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Abstract. We consider a boson field ¢(x) under an interaction of the form

[ V{¢p(x)) da, where ¢,(x) is the momentum cut-off field, and V(x) is
lel<r

a continuous bounded function. Under a weak regularity condition on V(x), we
prove that the total energy operator is self adjoint, that the asymptotic fields exist
and that the scattering operator exists.

1. Introduction

The object of this paper is to study a wide class of quantum fields
where the interaction is given by a local relativistic interaction with
a momentum and space cut-off. The fields will be self interacting boson
fields, where the energy operator is given in the form

H=Hy+ [ V($p(@))de.
el <r

H, is the free energy operator of a free boson field of strictly positive
mass m. V(x) is a real function of a real variable «, such that V («) is
the Fourier transform of a finite measure. ¢, (x) is the free ficld with
a momentum cut-off at £. In two dimensional space time Grivm [2] has
investigated the case where V is a semibounded polynomial, and he was
in this case able to remove the momentum cut-off. The case where
V(x) = Aot and still in dimension two, can be treated more thoroughly,
as shown by JAFFE and Grmmm [3].

One can in this case after removal of the momentum cut-off prove
that the total energy operator is self adjoint on the intersection of the
domains of its free and interacting part. For the case where V() is
a semibounded polynomial but in dimension four and with a momentum
cut-off JAFFE, LANFORD and WicHTMAN [4] were able to prove that the
total energy is a self adjoint operator.

We shall prove that in the case V is the Fourier transform of a finite
measure, the interaction will be bounded, and so there is no problem
with the self adjointness of H. But the main object of this paper is to
prove existence of asymptotic fields, and the existence of the scattering
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operator. Some of the methods are related to the methods used in Refs.
[6—T].

2. The Total Energy Operator

We shall use the Fock space representation. The Fock space F is
a Hilbert space where the elements are sequences of functions

f={fo,fr,...} where f,(ps,...,p,) is a symmetric function of
n-variables p;, . .., Py; p; € B3 The inner product in & is given by
dps dp
! R
Z n. f ffn(p17 AR ] pn g’n(pl& R pn) CU(Pl) w(p,,)

where (p) = (p? + m?)¥% and m > 0. The annihilation operator a(p) is
defined by

@) Do (P15 -+ s 0) = (0 + 1) @) froya (D5 D1y - - o5 D) -
The creation operator a*(p) is the formal adjoint of a(p), and we have

[a(p), a*(P)] = 6(p — P') -
The free energy operator H, is defined by

(Hof)n (pl’ .- ':pn) =£w(Pz) fn(pl’ RS pn) .

H, is obviously self adjoint on its natural domain of definition D).
Le’o h € Ly(R?). It is well known that a(k)= [ a(p) h(p)dp and
= [a*(p) h(p) dp are closed operators with domains containing
Do, and a*(h ) is the adjoint of a (k). Moreover, a (h) + a* (k) is essentially
self adjoint on D
The cut-off field operators are given by
$i(x) = 2712 (27) %2 [ (7% a(p) + e~ '7® a*(p)) i (p) 2 dp
where w;(p)~12 = w(p)~ for |p| < k and w,(p)~2 =0 for |p| > k.
By the remark above ¢, () is a self adjoint operator with domain con-
taining D,, and it is essentially self adjoint on D,
The interaction V is formally given by
V="[ V($e(@)dx.
|7

We assume that V is the Fourier transform of a finite measure
Vi) =[et=du), [dlul<co.

V= [dx[du)etsh®
lz]<r
where the integrals are strong integrals, i.e. strong limits of approxi-
mating Riemann sums. That the strong integrals above exist follows
from the fact that e #® is an operator which is uniformly bounded and

We now define
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strongly continuous in ¢ and . Since ¢, (x) is self adjoint, ' #® is a
unitary operator which depends strongly continuously on ¢, and

@) — U (—x) it %O U ()

where U (z) is the strongly continuous unitary group defined by

h
_ T
(U @) Dalprs -+ s p0) =€ fn(Prs - s D) -

Theorem 2.1. Let u be a finite measure on the real line. Then
V= [ da [du(t) et
lel=7
where the integrals are strong integrals, defines a bounded operator on & . Let
Viey= [ du(t)ett=.
If V(x) is real then V s self adjoint, and if V(c«) is positive then V is
positive.

