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Abstraet. In the present paper we continue investigating spaces of tempered
distributions in infinitely many dimensions. In particular, we prove that those
linear homogeneous transformations of the canonical pair of field operators, which
preserve the commutation relations, can be implemented by an essentially unique
intertwining operator. The dependence of this operator on the transformation is
studied.

1. Introduetion

Summary of results

In two previous papers [6] and [7] (in the sequel quoted as I and II)
we have studied certain spaces of tempered distributions in infinitely
many dimensions, in particular the space &, which is essentially identical
with the space X considered by BorcHERs [1].

In the present work we investigate linear homogeneous trans-
formations of the canonical pair of field operators; in particular linear
transformations induced by the real symplectic group X over Schwartz’s
space &1 This group we define as the family of all matrices

ugv
U= ([—/ ﬁ)
with matrix elements in L (%, &) n L(&*, %) and satisfying
UsdU=0JU*=1J, (1)
where
1 0
1=(5 1)

The linear transformation induced by U is then defined as the mapping
() ~ ay(7) = a(U* §) + o*(V* §)
a* () ~ afy(¢) = a* (U* ¢) + a(V* ¢) .

t In the study of spaces of type & in I and IT we assumed & = & (RY). In
case & = &L (R"), n > 1, spaces of type & should be modified in the obvious
way.
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In Section 3 we prove that such a linear transformation can be represent-
ed by an essentially unique operator Q(U) ¢ L(&, &*), which inter-
twines the pairs (a, a*) and (ay, i) in the sense that

ay(§) 2(U) = 2(U) a (@),
afi (¢) 2(U) = 2(U) a*(g),

if and only if the image U* (%) is dense in % (here — in contrast to
I and II — the bar denotes complex conjugation). The subset of X
having this property is denoted by X|,.

In Section 4 we prove that the suitably normalized operator Q(U),
U ¢ X, is continuous and differentiable when considered as a function
of (VU-L, U-L, V* U*-1) ¢ L(.¥, &*)3 into L(&, &*).

Finally, in Section 5 we study the conditions under which the operator
£(U) can be extended to a unitary operator in the Fock-Cook Hilbert
space 9. These conditions are essentially well known and are for example
formulated in Friepricus [3]. A detailed proof has been given by
SuaLE [8], who considers the Weyl operators as the basic objects. We
consider instead the creation- and annihilation-operators, and thus, our
line of reasoning is closer in spirit to that of FRIEDRICHS.

The quantization of certain differential equations
The results mentioned above have an application to the problem
of quantization of certain types of differential equations including linear
wave equations of the form

(3 + H3+ BO) ) =0 @)

where H, is a positive definite operator (e.g. Hy= (—4 + fmg)%), and
where B(t) is a real symmetric operator for each value of ¢. Both H,
and B (t) are operators in some space of complex valued functions over R».

It is well known that if the Cauchy problem for (2) has a unique
solution then the propagation in time is given in terms of a two parameter
family of transformations U (¢, ¢;) satisfying

U(tz’ t3) U(t3, tl) = U(tzy t1) . (3)

The types of differential equations to which our results apply may
be obtained in the following way:

Let U(ty, t;), —c0 <y, t; < o, be a family of symplectic trans-
formations over ., for which (3) is satisfied. If U(:, ¢;) and V (-, ;) are
differentiable from the real axis into L(%, &) N L(S*, ¥*), then in
virtue of (3), U(¢, ¢;) satisfies an equation

iU L) =ABUEY), (4)
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where A(t) is independent of #,. Moreover, it follows from the real
symplectic character of U that A is of the form
_falt) b
A0 =(5y ) (©)
where a and b are in L(.%, &) for each value of ¢, and where a* = ¢ and
b* = b.
Hence it follows that if the Cauchy problem for the system
tv=av+1bw
C (6)
rw=tbv—aw
has a unique solution, then U (t,, #;) is the family of propagators associated
with the system. In (6) v and w denote functions of ¢ with values in &.
Consider again the wave equation (2). If the operators a and b of the
equation (6) can be represented in the form

i —1 —1
a)y=¢ " Hy T Bty Hy P e

—i1H,t

. —l _l .
bty = —ie " Hy? By Hy*e ",

and we define
-1 :
ult)y=Hy) % (¢ o)+ ),
then u(t) satisfies the wave equation (2) in an appropriate sense.

If the family U(t,, ¢,) is in 2, then £(+) — normalized as in Section 4 —
maps U(f,, ;) into a two parameter family

S(tm tl) = 'Q(U (tz} tl)) (7)

of elements of L(&, &*). In this context we call 2(-) a quantization of
the family U(i,, ¢;) or, alternatively, of the system of equations (6).

