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Abstract. It is shown that the existence of nontrivial scalar Lie fields (i. e.
ficlds whose commutator is linear in the field itself) is not precluded by algebraic
consistency arguments. A partial characterization of the simplest algebraic Lie
field structures is given. Several examples are presented, one of which may be
represented by Hermitian operators in a Hilbert space having a unitary representa-
tion of the Poincaré group.

1. Intreduetion

In discussing the general structure of relativistic quantum field
theory it is often useful to have at one’s disposal idealized models ful-
filling some, though not all, of the usual field-theoretic postulates. One
approach to the construction of such models, suggested by O. W. GREEN-
BERG [1], is to consider the possibility of fields satisfying particularly
simple commutation relations. A prime candidate is the so-called Lie
field, for which the commutator is linear in the field itself [1] [2]. In the
neutral scalar case this would mean

A (@), A@)] =A@, 9) + [dzcle, y,2) A) (L)
where A and ¢ are real-valued generalized functions.

The usefulness of a nontrivial Lie field with an asymptotic particle
interpretation (assuming such a model exists) is apparent, since the
retarded functions can be calculated immediately once one knows the
generalized functions A4 and ¢ (L.orusza¥ski [2] was the first to call
attention to this aspect). Moreover, even without the asymptotic con-
dition, a Lie field theory is soluble in the sense that the Wightman func-
tions are uniquely determined by the specification of 4 and ¢ and the
assumption of a positive energy spectrum [3].

The initial optimism regarding Lie fields was dampened somewhat by
a negative result of D. W. RoBINsoN [4]. RoBiNsON claimed that the
existence of a scalar Lie field which is nondegenerate, in the sense that
[[A(s), A()], A(2)] does not vanish identically, was precluded by in-
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homogeneous Lorentz invariance and macroscopic locality alone.
RoBINSON’s argument (which was not entirely valid, as we shall see in
Section 3) depended critically on the number of invariants available,
and so one could not conclude anything about the possibility of nonscalar
Lie fields or of Lie fields over a space-time of dimension not equal to
four. In particular, H. LEHMANN (see [3]) gave a simple example for
two-dimensional space-time (which could not be generalized to the four-
dimensional case). The case against Lie fields was further strengthened
by V. GLASER’s result (see [3]) that a Lie field theory cannot be asymptot-
ically complete.

In the present article (which is taken from part of the author’s Ph. D.
thesis [5]) it is shown that the pessimism regarding scalar Lie fields is not
wholly warranted. Contrary to RoBINSON’s result, there exist many
nondegenerate algebraic (scalar) Lie ficld structures consistent with
Poincaré invariance and macroscopic locality. Whether or not any of
these will be found useful in physics is a question which is left un-
answered.

The author wishes to thank R. Haaa for many valuable discussions.

2, Algebraie Lie Field Structures

Suppose that A4 (x) is a real, scalar quantum field; i.e. the smeared
out quantities
A(f) = [ d*z [(z) A ()
for appropriate real-valued test functions f(x) over space-time are
Hermitian operators in a Hilbert space. 4 (z) is called a scalar Lie field
if it satisfies equation (1.1), which may be rewritten in terms of smeared
fields as
A, A=A, 9) + A(lf, 91) 2.1)

Alf,9) = [ d*xdiy f(x) g(y) A, y)
[f, 9] (2) = [ dia dby f(x) g(y) c(x, ¥, 2) .

