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Abstract. As an extension of earlier work a local one-particle approximation is
constructed for matrix elements of two four vector currents. The approximation is
constructed to fulfill a divergence condition which makes sure, that current con-
servation is not destroyed by the approximation.

L. Introduction

This article is in several respects an extension of an carlier paper [1],
to which we will refer as I.

In I a “one particle approximation” has been constructed for trun-
cated matrix elements of a vector current and a scalar field, which does
not destroy any of the properties following from general principles of
local quantum field theory, especially locality and current conservation.
This idea was applied [2] to the calculation of mass relations from the
“one particle saturation” of SU (3) current algebras, which led to an
understanding of the spin dependence of these relations. The structure
of the equal time limit in [2] seems to indicate the possibility in our
approximation to equal time current commutators to derive relations
between different form factors for arbitrary momentum transfer without
running into difficulties shown up by other approaches to this problem.
To do this we first have to extend the “one particle approximation” of I
to the case of matrix elements of two vector currents. This generalization
is the main object of the present article.

Usually the local one particle structure of four-point matrix elements
is given by products of two three-point matrix elements and a kernel
built up from two-point functions, which explicitly contains the singular
structure on the mass shell [1]—[8]. In I this singular kernel was built
up from the free two-point functions, but from the point of view of
perturbation theory it seems more convenient to use the two-point func-
tions of the interacting fields. This generalization will be done in sec-
tion II for the case of one vector current and one scalar field. The results
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of this section will then be used in section III to construct a local one
particle approximation for matrix elements of two vector currents which
does not destroy current conservation.

We treat here commutator matrix elements for theories with one
scalar particle of mass m only. The generalization to theories with
several particles and higher spins as well as the way back to the matrix
elements themselves are obvious from I. In order to avoid unnecessary
complications we will use the language of generalized functions or simply
functions. All our expressions, however, are correct in the sense of con-
tinuous linear functionals on some test function space.

I1. Divergence Condition for one Four Vector and One Scalar

We want to investigate matrix elements of field operators with the
usual properties [9], [10]:
Poincaré covariance
Locality
Spectrum condition
Completeness

(A)

About the spectrum of states we assume the existence of a unique
invariant vacuum state, a discrete one particle state of mass m and a
continuum of many particle states starting at (2 m)2.

Notation: In the following j#, ¢* always denote convariant vector
fields, §, g scalar fields, especially the divergences of j# and g¢* respectively.
B(x) denotes a field associated with the particle of mass m of the theory,
that means B(x) has a non-vanishing matrix element between the
vacuum and the one particle states:

(&, m | B(0) | 0) = (2m)~32. 1)

All fields are assumed to be local and also local relative to each other.
In Minkowski space we use the metric px = : p%2° — px.

We proceed in two steps. First we write down a covariant local
“one particle approximation” for the truncated commutator matrix
elements and then we extend this expression without destroying its
locality, covariance and spectrum properties in such a way, that current
conservation is also valid. By the “one particle approximation”
(ky |7# () g (y) | kop! for the truncated matrix elements {k, |j* (x) g (y) | ko )T
we mean a sum of products of three-point functions, which is local,
covariant, and has the spectrum property :

ey 17#(q) G(p) | k)T = by [7#(9) G () | Bo)t
= [ 2 @ mIy Gm @) [k @)
for 0= (b + g2 <4m?; 0 =:+ ]/WJ:I@ .
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In order to fulfill locality we are forced to add further contributions
from the many particle intermediate states to the simple term (2). All
these contributions must vanish in the above region. 0 < (k; + ¢)? < 4m?2.

