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Abstract. The two sided ideals of the (7*-algebra generated by local v. Neumann
algebras are investigated.

I. Introduction

B. MISRA [1] has shown that the algebra of all local observables is
simple when the following conditions are fulfilled:

1. The algebra is given as a concrete 0*-algebra in a Hubert space
fulfilling the usual assumptions of local ring systems.

2. The rings associated with bounded open regions are v. Neumann
algebras.

3. For any bounded open region 0 exists another bounded open
region 01 containing φ such that the ring associated φ± is a factor.

The third condition, however, has not been derived from the other
two assumptions even when we assume that the von Neumann algebra
generated by the global <7*-algebra is a factor. Since in recent years
different representations of the (7*-algebra of all local observables have
been discussed [2], [3], [4] it is desirable to have a characterization of all
two-sided ideals in the general case where 3. is not assumed. We will
show that the theorem of Misra stays true without assuming 3., i.e. the
0*-algebra generated by all local observables is simple if it contains no
center. For later use we will also consider some more general algebras.

II. Assumptions and notations

We denote by Φ open bounded regions in the Minkowski-space and
write:

Φ± x 02 if ®\ and ^2 are spacelike separated.
0! < 02 if GI C &2 and there exists an @3 C &2 with Ol x Φ3.
®ι ̂  ̂ 2 if there exists a neighbourhood ̂  of the origin such that

0! + x < &2 for all x ζ Jf.
We denote by a local ring system {̂  (Φ)} a family of rings of operators

in a fixed Hubert space ffl submitted to the following conditions:
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1. &(Φ) is a v. Neumann algebra for all Φ and

a) (PjC^

c) 31 = smallest <7*-algebra containing

2. In 3? exists a unitary representation U (x) of the translation groups
with

a) m(Φ + x) = U(x}@(Φ] U~l(x)
b) The spectrum of U (x) is contained in the closure of the future

light cone.
c) U (x) ζ ^^ which can be assumed without loss of generality by [5].
3. If 0X x 02 then &(0 ύ C^(0a)' (local commutativity).
4. For any Φ we have St^ = {U ^(0 -f- a;)}" (weak additivity).

We denote by a generalized local ring system {£f(Φ}} a family of
rings of operators in a fixed Hubert space ffl submitted to the following
conditions :

1 . £f (Φ} is a von Neumann algebra for all Φ with
a) 0t C Φ* then & (ΦJ c S? (Φ2)

b) ̂  = {1^(0)}''

c) ® = smallest 0*-algebra containing {U «^(0)}.

2. There exists a local ring system {0$(Φ}} with
a) ^(0)c«^(0)forall0.
b) If ?7(a?) is the representation of the translation group given by

x)== U(x)

3. If 0-L x 02 then ̂  (0X) C «
Let Ψ ζ ffl and P0 be the energy operator. We say ψ is analytic for

the energy if ip is in the domain of every power P% and the sum
00 zn

—- has a nonzero radius of convergence.

III. Some properties of local rings

For the investigation of the ideals of local ring systems we need
certain properties of local rings which we study first.

IΠ.l Theorem. Assume we have a continuous representation U(t) of
a one-parametric group with semi-bounded spectrum. Moreover assume
we have two projections E, F such that

U(t) E U-1 (t)F = FU (t) E U-1 (t)

for |*| < 1. If we have E - F = 0 then follows U(t)EU~l(t)F - 0 for
all*.
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Proof. In order to make the proof transparent we make first a special
assumption, namely, that the spectrum of U (t) is bounded. In this case
U(t) = exp{itP} with P a bounded self -adjoint operator and hence
dn

-ττ£ U (t) E U~l(t) is also a bounded self-adjoint operator and

U-i (t) = U (t) - U (τ) E CM (τ) τ = β CM (ί)

can be written as U (t) {A^ — A~} U~1(t) where A + resp. A~ are then n^ n n

positive resp. negative parts ofl~r-^- U (τ) E U~l(τ)ϊτs=Q which are also

bounded. Assume we have already proven F(A + — A~n) = 0 for
n — 0, 1, . . . , N. We want to show that this holds also for n — N+ 1.
Now F(A + - A~) = 0 implies FA+ = iM~ - Q.Fϋ(t) A+ ϋ~*(t) is a
positive operator for \t < I and since for arbitrary y ζ Jj? the function
(ψ, FU(t) A^. U~l (ί)ψ) is analytic in ί, positive for real t with |£| < 1 and
zero at t = 0, we see that this function must have a zero of second order
and hence by Schwartz inequality

\(Ψ,FU(t)A+U(-t)ψ)\^\t\*\\ψ\\

and \(ψ,Fϋ(t)Ayϋ(-t)Ψ)\ g |ί|2

^

But this implies jP — — U(t) E U~1(t) has a zero of second order at t = 0

^+1and hence F dfy + 1 ϋ (t) E U~l (t) is zero at t = 0. Since FU(t}E U~l (t)

is zero at t = 0 by assumption, J^ -̂ - Ϊ7(ί) ̂  U~l(t) is zero at ί = 0 by

induction for all n. Since P was a bounded operator we see that
FU(t) EU~^(t) is an entire analytic function and hence identically zero.