It is convenient, as well as most natural from the mathematical
standpoint, to consider first the algebraic properties of Lie fields without
asking whether the quantities 4 (f) have meaning as operators in a
Hilbert space. The algebraic properties will be expressed wholly in terms
of bilinear mappings on the test-function space (in other words, in terms
of the generalized functions 4 and ¢ of equation (1.1)). We shall say that
a test-function space! " has a Lie field structure if there exist continuous

where

(2.2)

1 The precise nature of " is irrelevant to the general algebraic discussion, but
we shall assume that it contains the space of infinitely smooth functions of fast
decrease.
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mappings
(o) e x A —A(f,9) € R (real numbers)
(o) et x A —~[fgle A
such that for all f, g, h €
(@) [f, 2g 4 ph] = e[f. g] + BIF, ]
A(f, g + Bh) = aA(f, g9) + A, )
(b) I, 91=—19. 11
Alf,9) = —A4. 1)
(c) [f, [g, K11+ Lg, [h, [11 + [As [, 911 = 0
A, [g, k1) + Alg, [k, f1) + A, [f, 9]) = O
) [fr92]= 1/ 9]z
At 90) = A(f. 9)

where f7, (x) = f(L~2) for any inhomogeneous Lorentz transformation L.

(e) If, for any position-vector @, T'(z) is the translation by 2, and if @
is an arbitrary fixed space-like vector, then for any ¢ in ™, the space
of continuous linear functionals on J¢,

all o, feR

Jim ¢ ([f, graal) =0
/111’1)1;o A, 9ra0) =0

) [f, [g, ﬁ]] 4+ 0 forsome f,§,h¢A.

For some purposes one may wish to strengthen the macroscopic
locality condition (e) by requiring that [f, g7 4] tend to zero in the
topology of J¢"; on the other hand, one may wish to weaken (e) by re-
stricting the functionals ¢ to some subspace of 7.

It is useful to rewrite some of the above algebraic properties in terms
of the Fourier transforms A and & of the generalized functions A and ¢
of equation (1.1). Because of Poincaré invariance and macroscopic
locality, we may write

E(p,g,7)=0(p+q+1c(pq
A, q)=0p+q A (p),

where ¢” and A’ depend only on the Lorentz invariants2. In addition we
have

(i) ¢ (p,q) = —¢'(¢, p)
A'(p)=—-A"(-p),

? Macroscopic locality forbids terms proportional to d(p), d(g) or &(r).
4#
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(i) ¢'(p, ) " (P+ q,7) + (g, 7) &' (g + 7, p) +
+e(r,p) e (r+p,q) =0
A (p+q) +(=(p+q),p) A (—q) +
+¢ (¢, — P+ q) A" (—p) =0,
(iil) ¢ (p, ) = ¢'(—=p, —9)
A'(p) = A" (=p) = -4 (p).

We note that the invariance under proper Lorentz transformations
fixes the parity (positive) under space-inversions:

¢ (% p; 9% Q) = ¢ (p° —p; ¢° —q)
A'(p) = A" (=p) = —=4A"(p) -

Proof: Without loss of generality p and ¢ both lie in the a1, 22-plane.
The transformation 2°— af, al— —at, 2®— —2? 2% —a® is a proper
Lorentz transformation.

The invariants p2, ¢% and (p + ¢)? determine the vectors p and ¢ up to
a proper Lorentz transformation and (possibly) a space-time inversion
(or equivalently a time-inversion). Thus

¢ (p, q) = E(p% ¢% (p+ 9)% &) where &=+ or —
with

%% 0+ 9% +) =¢@% % (p+ 9% —)
and
A" (p) = e(@°) A(p*), Red'(p)=0.

Since A is only incidental to the Lie field existence problem (although
it may be crucial to the existence of a physically interesting field theory),
we shall concern ourselves from now on almost exclusively with the
generalized function ¢’ (p, ¢) (or alternatively the Lie bracket operation
[f, 9] in 7).

Time-reversal and charge-conjugation invariance are not implied by
the defining axioms of the scalar Lie field, but it is convenient for the
sake of algebraic simplicity to require the following sort of TCP invariance
(corresponding to negative TCP parity).