We assume now that the Cauchy problem for (6) has a unique solution,
so that U(t,, ¢;) exists. Consider the Feynmann boundary value problem

(o) = Uttt () (8)

where ¢ € & is given. It follows from the results of Section 3 that
Uty t;) € X, if and only if (8) has a solution (v(t;), w(ty) € & & & for a
set of ¢’s which is dense in %, or, equivalently, if and only if the homo-
geneous Feynmann problem (¢ = 0) has only the null solution in * @
® S*.

Assume that this condition is fulfilled for all ¢,, ¢,. Then it follows from
the results of Section 4 that if the map (¢, ;) — U(ty, t;,)"1 € L(S, &%)
is continuous, then the operators S(fy, ¢;) given in (7) depend contin-
uously in L(&, &*) on t,, t,. Also, if the limit U(co, —m0) exists in X,
then the associated S-matrix S (oo, — o) exists as the limit of S(t,, ;) in
L(&, &*).
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Let us remark that since % is a perfect space (bounded closed sets
are compact), the continuity of U (t,, t,)~! in L (&, 9*) is equivalent to
the continuity of (¢, U(t,, t,)~t ) for all fixed ¢, p in &. A similar
remark applies to L(&, &*).

From the results of Section 5 it follows that S (co, — o) is unitary if
and only if the map v(—o0) — ¢ = U(co, —oc) v(—o0) defined by (8) is
norm bounded, and the map v(—o0) ~w(o0) = ¥ (o0, — o) v(—c0) is of
Hilbert-Schmidt class.

As a further consequense of Section 4 we note: If Uf(t,, §,)"1 € L(.%,
F*) is differentiable as a function of t,, so is S(t,, £;), and

B at AOLINE ©)
with A a homogeneous polynomial of the second degree in @ and a*
to be read off from Theorem 4. However, it is not always possible to
write (9) in the form of a Schrodinger equation.

If the conventional quantization procedure is applicable then S(fy, ;)
is the unitary transformation which in the interaction picture maps from
initial time ¢ to ¢, Since S(fy, 4) is in general not unitary, £2(-) is a
generalization of the conventional quantization scheme.

Notation

Our notation is that of I and II (cf. II, Section 2) except that
in this paper @ and not ¢* denotes the complex conjugate of ¢ in &
or in &*#*, Further we shall make use of the notation 4 for the operator
defined by

Ag=4p
and AT for the transpose of the operator 4,
AT = 4%

For reference purposes we cite here a particular case of Schwartz’
nuclear theorem (cf. for instance, EHRENPREIS [2]).

Lemma 1. If y € L(S, F%), then there exists a unique distribution
vk € 2%, called the kernel of the operator y, such that

@y ) =<{P®P vx)

forall g, p € &.

If » has the kernel yy, then the kernel of 7 is $ix and the kernel of T
is characterized by

(p@ v, (N> =¥ @ @ 90 -
In particular, y = T if and only if yy is symmetric, 1. e. y € S2¥.
Continuous linear mappings U € L (%%, *) are applied to distribu-
tions with values in an arbitrary space by duality in the usual way, i. e.
we define
Ua(p)=a(UT ¢) ¢ &L
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2. Gaussian Elements

Definition 1. If y ¢ L(F, &%), then an element I'€ &* is called a
Gaussian element associated with y if and only if

alp) '=a*(y @) I' forall ¢¢c . (2.1)

If I'is a Gaussian element associated with v, then

a(p)a(y) I'=a(g)a*(y ) I'=a*(y p) alep) '+ <@,y ) I’
=a*(yp)a*(y o) I'+ (g, y ) I'
for all ¢, w € &, and since [a(@), a(y)] = [a* (v @), a*(y p)] =0, we

have
Gyw =Gy,

i.e. y =yT is a necessary condition for the existence of a non-zero
Gaussian element associated with .
Theorem 1. Let y = y7 € L(S, *). Then every Gaussian element I"
associated with y is of the form I' = ¢ I'(y), ¢ € C, where
1

ro)= X @yt erne yme (V)ige) v, @2

and, conversely, I'(y) is a Gaussian element associated with .
Proof. Assume that

o] _1 -
I'= 3] (k) *a**®(I}) Poc &*
E=0
is a Glaussian element associated with y, and let ¢ ¢ &. Then we get,
replacing @ by @ in Definition 1:
<(P! F1> =0,
1 1
(k -+ 1)2 <(p’ Fk+l>(l) =k’ Sym(‘}/ 9_9® Fk—l) for k =1 ’
and hence
1 L
(k+ 1)* o ) = B2 (@ * D e @ I y)

Since ¢"® span a dense subset of & (II, Lemma 1) we get I, = 0 for k
odd, while

2n\1
T2n=02—"(n)zsym(y”|<®), for n=1,2,...,

(E+1D®

with ¢ = Iy, so that in fact "= ¢ I'(y).
On the other hand, straightforward computation shows that I'(y)
is a Gaussian element associated with y, and the theorem is proved.
It is obvious that a necessary condition that I'(y) € 9 is that yy € H#72,
i. e. that the kernel of  be a Hilbert-Schmidt kernel. A necessary and
sufficient condition is given in Theorem 2, in the proof of which we need:
3 Commun. math. Phys., Vol. 6
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Lemma 2. If an element yy € H? is symmelric, then it has a representa-
tion of the form

vk =2 vn 92®
Tn

where {@,} 1s an orthonormal system in H and y,, = 0.