Proof. We have already seen that the strong integrals defining V
exist. That u is a finite measure implies that ¥ is a bounded operator.
That V («) is real implies that u(—¢) = j(t), which again gives us that V
is self adjoint. Let V(«) be a positive function, and let E,(x) be the
spectral resolution of ¢, (x). For f ¢ # we get

(t, Vi) o Ié dz [dp(t) [ d(f, By(@) f) ¢
= [ da [d(f, By@)[) V()

o] <7

which is positive since ¥ (1) is positive. This proves the theorem.

3. The Asymptotie Fields

We now assume that ¥ («) is a real function. Since V then is a bounded
self adjoint operator we get that

H=Hy+V

is a self adjoint operator with the same domain D, as H,. Therefore
et as well as eitH leaves D, invariant. For b € L, we define

af (h) = e~itH eitHo g# (h) ¢=itHo gitll

where a# (h) stands for a* (k) or a(h). a;’#(h) is unitarily equivalent to
the closed operator a# (h), hence it is a closed operator. Since et and
e~i*H Jeaves D, invariant and D, is contained in the domain of a# (h), we
find that D, also is contained in the domain of afé(h).

Lemma 3.1. Let Dy, be the domain of H3/2. Let h ¢ Ly(R3), then a7 (h)
is a closed operator with domain containing Dy, Moreover at# () maps
Dy, into F uniformly bounded in t and h with respect to the natural norm
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in Dyjy. Let g and b be in Ly (R3), then af* (h) maps D, into the domain of
at# (9), and at# (9) afé (h) maps Dy into F uniformly bounded in t, g and h
with respect to the natural norm in D,

Proof. Since V is bounded there exist two constants @ and b such that
Hy+1=H+a=< Hy+0.

D,y is the completion of D, with respect to the norm (f, (H, + 1) f)}/2.
Using the inequalities above we see that the norm giving the domain
of H}? is equivalent to the norm giving the domain of (H + a)l/2.
Therefore D, is also the domain of (H + a)'/2,s0 that e’'H as well as
¢ttt Jleaves D, ), invariant. It is well known that D;j,is contained in the
domain of a#(h), and for f¢€Dy,, |a7(h)f] = c|b],|(H+ LV2f|
where ¢ is a constant depending only on m. Hence we get that D/, is
contained in the domain of a7 (k) and for f € Dy,

Jau(®) ] = o [hly |(Hy + 132 e-ét7 oitT f]
o Bl | (Hy + 1)V2 ot f]

o Bl | (H + @) oi#H f]

o |hl | (E + a2 ]

< oAy | (Hq + BP2 f] -

This proves the first part of the lemma, to prove the second part we
proceed as follows. It is well known that a# (k) maps D, into the domain
of a# (g) and for f € D,,

la#(9) a?(R) fl| < ¢ ]3I 9] 1(Hy + 1) ]
where ¢’ depends only on m.
Since e~i* Mo and et H leaves D, invariant, we sec that a# (h) e~¢t Hogti H

maps D, into the domain of a#(g) Hence (k) maps D, into the
domain of a7 (g) and for f € D,

laf(9) (1) 1] < ¢ gl | lla [ (Hy + 1) eit2e eitH f|
¢ gl [Plz [(Ho + 1) e * f]
¢ [glle ol | (H + a’) 7 ]
¢ gl 2] [ (H + @) f]

¢ [lglle 1ol | (Ho + &) 1] -

The last two inequalities comes from the fact that V is bounded.
This proves the lemma.

Let ¢ and o be in Dy and b in L,(R?). Consider the function of one
variable ¢ given by'

(¢ (e‘”Ho eitH ¢ a# h) e—itH, gitH w) . (32)

A

I

A

A
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Consider also the function of two variables given by
(e—isHo gisH a#(h) eitHo gitH 4) 53
= (a#(h)* emisHo gisH  g—itHo gitH g :

We see that for s = ¢ this is the function given in (3.2). Since e?t#
leaves D, invariant, we find that (3.3) is differentiable both with respect
to s and . The partial derivatives are given respectively by

(e~isHo{ VeisH ¢, a#(h) eitHo gitH y))
and
(a#(h)* e—isH, gisH ¢’ e—itHy § | it '/)) .