For arbitrary f, g € 0,

/s 900 = [fo, 90], where fo(x) = f(—x).
In terms of ¢’ (p, q¢) we have
¢ (p, q) = (p% 4% (0 + 9%

(2.4)
c(p,q) =c(p,q) -
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3. Some General Results

In this section we derive some general properties of the scalar Lie
field structures satisfying the “TCP invariance” condition (2.4). The
arguments are of a formal nature, in that the function space " of the
previous section is not specified. However, the existence of numerous
examples (see Section 4 for the simplest of these) for which the statements
of this section are applicable indicates that the latter can be made
mathematically rigorous if sufficient restrictions are placed on J7".

We first consider the Jacobi identity (2.3) (ii). In order to exploit the
Lorentz invariance, it is convenient to introduce, in place of the triad
P, q, r of four-vectors, the following invariant variables3:

w = p w=(p+q?
v=g* w' = (q +7)?
w' = r? t= (r+ p)?

’

v'=(p+q+r)p?
where w v+ u" +v —w—w —t=0,
and six of the seven variables specify the triad p, ¢,r up to a (not
necessarily proper) Lorentz transformation. We further define3
Cu, viu| w', v')=E(u, v, w) é(w, v, v')
so that the Jacobi identity reads
Cu, vjw| ', v') + O, v |w|u,v)+ C, ultjv,v)=0. (3.1)

It should be kept in mind that equation (3.1) is not valid for all values
of the variables u, v, %', v, w and w', but rather only for those values
which correspond to triads of four-vectors (this is the point overlooked
by RoBINSON).

For fixed u, v, ' and v’ equation (3.1) takes the form

fw) +gw') + h(w+w) =0, (3.2)
where w and w’ vary over a certain region of the w, w’-plane (see Appen-
dix for details), the geometrically allowed region. Differentiating (3.2), we
see that% C(u, vjw| ', v') takes on the same value on any two geo-

metrically allowed subregions of the w, w’-plane which are intersected
by a common line w = constant, w’ = constant or w - w’ = constant.
For certain values of u, v, #" and v’ the allowed region (see Fig. 1) con-
sists of two disjoint subregions, B; and R,, such that for all (w;,w;) in B,
and (wy, wy) in Ry, wy & w,, wy == wy and w; + wi == wy + wy. For these

0
values of the parameters—— C'(«, v|w| v, v') may take on two values,

3 Notation used by Rosinsox [4].



54 J. H. LOWENSTEIN :

WI

/z‘

BN

1<

|

Fig. 1. Sketch of typical geometrically allowed region (shaded) for v* > o’ > v >
>u>0

B (u,v,u,v'") and By(u, v, u',v'); otherwise it is constant over the entire
geometrically allowed region and we may write

% Clu, vjw| w'v') = By(u, v, u',v") .
As observed by Rosixson [4], the product structure

Clu, vjw| ', v') = é(u, v, w) é(w, u', v")
implies that
Bi(u’ v, u’; vl) = Gz (u> U) Hi(u/> U,) 5 (33)

where, on account of the antisymmetry requirement (2.3) (i),
G;(u, v) = —G;(v, u) . (3.4)
The Jacobi identity (3.1) (differentiated) now implies
Gi(u, v) Hy(w', v') = G (v, w') Hy(u, ') = G; (v, u) H;(v,v') . (3.5)
If the lefthand side is nonzero for some choice of %, v, ' and ', we may

fix 4" and v’ and divide (3.5) through by H, (%', v') == 0 to obtain

Gi(u, v) = Py(u) Q;(v) . (3.6)
But it is easily seen that (3.6) is consistent with (3.4) only if
Gi (uy ?J) =0 3
and hence
0 ‘o
WO(u,Mw[u,v):O. (3.7)
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If 4%, (w) is the characteristic function of the sth allowed interval
of the w-axis for given u, v, v’ and »' (there are at most three such inter-
vals — one bounded, one unbounded to the left and one unbounded to
the right), equation (3.7) allows us to write

C(u, /U]wl u, ’l)') = 2 X;:wu'v’ (w) 4;(u, v, w', UI) , (3.8)
i

where, using the arguments leading to (3.3) and (3.4),
A;(u, v, u',0") = By (u, v) Fy(u',v")
El(“; U) = _Ei(v: u) .