Proof. Assume that g €22 and let » be the Hilbert-Schmidt
operator in J# with kernel yy. The symmetry of yi is equivalent to the
equation y* = §.

Since vy is compact, it has a representation of the form

Y =270 Lo
1
where {y,} is the set of non-zero cigenvalues of |y| = (y* y)* while P,

is a partial isometry (elementary operator) with initial domain equal to
the eigenspace for |y| corresponding to the eigenvalue y, (cf. AL. GHIKA
[4] théoréme 4.2, sec also HusTENES [5] Theorem 11.1).

We then have

where P* and P, are again partial isometries. From the uniqueness of
the representation considered in [4] and [5] it follows that P* = P,,
and in order to prove the result it is obviously sufficient to establish it
for each of the partial isometries P,.

Thus, assume that P* — P for a partial isometry P of finite rank.
Let @ be any non-zero vector in the initial domain of P, and define
p=P @=P*p. Then ¢= Py, and the two vectors y' = ¢ + 7,
%" =1i(p — ) are such that P j = y.

Since at least one of the vectors y', '’ is non-zero, there exists a
normalized vector y satisfying P 7 = y. Lot ¢ be the operator with
kernel 42@, then P — Q + R, where R* = R and R is a partial isometry
whose initial domain has smaller dimension than that of P. The proof is
completed by finite induction.

In order to compute the norm of I'(y), we first consider an operator
y of finite rank with a kernel

k
=2 7%,
i=1
where {@y, ..., @;} are orthonormal and y; = 0. For such a kernel we
have
k %
WE=2 Xy v, %0 @ gh®.
=1 In=1
Rearranging the tensor factors of each term according to the ordering
determined by the indices, and denoting the number of factors of the
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form y; ¢#® in a given term by v;, we get

n! v v 2 vy Vi

sym (y§®) = X ST YA v sym(g) O @ ¢in?)
where the sum is extended over the set of all representations of »n in
the form n = v, + v, + + - - + v, where v, v,, . .., ¥, are non-negative
integers.

Since the ¢; are orthonormal, we have

<(p%”1® R Q® ¢k7’k® sym (lelx@@ . q;i/‘h®> =0
i (v, oo v) = (g, - oo M), and
2v;)!

21, & ”, 2y £y (91))' 2
<qgif AO®...®Q)’%L®, Sym(p; ®® ®(p° k®>_____’_(m’___’

and since sym is an orthogonal projection in 527, we obtain

2 ne Eo@w)t e,
[symyp®[2 = (n1)* : 125
[ ! “+"'§k=n @u)t A0 () 7l
Now let ¢, @, . . . be an orthonormal sequence in S, let

VK = 21 v € o2,
§=
and define

3
?’7&:‘21' Vi 97 ®
i=

Then 7% — yx in #2, and since the mapping, which sends K € #72
into sym K*® ¢ #2n is continuous, we get

lsym (&) ®)| = [sym (&®

Since all terms are non-negative, it follows that the unordered
infinite sum

(D @e) s,
52w Lo
is convergent and has the value |sym (y%®)|2. The summation is to be
extended over all sequences {», v,, ...} of non-negative integers with
2 y; = n, and hence, in particular, the product appearing in each term is
in reality finite, and, furthermore, the sum is extended over a countable
set. The convergence follows from the observation that the terms can be
ordered into a series in such a way that certain partial sums have the
values [sym (yE)» @] 2
We shall now prove:
Theorem 2. Let y = yT € L(S, 9%). A necessary and sufficient
condition that the Gaussian element I'(y) belong to & is that y be a Hilbert-
Schmidt operator in S and that |y ,, < 1, where ||y|l,, denotes the operator

norm of 7 in #, i. e. |yp = sup{ly ¢l | ¢] = 1}.
3*
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If these conditions are fulfilled, then |||I"(p)||| = IT (L — 3)~ i, where

7
{y,} denotes the eigenvalues of |y| = (y* )2

Proof. It has already been mentioned that a necessary condition in
order that I'(y) belong to § is that y be a Hilbert-Schmidt operator.
Assume this to be the case, then, since

(2:) _ o1y (—:/2) ’

o= 3 fyme ()" e

we get

& (e

= hg ,25; cee {] (_11}]/2) (*ij)vj

where the multiple sum is only extended over sets {»;} with finitely many
v; different from 0. Since all terms are positive we get

eIl = H( = (7)) <—y%)”>
[l v=10
which is infinite if ||y|,, = maxy; = 1.