A suitable expression for the corresponding commutator matrix ele-
ments, which fulfills these conditions is given by [1]:

ey | [ @), g ()] | kod? = 201 [ dig
H{ICk | R15(0), B(-9)]] 0) Aret ) O RIB@), O] | k)
— {fy | RIB (=), 9(0)1 ] 0) Aoy (q) <O | RI#(0), B(g)] | ko))
< ¢—ill—0 gilh—ay
— [y | R#(0), B(—)1] 0) iy (@) <0 | R[Bg), g (0)] ] ke
— ey | R[B(—9), 7#(0)]] 0> iy (g) <0 | R[g(0), Blg)] | ko))
< =0T il =y} | (3)
The retarded and advanced matrix elements
RGO, B=)1 1>~ I RB(~q), g(O)]] )

4
=i(] [B(—q),g(O)]D W
are defined by Jost-Lehmann-Dyson representations [11 — 13]. In
contrast to [1] the kernel
ret (0) =+ Aot (@)1 Aret (@) Aot (@)1 (3)
av av av av
now is given by the two-point functions of the interacting field B(x).
They can be represented by [5, 6]:

b 1 F dso()
A;?/t(q) - m2— (q -+ 1) + f s—(q +1¢)? ’ (6)

4m?

av q = ie)*] [my — m?]

- (7)

sg(s

+ f [s—(qiwﬂ[s—mﬂ}

AgO,C’,,:O,m2<m0<4m2,m%>4m2, y=1,2,...
0(8)=0,0(s) = 0.

If j#(z) is a conserved current the following relation holds for the complete
matrix elements:

O I [F (), 9] | ) = <l[7"w)9y)}l> 0,

Oy = : ———ax# .

A =

(8)

The left hand part of this equation also holds in the case of a non con-
served current. These properties should also be valid in any reasonable
approximation to the matrix elements.
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Because of the occurrence of the retarded and advanced functions,
however, we obtain from (3):

0w Koy | (7 @), g ()] | bdT — ey | (95" (@), g ()] | Keg)T
= 97 ¢t Fa®—k20) [ diq emta@=0) P (ky, 9)1
[rea (@) O | RB(9), 9(0)] | ) — Ay (9) 01 R[g(0), B(@)]| k)]
2 ¢ iGs ) f dig 4= T, (ky, q) )
- [Chy | R1g(0), B(=0)1] 0) it (g)
— (ky Ii’i[B( 0),9(0)110) Ay ()]
with the abbreviations: ~
P k1, @)1 = 2 (ks — q)u oy [ R[#(0), B(— )] ] 0}
+ 1 Cly | R[0,5(0), B(=9)]] 0)
Pk, q)o = : (ky — @) <O [ R[B(g), 5 (0)] | &)
— 1 {0 [ R[B(g), 0,5 (0)] | k) .
Locality implies the functions P; (k,, ¢), to be polynomials in ¢. In order

to save the property (8) we are forced to extend the approximation (3)
adding further terms, such that the new expression

L @), g1 ] % = {1 (@), g1 | )T — Kfj (2, )

satisfies the following conditions

a(ac);t<|[7w(* ]!>G~<I[ 7”%)9 ]|>G
= (] [Gug (), g1 | )T .

Furthermore, the new approximation must have the same locality and
spectrum properties as the original one. This leads to a boundary value
problem for K&.

According to the structure of the right hand sides of the Eqgs. (3)
and (9), we split K% into two parts:

Kii(z, y) = vk Kit(z — y), — 12—k Ki(w —y),. (12)

(10)

(11)

Defining the fourier transforms Kg (9), by

~

1 .
Rilg) =+ g [ dtwes = Ky, (13)

from the Egs. (3), (9)—(13) we obtain the following boundary value
problem for K¥(g),:

(¢~ k) Ry lg) = T, () "

(q — ko). K () = i, o(@a s

Ke(z), =0 for 22<0 _
(15)

supp {Ki(q),} < supp {T,(q),}, r=1,2
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where the right hand sides of (14) are explicitly given by:

T,(q) = : 0(27)2 P, (k [Am (g) O | R[B(g), g(0)] | k) 1)
- Aav <O [ QQ[g(O ] | k2>] 3
I, (@)= i2m)2 [Chy | RIG(0), B(—q)]] 0 Aley (g
(17)

— ey | R[B(—g), g(0)] | 0> Aav @)1 qs,-(icg, Q) -

For the case of a symmetric mass spectrum the most general solutions
of these boundary value problems have been constructed in I by means
of Jost-Lehmann representations [11, 13]. For the case of non symmetric
mass spectrum a class of solutions has been constructed using Dyson
representations [12, 13]. This class is not the most general one, because
the Dyson spectral functions are not unique. We now construct the most
general solution of (14), (15).