JSΓow the general case. Without loss of generality we can assume
U (t) — exp{^ίP} with P a positive operator. Consider the operator
e~pF U (t) E U~l (t) e~p which is the boundary- value of an analytic
function holomorphic in 0 < Im£ < 1 and bounded by 1 in this strip.
The operator e-pU(t) EU~^(t}Fe-p is holomorphic in - 1 < Imί < 0
and bounded by 1. Since now

e~pF U (t) E U-1 (t) e~p - e~p U (t) E U~l (t) Fe~p

for real ί, - 1 < t < 1, we see that e~pFU(t) E C7-1(ί)e~p is holomorphic
in the unit circle and bounded by 1. Since it is a positive operator for
real t, \t\ < 1 and zero at t = 0, it must have a zero of second order or
\\e-pFU(t)EU-l(t) e-p\\ ^ \t\* for \t\ < 1. But this implies

\\e-pF~ U(t)EU-i(t)e-p\\ £ -^-^ for \t\ < 1 .

Let h be real, then U(h) EU~l(h) — E is a self-adjoint operator and let
G£, resp. 0~ be the projections onto the positive resp. negative part. Q+
and G~ commute with F for sufficiently small h.
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Let now t be real then we get

0 ̂  FU(t)G+(ϋ(h)Eϋ(-h)-E) U(-t)

^FU(t)G+ U(h)EU(-h)G+U(-t)-FU(t)β+EG+U(-t)

and hence
FU(-h)G+EG+U(h) = 0.

This implies
FU(-h)G+EU(h) = 0.

In the same manner we get:

FG-U(h)EU(-h) = Q.
From this follows:

1

since the posίtiv and negativ part have a zero at t = 0 and t = h.
In the same manner we find:

y e~pF ϋ (t) (Q~ U(h)EU(-Jι) + U (h) E U (—λ) G~) U(-t) e~p

Adding both equations we have

~e-pFU(t){G-U(h)EU(-h)+U(h)Eϋ(~h)+G+E+EG+}U(-t)

But this gives:

+ le-^5 ί1 17 (t) {(<?+ -θϊ)(E-U (h) E ϋ (-h)) +

+ (E-U(h)Eϋ (-h) (0+ - 0-)} t7 (_ί) e-P\\.

Since the last term converges weakly to zero for h going to zero we
see that the remainder has a zero of fourth order.

Hence :
\\e-pFϋ(t)EU(~t)e~p\\ =g \t\* .

Assume now we have shown that e~pFU(t) EU(—t)e~p has a zero of

-r̂ rrtorder 2n. Then -r^rrr -ΞT e~pFU(t )EU(— t)e~p has a zero of first order.

Repeating the same argument we find-^^-^e~ p.FZ7(£) E U (— t)e~p

has a zero of second order or e~pFU(t) EU(—t)e~p has a zero of order
2n + 2 and by induction it has a zero of all orders. But this implies
e-pFU(t)EU(-t)e~p is identically zero for \t\<l. Since it is for



A Remark on a Theorem of B. MISBA 319

arbitrary real t the boundary- value of an analytic function holomorphic
in 0 < Im£ < 1, it follows by analytic continuation that

for all real t. Since e~p is an invertible operator we get

FU(t)EΌ-^(t}^§ qed.

As a next step we have to generalize a lemma proved in an earlier paper
([4] corollary 7) for our generalized situation. This lemma tells us that
every operator belonging to a bounded region which maps one vector
analytic for the energy onto another vector also analytic for the energy
commutes with all translations.

III.2. Lemma. Let {£?(&)} be a generalized local ring system and
{^(0)} the local ring system contained in {^(Φ)}. Let A ζ ̂  (Φ) for
some Φ, ψ ζ tff be a vector analytic for the energy, and assume A ψ is
also analytic for the energy. Then for every Φ1 ;> Φ exists a projection
inίΊ «9ί'((P1 + a;)n^^suchthatJSφ = φand^[ Eζ Π &'(Θ1 + x)

Xproof. Let B, . . . Bnζ &" (OJ, xl . . . xnζ Λ*, B,(x) = U(x)
then we have

1)...Bn(xn) for x l . . . x n ζ ^ .