This proves the necessity of the conditions. Conversely, if these are
fulfilled, then

-1
-y IIIL (L9 "<,

and the theorem follows.

3. Linear Transformations of Pairs of Field Operators

Definition 2. By a pair of field operators we understand a pair a = (a, a*)
of continuous linear mappings from & into L(S?, &) (where &' is a space
of type & ) such that a* (@) and a (@) are dual for all ¢ € &, and the canonical
commutation relattons hold.

Let (a, a*) be a pair of field operators and let &, w € L(S, &).
Consider the pair of operators a,, af defined by

a,(p) = aE @) + a* (@ §)
af (@) =a*(e @) + alw ¢) .

Straightforward computation shows that a, = (a,, aF) is a pair of field
operators iff

(3.1)

wle—eTw=0
(3.2)

efe—wrow=1.
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Let in particular a be the canonical pair in L(&, &). We then ask
whether there exists an intertwining operator Q ¢ L(&, &*) such that

a, () 2 = Qa(p)

3.3
at () 2 = Qa* () (39)
for p € &.
If Q is such an intertwining operator, and if we define
Y,=02Y%,,
then obviously
a(p) P17 =0 forall pc & .

Conversely, if ¥, ¢ &* satisfies a,(p) ¥; = 0 for all ¢ ¢ &, and if we
define 2 by
Qa*r®(yp,) Vo= af"®(y,) Py, (3.4)

then it is easily verified that Q is an intertwining operator. Here af#®
is the unique continuous extension to #” of the mapping from #7®
into L(&*, &*) defined by af"®(¢n®) = a¥(¢)" (cf. I, p. 203). Thus, to
study existence and uniqueness of intertwining operators we need only
study the equations

aGp)V=—a*@p)¥, @c. (3.5)
From (3.2) follows that

le @l = [ @l* + @l?

so that &1 exists from &(%) onto & and | ¢ < |l ¢|. Consequently
there exists a unique mapping 9" on ¢(%) such that

—Bp=yEg (3.6)
for ¢ € . Since |@ ¢|| < ||& ¢, the mapping 9" has an extension to an
operator in L(J#, #) of norm at most 1. In particular 4’ has an extension
y € L(&, %), and it can be shown that it follows from (3.2) that y
can be chosen so that yT = y.

The equation (3.5) can now be written

a(p) ¥ =a*(y o) ¥, (3.7)
for ¢ € ().

A Gaussian element associated with y is of course a solution to these
equations. If £(.%) is dense in .7, then v is unique, and a slight modifica-
tion of the proof of Theorem 1 shows that the complete solution to (3.5)
isc¢ I'(y), ¢ € C. In case £(.%) is not dense in &, it can be shown that the
manifold of solutions to (3.7) is infinite-dimensional.

Definition 3. The (real) symplectic group X over & s the family of
matrices U of the form

vv
v=(7 o)
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such that U, V, U*, V* ¢ L(&, &) and

UxJU=0JU*=J (3.8)
where
1 0
1={o 1)
1 denoting the identity operaior in &, and
Uu* vt
Ut = (e 1) -

In this definition, U* and V* denote adjoints of U and V. In the
sequel we also use the symbols U, V, U*, V* to denote the unique
continuous extensions in L(%*, %) of U, V, U*, V*¢ L(&, &).
Obviously U ¢ L(*, *) is the dual of U* ¢ L(&, &), ete.

To each element U of X we may associate the transformation

L [ R

in the class of all pairs of field operators.
It is clear that this is a transformation of the type (3.1) with

e= U*

e TVt (3.10)
Moreover, X' consists exactly of the invertible transformations (3.1).

Of particular interest is the case, where there exists a unique ray
of intertwining operators Q = Q(U)¢ L(&, &*) associated with U.
As remarked above, this is the case if and only if the range of &= UT
on & is dense in &. Another case of interest (cf. § 5) is that, where U (%)
and UT (&) are dense in 5.

Definition 4. The set of elements U € X, for which UT(F) is dense in &
is denoted by X,. The set of elements U ¢ X, for which U(S) and UT(F)
are dense in J is denoted by 2.

The following lemma contains a number of facts about transforma-
tions U ¢ 2.

Lemma 3. 4 necessary and sufficient condition in order that a trans-
formation

uv
v-(7 g
with U, V€ L(S, L) L(F*, F*) belong to X s that the following
hold in & (and then by continuity also in F*):

UU* =1+ 7V Vs
UsU=1+VTV
Uvi=vyv ot
UsvV =vTu,

(3.11)
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and then
. U* —VpT
U= (L gn) -
The subsets Xy and X of the group X satisfy
Zot=2,c =271 2.