The inhomogeneous parts of (14) have all the properties of com-
mutator matrix elements as follows from (16), (17). Therefore their
Dyson representations are:

1,(), = [d*udse(g® — u®) 6((u — q)® — 8) P, (u, s), (18)

The spectral functions ¢, have the well known support properties [12, 13],
which automatically guarantee the boundary conditions (15)*.

For INQ‘ we make the ansatz:

Kf‘ fd“udsa(q — u®) 0((qg — w)* — )
P (19)
. {(g + k= 2uy D, (u, s), — s 78 (u, 8).,.} y

with arbitrary Dyson spectral functions @, Z%. By means of the identity
0 1

f drudse(g® — u®) 6((g — u)® — ) {(q — Wy Ty 6(u)”} p(u,s)=0 (20)

it follows from (14):

(8 —(u— )Q} u, 8), ¢g u, 8), — 04(t, )y

] (21)

- [(u o #] Zp(u, ), = 0.

Here g, (u, s), are arbitrary Dyson spectral functions with
Jdrudse(@® — u®) 6((g — u)* — s) 0, (u, s), = 0. (22)

They appear in (21) because of the nonuniqueness of the Dyson
representation.

1 In the following by arbitrary Dyson spectral functions we mean spectral
functions with these support properties.
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Solving Eq. (21) for @, (u, ), we obtain the most general solution of
the boundary value problem (14), (15):

K{;(q) = f dtu dse(g® — u®) 6((q — u)? — s)
(@ + &, — 2u)*
{ Z_ (w — k)2 [5259(” 8)r + Qg (%, $), (23)
0 1 7
+ ((u - kr)v s ‘2‘6(1‘) v) Z; (uy 8)7] s Zgl; (u’ 8)1‘
gk — 2up (s — (u— k)2 E, (4, s),} .
E, (u, s), is the extension in the sense of ScHWARTZ [14] of an arbitrary
Dyson spectral function given on the regular surface s — (v — £,)2 = 0.
Remark. The most general solution (23) differs from those constructed
in I only by the additional term p,. Because of Eq. (22) this term cannot
contribute to the equal time limit, provided it has a finite limit. Therefore,
the applications discussed in [2] are independent of this term.
For the considerations in the next section it is more suitable to write
the solution (23) in the following form, which one obtains immediately
by means of (20) and some elementary calculations:

RZ‘(Q)T = f diuds e(q® — u®) 0((g — w)2 — s)
k, — 2u)
{H [¢ u, S Og(u> 8)1' + (q — IC,,.)V Wz (’lé, 8)7‘] (24)
B VV/; (u, 8+ g+ kT — 2u) 6<8 — (u— kr)z) Ey (u, S)T} .
with
IV# (ur S)r 0 Z{,‘ (u, 8),

s — (u — k,)? = s s— (u — &)? " (25)

III. Divergence Condition for Two Vector Currents

In analogy to the case of one vector current and one scalar field we
must extend the “one particle approximation” for matrix elements of
two vector currents { | [j#, g*]| ) adding further terms in such a way,
that the new matrix element

@), g @))% = (L@, g ]| ) — K (w, p) (26)
satisfies the following two divergence conditions:
a(m).u([ [7/‘ (’U)> 9"(?/)] | >G = < I [aujﬂ .’L‘) g Y)] l >G
| = (| B @), SO |5 - Ko,
IS | 1), g )] | 5F = (| [7* (), 2, g @)11)¢
= (| [ (@), 89" W] | ) — K§(@, 9).
From these two equations it follows by means of Eq. (11):
9@ 0o | ¥ (@), ¢ )11 )% = (| [8u7" (2), 89" ()] | )T - (29)
Ké(x, y) is given by (12), (13) and (24)2 Snmlarly K (@, v) has the

(27)

(28)

2 From now on j(z), g(y) are identical to the divergence of j#(x) and g*(y)
respectively. j(z) = 9.j*(x), g(¥) = 3,9”(¥)-
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representation :
I~{’i(g), =fd4u dse(g® — u®) 6((qg — u)* — s)

OB B w0, s )+ (@ = B WEGL )] (0)

- W;(ua 8)1‘ + (¢ + k3—-r — 2u) 5(’3 — (u— ka—r)z) Ea‘ (%, 8)1-} .