Thus far we have obtained some general results concerning the form
of the product function é(u,v, w)é(w, w’,v"). Now let us use these
results and the Jacobi identity

(3.9)

é(u, v, w) E(w, w',v'") + (v, w', w') E(w', u, v') +
+ E(u', u, t)é(t, v, v) =0 (3.10)

to obtain additional information about é(u, v, w) itself.

Suppose é(u, v, w) é(w, »', v') is nonzero for some choice of variables.
Then this quantity remains nonzero (in fact is constant) if we hold
u, v, »' and ¢’ fixed and vary w within the interval I, (notation as in
(3.9)). Equation (3.10) with %’ and v’ fixed implies that é(u, v, w) has the
form

é(u, v,w) = F(w) [A(u) B(v) — C(u) D(v)]
for w in I,. Antisymmetry then requires

é(u, v, w) = F (w) [4 (w) B(v) — B(u) 4 ()] (3.11)
for win I,.
It is clear that the set

{w: there exist u, v, u’, v" such that é(u, v, w) é(w, w’, v') & 0}

is partitioned into a number of intervals on each of which é(u, v, w) has
the form (3.11). There is no limit on the number of such intervals; of
course ¢é(u, v, w) é(w, w', v') must vanish on all but (at most) three of
them for fized u, v, v’ and v’.

At this point we have arrived at some fairly general conditions on
é(u, v, w) and C(u, v|w| w', v'). Unfortunately these conditions are not
restrictive enough to permit an immediate listing of all possible scalar
Lie field structures satisfying the requirements set forth in Section 2.
In particular there may be some values of the variable w for which
C(u, viw|w',v')=0 for all u, v, v’ and »" but for which é(u, v, w) or
¢(w, u', v') does not vanish identically. Nevertheless our partial classi-
fication of scalar Lie field structures encompasses a wide variety of
examples, the simplest of which are presented in the next section.
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4. Examples

Example A. We designate by R, ¢ = 4+ 1, +2, the following regions
of Minkowski space:
R oy mi<pi<m? p°=0

+1
Ry mi<p*<mi p°=0
where 0 < m, < my < my < M.
If », is the characteristic function of region R;, we define
4+l — 1)
)

+2 > —2

(0, @)= [x+a(®) 2+1(Q) = %+1(D) x+2@] gralp + @) + (

or, in terms of the invariant variables %, » and w,

E(u, v, w)= [ga(u) g1 (v) — g1 (w) 22(0)] 0(w — w — v) g5 (w),

where y, (u) = 1 for p € B, v R_,, etc.

It is worthwhile to point out that in the case mg = oo, there exists a
Hilbert space representation of this Lie field structure. Suppose we havea
representation of the canonical commutation or anticommutation
relations in six dimensions:

[l/)(x> 77)’ w(xla n’)]i =0
[y (@, n), (@', 9)]. = 6 (x — 2) 6%(n — 7))

where z is a four-vector and # is a two-vector variable. Defining (if
meaningful)

1
T (@) =§;fd217 W@, ) oo v n)

!

1 0
D (@) = Wfdzn My @, 1) gy (@, 1)

1 ki
%(x)=§;fd2nemm W, 1) 5w (1)
one readily verifies that
A(fy= T (Refy) — T,(Imfy) + D (Ref;) — Z(Imfy),

where f;(x) is the Fourier transform of J;(p) = x;(p?) f(p), provides a
Hermitian representation of the Lie field structure:

i[A(f), Ag)] = A(lf, g])

[f, 9] = 2 Re(foq; — f192) -

An example of a representation of the canonical commutation relations
in which the A (f) are meaningful and in which there exists a unitary
representation of the Poincaré group is the Fock representation.

where



Lie Fields 57

Ezample B. Using the same notation as in Example A, define

¢ (0, )= o) 2-1(2) — 2-1(P) 242(D] 2420 + @) + (;;: J_r ;) .