Using that V is a bounded operator and a# (k) as well as a# (h)* are
closed operators with domains containing D, and that e~ as well as
eitll leaves D, invariant, we get that both the partial derivatives are
continuous in s and ¢. This gives us that (3.2) is a differentiable function
of ¢t and
Edt— (¢, aff(h) p) = (e*izHﬂ i Vet ¢, a#(h) e itH gitT 4p)
+ (a#(h)* emitho gitll y o—itHs 7 gitl gy
Tt is well known that the commutation relations of H, and a# (h)
may be given in the form
et tHo q# (h) e=itHo = a#(h ) (3.4)
where + goes with a* and — with a and &,(p) = e*t®® h(p). Using this
the formula above may be written.
d . ) )
1t (b o (0) ) = GV &7, a7 (b)) i )
4 (@ (hy )% e tH iV eith y)
Lemma 3.6. Let |u| be the absolute value of p. If |p| has a first order
moment, then for h € Ly(R3), V leaves the domain of a# (h) invariant and

la# ), V1| = C - sup |[ h(p) g (p) /2 e'o? dp| .

(3.5)

The constant C depends only on the first order moment of |u| and on r.
Proof. From the commutation relations of a# (h) we get

[a(h), eis«ﬁk(x)] — is[a(h), 51510(90)] elsdr(@)
= 2-12(27)=2B is [ h(p) w,(p) V2 e iradp - tsH®,

So that [a(h), ¢'*#®)] is a bounded operator, and therefore ¢ %
leaves invariant the domain of @ (k). Since €i‘#*(® is strongly continuous,
Vw may be approximated strongly by Riemann sums of the form
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2 O,y €851 %:@) 4. Tt 3 be in the domain of a(h), then

nm

a(h) Z' Crm ot8n $r(m) p=2 Cum £i8n S (@m) a(l)p

nm nm

£ 3 g 27 (2 s, [ (D) 0y (p) 2 € n? dppein e
nm
Since |u| has a first order moment, we see the right hand side con-
verges strongly to

Va(h) w+ 272 2m)-%2 [ da [du(s)is
lel<r

« [ h(p) w(p)~Y2 e P dpets @ 4y

Since a(h) is a closed operator we get that the left hand side con-
verges strongly to a(h) Vy, and that V1 is in the domain of a(h). By
a direct estimate of the norm of the second term above, we see that the
lemma is proved for a (k). The proof for a* (k) is the same up to trivial
modifications.

We use the lemma to write (3.5) in the form

%‘(S{), a (h) p) = (¢, et H [a7 (hy ), i V]ettH ).

Using that a# (k) is a closed operator and the fact that V leaves the
domain of a# (k) invariant, we see that e=itH [a7 (b, ,),iV]eitT yp is
strongly continuous for o € D,. Integrating both sides of the identity
above we thus get

¢
(¢, & (B) p) — (¢, a7 (B) y) = <¢,0fdse—isH [a7 (hy ), i V] eisH ?/’) ‘

Using the estimate for the norm in Lemma 3.6, we find that the integral
above gives a bounded operator. This gives the formula

i (h) — a7 (h) =Oft dse=sH [a7 (h ), 1 V]eisH 3.7

where the integral is taken in the strong sense.

Theorem 3.8. Let h € Ly(R%) and ¢ € Dyjy. Then off (h) ¢ converges
strongly as t tends to 4 co. The limit operators aﬁf (h) are closable operators
defined on Dyj,, and a . (h) maps Dyjy into F uniformly bounded in h with
respect to the natural norm in Dyj,. If we denote the closure of aﬁ (k) also
by o7 (), then a* (k) and a 4 (h) is the adjoint of each other.

Proof. Let Ly be the dense subspace in L,, consisting of functions 2,
such that 2 = 0 in a neighbourhood of p = 0, and %(p) w,(p)~2 is in
Cy’- It follows from the estimate in Lemma 3.6 that for A €L,
[{a# (h L), i V]| tends to zero faster than any inverse power of s. By
(3.7) afé (h) — & (h) converges in norm as ¢ tends to 4-co. Since & €Dy,
hence in the domain of a7 (), this gives that af (k) ¢ converges strongly.
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By Lemma 3.1 a?ﬁ (k) ¢ is uniformly bounded in ¢ and % hence we get
that af (h) ¢ converges strongly for all & ¢ L,. By the same lemma a7 (k)
is uniformly bounded in ¢t and % as a mapping from D/, into .%. Hence
the limits aﬁf (k) must also map Dy, into & uniformly bounded in & with
respect to the natural norm in D,j,. Let ¢ and p be in D,,. Since

(af (k) ¢, w) = (§, a,(h) )

we get by strong convergence that

(@ (R) ¢, w) = (¢, as (h) p) .