I} UCZ, then U)>SH and U*H)>H, and U-Y, U, 5
=—VTUT-Y, and y,= VU~ are bounded operators in H# satisfying
the relations

(3.12)

Ut U1 4y 5 =1

UF2 U= 4y, 5 = 1
y=9"
Vlz')’}--

Proof. The relations (3.11) are merely the equation (3.8) spelled out
in detail, and (3.12) is equivalent with the equation

U =JU*T,

which is still another formulation of (3.8).

To prove that 25t C X, (and hence =), assume that U ¢ 2. Then
by duality, U is one-to-one on %*. Now consider an element f¢€ &%
such that

(3.13)

U¥f=0.
From the third equation in (3.11) it follows that
UVI =V U f=V({U*f)-=0,
and hence that ~
Vel = (T =0

since U is 1 — 1.

From the first equation in (3.11) it then follows that

f=0 U=V V*f=0,

and hence U* is one-to-one on #*. By duality once more, U (%) is dense
in ., and hence U~* ¢ X,

It is now trivial that 2,2}, and in view of (3.12) it is clear that
2t =2

Assume next that U € 2. From the second equation in (3.11) we get

WU ol = Il (3.14)

for ¢ € &. Now, for each f¢€J# there exists a sequence {@,} C& such
that U @,—f in o, In view of (3.14) the sequence {¢@,} converges in 57,
and hence also in %%, to some element g €%, and since U € L(S, %)
it follows that U ¢,— Ug in &*. Consequently, f= Ug for some
g €, so that U () D, and, by symmetry, also U* (o) DI . Since
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U(¥) is dense in 5, it follows by duality that U* is one-to-one as a
mapping of 5 into F*, and similarly for U. Thus, U~ and U*~! are well-
defined as mappings of U (£) resp. U* (3#°) onto 5, and hence as mappings
of 5 into JF.

The final statements of the lemma are now easily verified.
‘We now collect the main results of the above discussion in:

Theorem 3. If U ¢ X, then there exists a unique ray Q = ¢ Q(U) of
intertwining operators associated with U, 3. e. satisfying (3.3), where

()= (c) = 0 () (319

The operator Q(U) is given by

a§™® (y) I'() (3.16)

n=20

for all ¥ = {y,} ¢ &, where the opemtor y = y(U) associated with U is
defined by y = — VT UT-1,

4. Continuity and Differentiability of the Family of Intertwining Operators

In II we proved that the displacement operator D (f) ¢ L(&, &*)
is differentiable as a function of f € &*. The object of this section is to
prove an analogous result for the intertwining operator 2 (U).

We start by evaluating the bilinear form {@, 2 ¥)for @, ¥ belonging
to the summand spaces of &.

Lemma 4. Let U € X, and let @ = a*(p)* Yy, ¥ = a* (p)™ V. Then
(2, 2U) ¥ =

mlin! _ _
= 2 grapigyr YUNF ) (e, Uty (g, (U) §)7
Fratay

Proof. With the notation of Theorem 3, we have
(D, Q(U) ¥ = Lay ()" a* (@) Wo, I'(y) ).

Since
“U(V_’)m“—‘zs , tE 2’s't'u' <w’ U VTW>3“* VT P a (UT"p)u

TITU=m

we get
- . min!
aU(W)m a‘*((p)n WOZ 2 23 slttulv! X
28 +t+u=m e
u+v="n

Xy, U VTG Cp, U g)? a* (VT ) a* ()" ¥,
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Consider a term {a* (VT @)t a* (p)> ¥y, I'(y)). For ¢+ v odd it is
zero, and for ¢ + v = 2w we get
Ka* (VT ) a* (@) ¥, L'(y))=

1 - 2w\1
= (@D sym (VT 3r% © ¢°°), 27 () @)
wlitlv! 2v - _
=2 P TR VTFe VT, yr)® X
Tt+y=

29+y=v

XVTP® ¢, ) {9 ® @, yi)? -

Thus
(D, 2(0) ¥y=
1! _
= P WW(U VT, wys g, U* gy %

28+ u+2x+y=m
2uty+29=n

X VTP VT, yiy* VT ® ¢, 7k’ (9 ® ¢, yic)* -
To complete the proof, observe first that in view of Lemma 3,
VTP 9+ VT Vg, )
={(UVT+Vy* VD, )