Example C. Label space-time regions B, ¢ =1, . . ., 4, as follows:
R: mg* < p* < my?
R,y my? < p? < my?
Byt m? < p* < my?
where 0 < my < m; < My < my and my; — my < m,. Define

¢ (0, 9) = [1:(P) %2(0) — %2(P) 11 (D] + [12(@) — 2:(P)] 43P+ @) -

In each of the above examples one can verify [5] that the given
¢’ (p, q) satisfies the requirements of a scalar Lie field structure. The
choice of the test-function space " (see Section 2) is not unique, but in
each case one can choose J7” to be a space of square-integrable functions
whose Fourier transforms decrease faster than any power at infinity.

In all three of the examples we may incorporate into the Lie field
structure a c-number term defined by a generalized function A’ (p) (see
Section 2), but only in an essentially trivial manner (i.e. the retarded
functions calculated from the whole Lie field structure would be essen-
tially those of a generalized free field). For instance, in Example A we
could define

A'(p) = i[x41(P) = 2-1 ()] -
The Jacobi identity then follows, since

() A(—(p+9)=0.

5. Euclidean Lic Field Struetures

The existence of scalar, Fuclidean-invariant Lie field structures over
three-space is a direct corollary of the results of Section 3 concerning Lie
field structures over four-dimensional space-time. We recall (changing
four-vectors to three-vectors) that the Fourier transform A (p) of a
scalar Lie field satisfies

i[A(p), A(q)] = é(w, v, w) A(p + q),

where u = —p%, v=—q? and w= —(p + q)%, and é(u, v, w) is a real
generalized function satisfying

é(u, v, w) = —E(v, u, w)

é(u, v, w) E(w, w',v'") + (v, u', W) EW', u, v') + E(u, v, w) (¢, v, v) =0,

where ' = —1%, 0" = —(p+q+1)%t=—(p+1)2 w = —(q+ 1)
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As in Section 3 the possible values of w, w’ and ¢ for fixed u, v’, v and
v are restricted by the geometry: the configuration is always such that
in the w, w'-plane the geometrically allowed region is confined to the
interior of a closed curve in the bounded region w < 0, w' < 0, t < 0.
The equation of this curve, corresponding to p, q and r all coplanar, is
given in the Appendix, equation (A.1).

It is obvious that the scalar Euclidean Lie field structures are in
one-one correspondence with a certain subclass of the Lorentz-invariant
Lie field structures discussed in Section 3, namely those for which
¢(u, v, w) é(w, w', v') is nonzero only for all arguments positive; for these
Lie structures the geometrically allowed region is as shown in Fig. 1
(bounded part of the shaded region only). Examples A and B of Section 4
belong to this class. The crucial point in the construction of these examples
is the partition of the timelike region of space-time into forward and
backward cones: if p lies along the 0-axis, timelike ¢ lies in the forward
(resp. backward) cone if p-q > 0 (resp. p-q < 0). Precisely the same
situation prevails in the three-dimensional case, with the cones (half-
spaces) p+q >0 and p - ¢ < 0. The Euclidean analogs of these examples
may be written down immediately:

Example A’:

61, v, ) = [5() 7, (0) = 70 (1) 72(0)] 01t + v — w) za () ,

where
1 k2<—u <k
u) =
1 (v) {0 otherwise
key? > ky?

1 k< —u<lkj?

22(0) = 0 otherwise .

Example B':

E(u, v, w) = [a () 1 (v) = 72 () %2(0)] 0 (w — u — v) g, (w)
(same notation as in Example 4").