Hence the adjoint of a# (k) is densely defined, and therefore o7 (h) is
closable. It follows also from this identity that a% (k) and a_ (k) are the
adjoints of each other.

From now on aﬁ(h) denotes the closed operators.

Theorem 3.9. Let g and h be in Ly,(R3). Then a% (h) maps D, into the
domain of a% (g), and aﬁf (9) &% (h) maps Dy, into F uniformly bounded in
g and h with respect to the natural norm on D,. aﬁf (k) satisfies the same
commutation relations on Dy as do a# (h) on D,.

H and aﬁ (h) satisfy the same commutation relations as do H, and a# (h)
wn the sense that

eitH g (h) eitH — a, (h_y)

ettH g (h) e ttH = o (h))
on Dy,.
Proof. Let ¢ and y be in D,. By Theorem 3.8 (4, a7’ (g) af’ (k) )
converges to (a% (9)* ¢, &% (k) v). By Lemma 3.1

(6, a(9) o (B) p)| = C lgla |2 | S] | (Hy + 1) 9],

|@Z (9)* ¢, % () p)] = Clgla 1l | $) |(Ho + 1) 9] -

From this we get that a% (k) v is in the domain of a7 (g), and the
uniform boundedness with respect to g and h. Moreover we see that
(¢, afé (9) afé (k) ) converges to (b, a7 (g) a% (h) ). This gives us that
(¢, [ai’é'é (), aZ# (h)] y) converges to (¢, [oﬁf (9), o7 (k)] p). The fact that
[af’ﬁ (9), af’f (k)] is bounded and independent of ¢ proves the first part of
the theorem.

To prove the second part of the theorem we observe that

gi til a?f (h) e—itH — “ﬁt(ki B

hence

on Dy/,. Since e~ #*H leaves D,;, invariant, we may take the strong limits
on Dy, of the identity above, and this proves the rest of the theorem.
Theorem 3.10. Let ¢ be an eigenvector of H. Then for any h in L,

ay(h)$=0.
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Proof. Let A be the corresponding eigenvalue. Then
a,(h) g =etEDah_)) .

Since ¢ is an eigenvector of H it is in D;;,. Hence it is enough to
prove that a(h_,) tends strongly to zero on Dy, as ¢ tends to +4- 0. By

the estimatea(h) p] = O [bla [(Ho + 1) y]

it is enough to prove that a(h_;) v tends strongly to zero when % is in
a dense set in L, and » is in a dense set in D,;,. So let A € 0§ and
h(p) = 0in a neighbourhood of p = 0, and let » = {4, ;, ... 9,,0,0...}
where y, € C§°. From the definition of a(h) we find that |a(h_;) | tends
to zero faster than any inverse power of {. This proves the theorem.

4. The Asymptotic Decomposition of H and the Scattering Operator

Let V9 be the set of vectors in & which is annihilated by a__ (k) for
all ko € Ly(R?). Since a, (k) are closed operators V9 is a closed linear
subspace of % . From the commutation relations of @ (h) and H, as given
in Theorem 3.9, it follows that VY is an invariant subspace for H. Hence
Dy VY is dense in V9. From the commutation relations of % (k), as
given in Theorem 3.9, we see that a% (k) are bounded operators on
Dy~ V9 for all b € Ly(R?). Since a* (k) are closed operators for A € L,
we get that V9 is in the domain of a% (h) for h € L,. Let VL be the
smallest closed subspace of F containing a¥ (k) V9 for all h € L,. It
follows from the commutation relations of a¥ (k) and H that V. reduces
H, and hence D, N V1 is dense in V.. Using the commutation relations
for (ﬁf (h) we get that a¥ (h) as well as a_ (k) are bounded operators on
Dy~ Vi, hence VY is in the domain of a¥ (k) as well as a (k) for all
h € L,. It follows also from the commutation relations of aﬁf (h) that
V9 n VL = 0. We now define 7% as the smallest closed subspace con-
taining % (h) V21 for all h € L,. It follows as above that V% reduces H
and is contained in the domain of a% (k). It follows also from the com-
mutation relations of aﬁf(h) that for all & € Ly, a, (k) maps V% into

n
V71, and that 3 V% is the largest closed subspace annihilated by all
k=0
operators of the form a (k) ...a. (h,,q) for by, ... hy, 4 in L,.
Lemma 4.1. o
F = ) VE
E=0

where the sum is a direct sum of mutually orthogonal subspaces.
Proof. Let ¢ € V™ and y € V" and assume that » > m. Assume that
¢ is of the form a* (b)) ... a% (h,) ¢y, where ¢, € V9.