=V U1 P,y =y UNP, v,
and similarly,
(o U* 9+ VTF® @70 =<9, UM ) .
Hence the result follows by summing first over all pairs (s, «) with
s + x = p and over all pairs (u, y) with v + y = r.
Corollary 1. If U¢ X, then (D, 2(U) V)= {(L2(UY) D, ¥ for all
D, ¥Vcé.
We now define
:a¥m® @ a"® (k,.,) A: ¢ L&, &)
for kpyin € Im* ®@ Fn* and A € L(S, &*) by putting
0* "0 @ a"® (f,® g,) A:=a*"®(f,) 4 a"®(g,) (4.1)
for f, € FS™*, g, € FS7* and extending linearly. It can be shown that
the mapping
km+n ~ a*"O @ a’n®(km+n) 4:
is continuous when & * @ % *is provided with the topology of & (m+n)%,
and since L(&, &*) is complete, this mapping has a unique continuous

extension to & m+m* We denote this extension by the same symbol.
The operator: (a*™® @ a"® (k,,1,))" 4 : is defined by induction as:

a0 @ 0O (ki p,) (@7 © @O (k) A
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Lemma 5. Let o, B, v € S?*. Then there exists a unique linear operator
A, B, ) € L(&, &*) such that
(D, A, B, ) ¥

minl ,_ — o\p 4.2
=2p+2;___mm<w®vw>7’ (po 7, prlpe gy D
2¢+r=mn

or all @ = a* ()" ¥y, ¥ = a*(p)* ¥,. The mapping A is differentiable
P P 0
from 2% @ 2% @ P2 into L(&, &%) with the differential

dAd=:(a® a(do) + a* @ a(df) + a* @ a*(dy)) Ao, B, 7): (4.3)

Proof. The uniqueness of A(x, #, v) follows from the fact that linear
combinations of elements of the form a* (p)» ¥, o € ¥, 2 =0,1,2, ...,
are dense in & (cf. II, Lemma 1). On the other hand, consider the
operator

A = exp(a* @ a*(y)): exp(a* @ a(f)) Py: exp(a ® a(x)) (4.4)

where

() (e a()rc L&, &),

f

exp(a ® a(x))

kS

exp (a* ® a*(y)) - (g~ (a* ® a* ()" € L(&*, &%),

_

I

l
Itvg 105 1D

rexp(a* @ a(f)) Py: (r)1: (a* ® a(B)) Py: € L(&, &%) .

~

Here P, denotes the projection
Py V= (Wo, VYW, .

As noted in I (¢f. Theorem 5.17) the convergence of the above series
follows from the special character of the topologies of & and &*.

Straightforward computation shows that the operator A satisfies
4.2).

Let @, ¥ be of the form considered above, let «, f, y, oy, fy, y1 € F2%,
and define

B ::/]'(OC =+ 0y ﬁ + 517 Y - ”/1) _/1(05’ ‘[))> ?/) -
— (a®aley) +a* @ alfy) + a* @ a*(y)) A, f,9):

Then, obviously, @, R ¥)) is a finite linear combination of terms of
the form

POP, ) {p®P, B {p® ¢, y)* X
X AP O P, 1)’ {p @ P, f1)" {p ® @, y1)?
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with v + 2 + y = 2, and the differentiability of A follows by arguments
similar to those in II, Section 4. At the same time we have proved the
formulae (4.3) and (4.4).
As an immediate corollary to this result and Lemma 3 we have:
Theorem 4. Denote by o, the subset of o= L(&, F*)® consisling
of all elements of the form (y (U-Y), U1, y(U)) where

v v
U= ([7 U) cx,.
Consider Q(U) as a function defined on o, This function has a differentiable
extension from o into L(&, &*). At elements of o, the differential of this
extension (which we also denote by Q) is given by
1dQ = :dK Q:,

where .
1K = 5 a® a(d(F (U)) + i a* ® a(d(U)) +
+ 5 @* @ a*(d(y (V)W) -

5. Intertwining Operators in §

For the applications it is of particular importance to have a charac-
terization of those elements U ¢ 2, for which there exists an inter-
twining operator £2, which can be extended to a unitary operator in the
Hilbert space § obtained by completing & in the norm ||| - |||.

For this discussion it is convenient to introduce some further notation.

We denote by #°% the completion of %% in the norm ||, and by

9 the direct sum § = ' H#™ of these provided with the direct sum

n=90

topology. Thus, $ is not a Hilbert space. The dual space $* of $ can be
identified with the product J7 7" , which as a set is identical with the

n=0
subspace of &* consisting of all elements T = {7}, for which 7', € #"
for all n.

It is clear that
SCHCHCTH*C &~

and that both § and H* are invariant under a (@) and a* (¢) for ¢ ¢ &.
Also, the mappings a and a* have unique continuous extensions from #
into L(9, 9) N L(H*, H*), these extensions are given by the natural
formulae [cf. (2.3) in II], they satisfy the canonical coommutation
relations, and a(@) [resp. a*(¢)] in L(H, H) has the dual a*(¢) [resp.
a(@)] in L(H*, H*) for all ¢ ¢ A

Assume now that the symplectic transformation U¢€ 2 has an
associated intertwining operator 2, which maps & into $* (this is in
particular the case if £ is the restriction to & of a transformation in ).



44 P. KrisTENSEN, L. MEJLBO and E. Ta. POULSEN:

Exactly as in Section 3 we see that if UT (%) is dense in &, then the
family of intertwining operators with this property is at most one-
dimensional.

