1} . . .,hn+1 in L2.
Lemma 4.1. oo

^ _ y γk
k = 0

where the sum is a direct sum of mutually orthogonal subspaces.
Proof. Let φ ζY% and ψ ζ Y\ and assume that n> m. Assume that

φ is of the form a\ (h^) . . . a\ (hn) φ0, where φ0 ζ Y%.

( α * [hx) ...a% {hn) φo,ψ) = ( φ 0 , a± ( h n ) ...a± (hj ψ)

which is zero since n > m. Hence F7^ and F ^ are mutually orthogonal.
16 Commun. math. Phys.,Vol. 12
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Let Eλ be the resolution of the identity corresponding to H, and let
ω0 be the bound on the spectrum of H. ω0 is finite since F is bounded.
Since DQ is contained in the domain of a± (h), Eλ^ is contained in the
domain of a± (h). I t follows now from the commutation relations of a± (h)
and H that a± (h) Eλ^ C Eλ_m^ where m is the mass of the free field.
For details on this see Lemma 4 and Lemma 5, Section 3 of Ref. [5].

n

Hence Eλ 3F is contained in JΓ F _̂ for λ — ω0 < n m, where m is

the mass of the free field. This proves that Σ ^ ± *s d e n s e i n <^> a n d
k = 0

since the sum is a direct sum it must be equal to J*\ This proves the
lemma.

Theorem 4.2. J^ decomposes as a tensor product ^ ± <g> V°± relative to
the asymptotic operators ά^ (h). V°± may be identified with the subspace of
£F annihilated by all operators a±(h), h ζL2, and J ^ is the Fock space
constructed with aj^{h) as creation and annihilation operators. Relative to
this decomposition H decomposes as

ivhere H^ is the free energy operator in 3F±> and ΈL^ is the restriction of
Hto V£.

Proof. Let Ω± be the vacuum state in $F± We then identify !F
with J ^ Θ V°± in the following way. Let φ ζ Ύ\ be of the form
φ = a\ (h-t) . . . a j . (hn) φ0, where φ0 ξ V°±, then φ is mapped into
a^_ (hj) . . . a*±(hn) Ω± <E> φ0. I t follows from the commutation relations
that this mapping preserves the inner product, hence it is also one to
one. Its range is obviously dense in £F± <g> V°±, and it follows from
Lemma 4.1 that it is defined on a dense set in # \ Hence it extends
uniquely to an identification of J^ with # " ± <g> V°±. This proves the first
part of the theorem. The second part of the theorem follows from the
commutation relations of a^(h) and H as given in Theorem 3.9.

Let us now assume that H has an eigenvector Ω with the eigenvalue
ω. Since HQ has a simple eigenvalue which is separated from the rest
of the spectrum by an interval of length m, H will have an eigenvector Ω
with eigenvalue ω if ||F[| < C where C depends only on m, such that Ω
as well as ω depends analytically on F (see for instance Ref. [1]). In
our case | |F| | will be small if either the total mass of \μ\ is small or r is
small.

If H has an eigenvalue Ω, Theorem 3.10 tells us that Ω ζ V°±. In this
case it follows from the proof of Theorem 4.2 that we may also identify
<^~± with subspaces of J^ by identifying Ω± with Ω. The only difference
will be that in the decomposition of H, where we get

H = {H± + ω) ® I + 1 ® H°°± ,
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where H^ is the free energy operator in i^"±, H^ -f- ω is the restriction
of H to J^±, and #°± is still the restriction of H to F°±.

At least in the case where ||F|| < G, and ί2 depends analytically on
V, or in the case that Ω is the only eigenvector of H, it is natural to
identify Ω with the physical vacuum. This identification leads to the
identification of a*± (hj . . . a^ (hn) Ω with the outgoing (incoming)
^-particle state with momentum distribution given by hv . . ., hn, and
<̂"_k with the subspaces corresponding to outgoing (incoming) states. The
scattering operator S may now be defined as partial isometry mapping
J^_ into ^+ by

S : a*.(h) "UK) β-* < (Ai) <(*n) ^

which corresponds to the usual definition of the scattering operator in
the iZ-picture in quantum mechanics (see for instance Ref. [1]). The
probability amplitude for finding an outgoing ^-particle state with
momentum distribution given by hv . . ., hn, when we send in m-particles
with momentum distribution given by hv . . ., hm is

S{hv . . .,hn\h> - >K)

= (a% (hx) ...a% (hn) Ω, at & ) ...at (hm) Ω) .

Unitarity of the ^-matrix corresponds to whether ^~+ = J^_ or not.
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