(@h (hy) - - - a% (hy) dos W) = (hos @ (By) - . . ay (By) )

which is zero since n > m. Hence V% and V% are mutually orthogonal.
16 Commun.math. Phys.,Vol. 12
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Let B, be the resolution of the identity corresponding to H, and let
g be the bound on the spectrum of H. w, is finite since V is bounded.
Since D, is contained in the domain of a, (), E; is contained in the
domain of @ (). It follows now from the commutation relations of a . (h)
and H that a, (h) B, % CE,_,,# where m is the mass of the free field.
For details on this see Lemma 4 and Lemma 5, Section 3 of Ref. [5].

n
Hence E, F is contained in }' V& for A — w, < n - m, where m is

k=0 ©
the mass of the free field. This proves that }' V% is dense in #, and
E=0

since the sum is a direct sum it must be equal to & . This proves the
lemma.

Theorem 4.2. F decomposes as a tensor product F . ® VO, relative to
the asymptotic operators o7 (h). V. may be identified with the subspace of
F annihilated by all operators a (h), h € L,, and F . is the Fock space
constructed with afé (h) as creation and annihilation operators. Relative fo
this decomposition H decomposes as

H=Hf®1+10 H,

where HiE is the free energy operator in F ., and H is the restriction of
Hito VE.

Proof. Let £, be the vacuum state in & . We then identify &
with %, ® V% in the following way. Let ¢ € V™% be of the form
b =a% (h)...a% (k) py, where ¢, € V9, then ¢ is mapped into
a® (hy) . ..a% (h,) 2. ® ¢y. It follows from the commutation relations
that this mapping preserves the inner product, hence it is also one to
one. Its range is obviously dense in % . ® V9%, and it follows from
Lemma 4.1 that it is defined on a dense set in &#. Hence it extends
uniquely to an identification of # with # , ® V9. This proves the first
part of the theorem. The second part of the theorem follows from the
commutation relations of a{f (k) and H as given in Theorem 3.9.

Let us now assume that H has an eigenvector {2 with the eigenvalue
w. Since H, has a simple eigenvalue which is separated from the rest
of the spectrum by an interval of length m, H will have an eigenvector £2
with eigenvalue w if |V| < C where C depends only on m, such that Q
as well as o depends analytically on V (see for instance Ref. [1]). In
our case |V| will be small if either the total mass of |u| is small or r is
small.

If H has an eigenvalue Q, Theorem 3.10 tells us that Q € V%. In this
case it follows from the proof of Theorem 4.2 that we may also identify
F . with subspaces of & by identifying 2, with Q. The only difference
will be that in the decomposition of H, where we get



Fields with Cut-Off Interactions 225

where H is the free energy operator in # _, HF + w is the restriction
of H to # ., and HY is still the restriction of H to V9.

At least in the case where |[V| < C, and £ depends analytically on
V, or in the case that £ is the only eigenvector of H, it is natural to
identify Q with the physical vacuum. This identification leads to the
identification of a* (&) ...a% (k,) 2 with the outgoing (incoming)
n-particle state with momentum distribution given by %, ..., A,, and
& | with the subspaces corresponding to outgoing (incoming) states. The
scattering operator S may now be defined as partial isometry mapping
ZF _into & by

S:a¥ (hy)...a% (h,) 2 —a* (hy)...a% (h,) 2

which corresponds to the usual definition of the scattering operator in
the H-picture in quantum mechanics (see for instance Ref. [1]). The
probability amplitude for finding an outgoing n-particle state with
momentum distribution given by 4, . . ., h,, when we send in m-particles
with momentum distribution given by bk, . . ., &, is

Shyy - ooy byglbyy ..oy hy)
= (a% (by) . ..a% (b)) Q,a* (by) . . .a% (k) Q).

Unitarity of the S-matrix corresponds to whether &, = & _ or not.
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