We shall only discuss the case U¢ 2); the general case seems to
involve considerable extra work of a rather technical nature, but we
believe that essentially the same results are valid (except the one-
dimensionality).

The purpose of the present section is to prove the following results.

Theorem 5. Assume that U € 2. 4 necessary and sufficient condition
tn order that the equations

a(p) ¥=0 Vgco (5.1)

have a non-zero solution W € % is that y (U) be of Hilbert-Schmidt class,
and then the space of solutions in $* to (5.1) is one-dimensional.

A necessary and sufficient condition in order that (5.1) have a non-zero
solution W € 9 ist that y (U) be of Hilbert-Schmidt class and |y (U)|,, <1,
or equivalently, that V be of Hilbert-Schmidt class and U be bounded as
operators in J .

If ¥ € 9 is a normalized solution to (5.1), then the operator 2 defined by
(3.4) is the restriction to & of a unitary operator in $.

Proof. The first two statements of the theorem are immediate conse-
quences of the arguments in Section 2 and 3 except for the equivalence of
the conditions

[Wlop <1 and [U],, <.

To prove this equivalence, assume first that ||y|,, = ¢ < 1. The first
relation in (3.13) then gives

102 g2 =lol* =17 ¢[* = 1 — )] gl
for ¢ € S, and in particular for ¢ € U* y, where p € &, whence
1T yl? = (L= y]?
for € &.

It follows that the restriction of U* to % has a unique extension
to a bounded operator from J# into 5, and since U* is continuous from
S* into *, this extension to 5 coincides on 5 with U*.

Since the operators U on & and U* on &* are each other’s dual,
it follows that

KU @, Ol = Ko, U* DI = [l 1 U0 If]
for p €& and f€H#, and hence that also U is a bounded operator of S#
into .
Conversely, if | U|,, < co, insertion of the inequality
[0 ¢l =2 1U*55 [ ol = 1 Uls5 ol
in the first relation (3.13) proves that ||y],, < 1.
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Observe also that it follows from (3.13) that |yy],, = [7]ep-

Assume now that ¥ is a normalized solution to (5.1), then a simple
formal argument yields

<<aU W aU )n T»: m! <‘P’ ’P>m 6mn »
whence the theorem would follow. However, the operators af(¢) and
ay (@) are not known to be dual on Q(U) &', in fact, it is not yet proved
that Q(U) & 9. The following three lemmas are concerned with
problems related to the unboundedness of afs(¢) and ay (@) and contain
the remaining part of the proof of Theorem 5.

Lemma 6. Let Uc 2| be such that U is bounded in 5# and V is of
Hilbert-Schmids class. Let I" = {I';} € $ be the Gaussian element associated
with y = y(U), and put ¢ = ||y|,,. Define the projection p, in $* by

We then have

k N
e ad(pr 1 = 0 (0F)" 30 ("7 0 F T Jeremneep e
=0 (5.2)
for all @ € &, all positive n and all k = 0. Here ¢ = ¢(n) is equal to 0 or 1
according to whether n is even or odd.
Proof. Define A% and B} by
A2() = 1Pans e @ (@ T2,
B (@; 9) =LPar+1+em @ (@)1 L a* () afi (@) L) .
Repeated application of the equations
afi (@) = ay (1 @) + a* (U™ ),
a(g) = ay(UT-1 ) + a*(y ¢) ,
a (@) Pr = Pr— (@),

i 0* (@) = a* (@) Pr—1 >
and

ay(p) I'=0
yields the inequality
@) = CPar+.(au(Pr @) + a* (U @) afy (o1 I, afs (o) I')
= (n—1) {1 @, @) Lpar+. ol (@) =2 L, (ay (71 @) +
L e U g abler i Ty +
+ Lper—1+e A (@) 1 (ag(UT2 UL ) + a*(y U @) af (o) I7)
= (n— 1> K1 @, P)1* AF (@) +
+ (v — 1) Gy @, Py BEt -1y (@3 U™ @) +
+n|U SUHZAkﬂ(n i) +
+ By (gsy U1 =
= (n—12cg* 477%(g) +
= b oIl Bl U )+
+ @l AR 1) (@) + [ BE_1(@; 7 U §)| .
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In a similar way one proves that
[Br(p; p)l = (n — 1) c[ly] [@]* A2 (¢) +
+ =Dyl gl 1BiZ2 -1 (e, Ut @) +
+ eyl ol AR5 (9) +
+ | Bi-1(@; v ¥ 9l -

From these inequalities the estimate (5.2) and the estimate

oo @l (el & 1k —
Bl = SR (1) (7

j=0

5) o2(k=3)+e+1 [ T, 12

follow by induction.