Appendix. Geometrically Allowed Region

In this appendix we describe in detail the geometrically allowed
regions of the w, w'-plane for a given set of parameters «, v, «’ and ¢'.

It is useful to observe that throughout the discussion of antisym-
metry and the Jacobi identity we always deal with a sub-space of space-
time of three or fewer dimensions spanned by vectors p, ¢, and r. We may
consider separately the three cases characterized by whether the vector
orthogonal to the p, ¢, r-triad is (a) spacelike, (b) timelike, or (c) lightlike.
In each case the range of w’ for fixed u, v, v, v and w can be ascertained
by straightforward geometrical arguments.
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(a) p, q, and r orthogonal to a spacelike vector. Define p X ¢ normal
to the p, ¢-plane by

(P X Q= eupoP’? With (p x g)*=p?¢*— (p-q)®.
The indices run from 0 to 2 and the signature of the metric is + — —.
i w>0, (pxg?*(p-+gq) xr?*>0:

w' lies between the coplanar extremes (those values achieved when p, g,
and r are all coplanar).

(i) w>0, (px@*(p+q xr)?<0:

Geometrically impossible.

i) w>0, (px¢q?(p+q) x1r)?*=0:
Borderline case: only one value of w’ is possible.
(iv) w<0, (px@?(p+q) x1r)?*>0:
w’ lies outside the coplanar extremes; w’ is not bounded.

(v) w<0, (pxgP(p+q xr2=0:
—occ < W < 4o
(vi) w=0:

w' may take on any value on a half-line with the extremal value cor-
responding to p, ¢, and r coplanar.

(b) p, ¢, and r orthogonal to a timeltke vector. This is the case of
Euclidean 3-space. As in (a) (i) w’ lies befween the coplanar extremes.

(¢) p, ¢, and r orthogonal to a lightlike vector. This is the case of
Kuclidean 2-space and w’ takes on precisely the values achieved when
p, q and r are coplanar.

From the foregoing we sec that the entire allowed region in the w,
w’-plane for fixed u, v, »’ and ' is determined once we know the value of
w’ for p, ¢ and r all coplanar. A straightforward calculation gives

’

! ]‘ ’ ’
w =0v-Fu +~2—207(w-u+v) (v —w—u")+
1 - (A.1)
+ 5. V[(w + v — u)* —4dwv] [(w+ u" — v)%—4wu'],

or, in geometrically more transparent form,

(p+llr(»+ 9]
(p + 9)?

!

(g 7)2=q%4- 72+ 2 lg -

2 S — e S
+ WV[(”P + 02— (p+ 9 91 p+@*r*—(p+9 7).
The third term on the righthand side is, up to sign, twice the product of

the components of ¢ and » parallel to p + ¢, and the last term is, again up
to sign, twice the product of the components orthogonal to p + g.
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The salient features of (A.1) are the following:

(1) Triangular symmetry. The variables w, w’ and § = u + v + «' +
+ v — w — w' are double-valued functions of one another with the same
form (A.1) if the parameters «, v, u’, and ¢' are permuted appropriately.
Thus any general properties of the curve (A.l) with respect to the
w, w'-axis must be true with respect to the w, t- and w’, t-axes as well.

(2) Behavior as w — 0.

1
W —u) (v" — w') + constant

R Py 1 [ —2) (uw+v) (1 — ) (0 + ')
5@ +v+u Tv)+—2—[ =) W — ) ]

(3) Behavior as w — co.
% (v—u') @ — u)
(w+v+u +0)— w—:—%;(u' —u) (v — ).

(4) Critical points. The function (A.1) is single-valued at points where
the quantity within the square-root sign vanishes. Negative values of
the latter correspond to those values of w which are not attainable
geometrically (in two dimensions, at any rate).

Note that (3) actually follows from (1) and (2).

Given any set of parameters u, v, u’, and v’ one can use (1)—(4) to
obtain a sketch of the curve w’ = w'(w) showing all the important
features.
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