&;(u, s), are the Dyson spectral functions of the following (commutator)
matrix elements:

I, (g) = : $2)2{Cky | R[9,74(0), B(— )] | 0 At (q)
— (ly | RB(~q), 9,7(0)] 10> Diy (@)} By (Bss )2
L (g) = : 1 @02 B, (ky, @)y (et (@) <O | RIB(), 9,7(0)] | ko)
~ Zze(g) €0 | R[3,7(0), B@)] | b3}

where the polynomials 3, are given by (10) with j replaced by g.

If we split K#”(z, y) in the manner of Eq. (12) then by means of (3),
(26)—(28) we arrive at the following two boundary value problems for

B

its fourier transforms INQ“’(_q)r:

(g — k), K#¥ (g), = i K2 (), + T2 (g),

~ T N (33)
(q — ko), K (q), = —1 K& (q); + B (g), »
(¢ — ko) K27 (9)y = — i K3(9), + 13(9), -
(¢ — k), K#*(q)y = i K& (@), + T4(q)y ,
K#*(x), =0 for 22<0
(35)

supp {INQ‘”(q),} ¢ supp {inhomogeneous terms}, r =1, 2.

On the right hand side of (33) and (34) the functions i; (q), and i’,‘ q),
are defined by (16, (17) replacing ¢ (0) by ¢”(0) and by (31), (32) replacing

9,j#(0) by j#(0), respectively.

Again we solve the problems by means of Dyson representations [12,
13] which automatically contain the boundary conditions (35) in the
form of support properties of the integral kernels.

In order to do this we have to introduce spectral functions for the
commutators f”( ) These commutators however are not independent of
( ). Roughly speaking I ( ) is the divergence of I”( )- Corresponding to
this the spectral functions of Ir (¢) will be connected to the spectral
functions ¢ (u, ) of 1(q).



268 U. VoukEeL and A. H. VOLKEL:

From the Eqs (10), (16), (17), (31), (32) we obtain the connection
between I”( ) and I( )

(¢ — k) 14(), = —i (= 1)7{I;(g)

+ @@ (=17 By @)y (Ailg)  (36)
. - Azlw(g)] %g(k:s—-w Q):s—'r} )
(¢ = ks_), Ij(g), = i(= 1) {1, (q
— @ (= 1) P,y 0, B0 (37)

- A;,w )] (:Bg( 3—7> Q):s—-r} .

By constructing the most general solutions of (36) and (37) we get a
Dyson representation of I*(¢) which contains the spectral functions
¢ (u, s) together with new functions ¢* (u, s 1ndependent of ¢ (u, s), thus
showing explicitly the connection between g (g) and I (). Let z(u, s), be
the Dyson spectral functions?® of the second terms in the wavy brackets
on the right hand sides of (36), (37). Then according to section II we
obtain from (36) and (37) respectively:

i’;(q)rz~z fd‘*udse(g —u%) 0((g — u)? — )
'{(S j“(];ftk— (s (w, 8), + 7w (u, 8), + y;(u, 5), (38)
- (g — k), i (u, 5),] — P4 (u, s),
+(q Fk,— 2u)* 0(s — (u — k,)?) ¢

~() =1(— 1)'fd4udse(q —u%) d((g — w) ~s)
{-m___‘—‘r—ps‘:)_zi [¢J u, 8)1 - n(u’ )7 + Yy (’L(,, S)T (39)
+ (q - ]"3-1')7. ‘,‘/)f} u’ S r] - ¢y u, s)'r
+ (q + k3—r - 2“),’ 6(8 - (u - ks—r)z) eg(u> 8)7‘} .