Lemma 7. Let U€ X, be such that U s bounded in S and V is of
Hilbert-Schmidt class. Then Q(U) is a multiple of an isometry of & into .
The unique extension of Q(U) to a continuous operator from & into 9
1s also denoted Q(U).

Proof. Let ¢ € &, then it follows from Lemma 6 that

12(0) a*»© (¢ @) Pol[[* = [llad () [|]* =

= Byl en B2 (M )evnry e
= EP alerer = 3 (1) e e
ﬁj‘. iz o= L)1 — e < oo,

and hence that Q(U) a*7 @ (¢"®) ¥, € $.1t then follows from IT, Lemma 1
that 2 (U) maps & into $, and in order to prove the assertion concerning
the isometry on & it is sufficient to prove it on &’. Since ay and af
satisfy the canonical commutation relations, the result follows by the
argument used in the proof of I, Theorem 3.14 provided we show that

=

ay (@) and af; (@) are adjoint on 2(U) &
In order to prove this, define

and consider the difference
Py ats (w) aly (@ I, afs ()™ L) — {Pr—y ai (@)" I, ay (@) as ()" L7)
= (P41 + p) @ (@) I, a* (VT @) af(p)m ). (5.3)

From the first part of the proof follows that the left-side of (5.3)
converges for k — co towards the limit

Lats (@) afs (@) I, afs (p)" 1) — (at (@) I, ay (@) oF (y)™ 1)
so that the result follows if we prove that the right-side tends to 0.
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Now, if n — m is even, it is identically 0, and if » — m is odd, we
have, with ¢ = ¢(m):
(@) = [{Par+etr @G (@) I, a* (w) as ()™ I
= [{per+e(ap(UT1 @) 4+ a* (y @) af ()" I, afs () Y| =
= [ (U* 0, ¢y {pagre ot (@)~ I, af ()™ I)] +
+ Pate—n +e+1 05 (@) 1 (g (UT1§ o) + a*(y § w) afi (p)m IY] =
= n o] @l [[[Per+e @b (@) I ||| [[[Per+c ol (p)™ T[] +
+me o] |y [1Per—:o ot (@) I || Par—c (m—n af ()"~ T'l[| +
+ [ Poe=1) +e 11 @ (@) I, a* (y 7 ) afs (p)™ )] <
k
< 4, lol [l v 2 (

j=

p—1-+k—j

R LY VN SRy

where p = max(m, n), and 4, depends only upon p and ¢. In the last
step (5.2) has been used. It follows by induction that

Kp2r+sr1at (@) L a* () af (p) I)| =

< 00l ol [yl X (P5F77) e e
= Lip | W] lp” Wh Z/; E—j ¢ 1| 27l -
7

(5.4)

Since the k’th term in a convergent series tends to 0, the result follows
by the argument in the beginning of this proof.

Lemma 8. Let U € X, be such that U is bounded and V is of Hilbert-
Schmidt class in Z. Let 2, (U) denote the isometry of $ into & obtained by
normalizing 2 (U). Then

2,(0) 2, (U = 2, (U1 ) =1,

and hence Q,(U) is unitary.

Proof. It follows from Corollary 1 (obviously this holds for U ¢ X
as well) that Q (U-?) and Q(U) are each other’s duals as operators from &
into &*, and the equation (3.15) then shows that

QU afi (@) = a* (@) 2(UY)
QU ay(g) = a(p) 2(U)

in L(&, &%) for all ¢ ¢ &. Since both sides of (5.5) are continuous
from $) into $*, the relation (5.5) holds in L($, H*) as well. Consequently
we have

a* () Q(U) P, 2(U) ¥ = Q(U) af (¢) P, 2(U) ¥ =
= Q(U?) Py Q(U) a* (@) ¥+ 2(U) (prs1 + pr) @ (U* @) Q(U) ¥
forall p ¢ &, all €&, andallb=1,2,... .

(5.5)
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Since 2(U) P € 9 and 2(U) a* () ¥ € 9, we have in H*:
a*(p) Q(U-) QU) ¥ = lim a*(¢) 2(U) P, 2(U) ¥,
and
QU1 2(U) a*(¢) ¥ = lim Q(U) Py Q(U) a* () V.
It follows from (5.5) that
QU (pr+1 + pi) @ (U* ) Q(U) ¥
=QU) (Prs1 + pi) L(U) ai(U* @) ¥,

and since 2(U) afi.(U* ¢) W€ 9, this term tends to 0 for k — oo,
and consequently

a* (@) 2(U~1) 2(U) = 2(U~1) 2(U) a*(¢)
in L($, *). Similarly one proves that
a(p) 2(U~1) 2(U) = 2(U) 2(U) a(g)

for all p € &. Hence 2(U-1) 2(U) is an intertwining operator associated
with the identity in X, and thus Q(U-1) Q(U) = ¢ I for some ¢ ¢ C.
Since 2(U-1) = Q(U)*, ¢ must be positive, and the result follows.
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