The spectral functions y;, ¢, have to satisfy the condition (22).

We want to remark that in contrast to the arbitrary spectral func-
tions W¥, o, E, which occurred in (24) section II, the spectral functions
&*, w, e of (38), (39) are not arbitrary. They are the Dyson spectral func-
tions of given matrix elements.

This form of the representation is of great advantage for all applica-
tions (for instance equal time commutator algebras), for which one has
to make further assumptions on the matrix elements and therewith on
the spectral functions. We are allowed to make assumptions for ¢, ¢*, y,
and e independently without running into contradictions to general
principles.

3 The support of the spectral functions is concentrated in the point u = 0
because of the equations (6), (7) and the polynomial character of P in g.
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It can be verified by insertion that the solution of (33)—(35) is
given by

Rev(q), = i(— 1)rfd4udsa(g0—u0)a( (g — u)? — s

+ k — 2u)r ""’ ka r 2
{(Z_(u_kl)t) (Z__(u._ka ;UJ [¢g u’ _‘¢J‘(u’s)r_7t(u:s)r
+ (q - k3—r)§.(¢g(u: 8)7 - W (u9 )
kr - ka—r
+'(_(k—.__k )2) (9o (w, 5), — 0;(u, 8)7‘))
(q - kr)/l((]sy (u S)r ( ) )
k ka T
—L@;—:;T)z)-(% (u, 8)r — Qg (4,8 ))]
ks, — 2
e 22 [ o), — Whta, o), (40)
(ke — kes—r)*

"W_k—(% u, 8), — 05 (U, 8), + Wi (U, 8), — g, (u, s),)
— (g + kb, — 2u)* 6(s — (u — k)% (e;(u, 8), — B, (u, 8),)]
ST A P TI

s — (u — k,)?

k 3—r
+L(Ei_k‘2)g— (1/)9 U, 8 T Qo‘(u, S)'r + 1/).1‘(7'4: 8)1‘ — Oy (’LL, S)?‘)

=+ ey = 20 0 — (= By )) (e 0 9), = By, 9))]}
+ H* (), -
r=1,2.
Here H*”(q), is the solution of the homogeneous problem
(q— k) H"’( )r =0
(q—k ) ()7':0’ r=1,2
with the boundary conditions (35). A class of solutions of this homoge-
neous problem is given by:
H#(q), = fd“udse(q —u%) d((qg — u)? — )
— Ry — k r/x
@+ b= 2000+ by, — 20y [ bt gy, ),
+0(s = (w— k) 0(s — (u — ky)*) E (u, 5),

S(s — - ka—r 2
e - b B s),

(41)

6(s — (u — k,)?
+ L~ ) B, ), (42)
—k —r®
(g Ry = 2up [ 2, 5), 1 05— ()0 B )]

— I
— (@ b= 20 [T 2 ), 85 — (1)) By (0, ),

+ ZH (u, s),} .
The functions Z#? (u, s), are arbitrary covariant Dyson spectral functions,
E(u, s), and E¥(u, s), are extensions in the sense of Scuwarrz [14] of
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arbitrary Dyson spectral functions which are given on the following

f
surfaces [s—(u—1E)2=01Nn[s— (u— ky?=0]
and s—(uw—k)=0, j=12
respectively.

IV. Final Remarks

We have written the solutions in the form of Dyson representations.
In all applications at a certain point one has to go back to the matrix
elements themselves. Therefore the question arises if it is possible to
solve the problem in terms of matrix elements. The answer is yes. For
we can solve the problem in exactly the same manner by means of
Jost-Lehmann representations [1], and at the end use the well known
inversion formulas to reexpress the spectral functions by matrix elements.

In that case, however, all calculation are much more involved and
the formulas are much more complicated. Furthermore, in the applica-
tions we are interested in at the moment (equal time commutator
algebras), it is very easy at a later stage of the calculation to connect
the Dyson integrals to matrix elements [2]. Therefore, we preferred to
construct the solutions by means of the more compact Dyson represen-
tation.
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