Now B^xJ . . . Bn(xn)A and AB^xJ . . . Bn(xn) are both boundary-
values of holomorphic functions since ψ and Aψ are analytic for the
energy. Since these functions coincide for x1 . . . xn ζ N they coincide
everywhere. Hence we get for B ξ {U &" (Φ1 -f #)}" the relation

BAψ = ABψ. Let now E be the projection onto the closure of the
vector space {U £ef(φl + x)}"ψ then we get BAE = AE B or

AEζty&'Wi + x)}'. But also E ζ {U ff" (Θ^ + x)}f and E has the

property Eψ = ψ. Since &' (®^^&(®^ for Φ1 x Φ2 we have

{U &»(0ι + X)}"^{U @(ΦZ + X}}" - ̂ oo -

Hence E and AE are elements from Π ̂ (Φλ + x) r\ ^^ qed.

In the following argument we have to consider equivalent projections.
We say two projections Ev E2 from a fixed von Neumann algebra R are
equivalent when we can find in R a partially isometric operator F with
E! = F F*, E2 = F* F. If E± is equivalent to E2 then we write E: - E^
mod R. (For a detailed discussion see [7] chap. III.) With this notation
we get

III.3. Theorem. Let {&(&)} and{^(0)} be as in Lemma III.2. Let E
be a projection in ^(Φ). Assume moreover that there exists a vector ψ
analytic for the energy such that ^^ψ is dense in the Hubert space.

a) If βί > Φ and F is the smallest projection in the center
of &(0ι) with FE = E then E~F mod
23 Commun. math. Phys., Vol. 4
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b) If Φl > 0 then there exists an F ξ &(Φύ r\ St'^ with F ~ E and
FE = E.

This theorem enlightens the well-known result that the local rings
are not finite [8], [9], [10] by showing explicitly some projections which
are not finite.

Proof, a) Let γ be the cyclic vector analytic for the energy. Then by

the Reeh-Schlieder theorem we have for any 9t(Φ], &(Φ)ψ = 3tf ([11],

[5] Lemma 5). Now define the projection F by J? tf = ^(ΦJEψ. We
have Fζ ^(^Ί)'. But since ΦI> Φ there exists an 02 x 0 and 0aC0ι
hence

Therefore we get

This means Ί? 3? is invariant under Sf (Q tf or ^6^(^ι) hence
Since we have ^(φ^Fψ = ^(Φλ}Eψ ^F^ follows

Eψ mod^(^) ([7] chap. Ill § 1 co-
rollaire de Theoreme 2). It is easy to see that JF is the smallest projection
in 8(^(^)) with the property FE = E.

b) If now Φ1 m Φ then from (1 - F)E = 0 follows by theorem III.l.
that (l-F)U(x)EU~1(x) = Q for all x which are timelike. Since
(1 — F) U (x) E U-1 (x) e~p° with P0 the energy- operator is the boundary-
value of an analytic function, it follows that (1 — F) U(x) EU~l(x)e~p°
vanishes for all x arid hence (1 — F) U (x) E U~l (x) = 0 for all x, which is
equivalent to FU(x)EU-1(x) = U(x)EU~l(x) for all x. If now Φ is
any vector analytic for the energy and g(x) a function with compact
support in momentumspace then f dx g(x) U(x) EU~l(x)Φ is again
analytic for the energy and we have the relation

F f d x g ( x ) ϋ(x)EU-l(x)Φ = f d x g ( x ) ϋ(x) EU~l(x)Φ .

Hence by Lemma III. 2. there exists for any 02 :> Φ, a projection G
with the properties G ζ Γ) ^(02 -f x) r\&'^,

G f dxg(x) U(x)EU~l(x)Φ = f d x g ( x ) U(x)EU~1(x)Φ

for all g (x) with compact support in momentumspace and all Φ analytic
for the energy such that Fβ ζ Π <^(02-f x) r\^. This implies

GEΦ = EΦ. On the other hand we have for B ζ { U &" (Φ2 + x}}" the

relation

BF f dxg(x) ϋ(x) E U~l(x)Φ = FBf dxg(x) U(x) E U~l(x)Φ

- B f d x g ( x ) U(x)EU~1(x)Φ
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which implies FG = G. This means E ~ G mod &*(Φ2) since E ~ F ^
^ G ̂  E. Choosing 02 ^> Φ1 ^> 0 in an arbitrary position we get the
desired result since G ζ &(Φ^ r\ ^'00.

IV. The structure of two sided ideals

Now we are prepared to study the two sided ideals of local ring-systems.
First we need a

IV.l. Lemma. Let Stn be an increasing sequence of von Neumann
algebras, &m C &n for m < n. Denote by 9ί the normclosure of U &n. Let

3 be a nonzero norm-closed twosided ideal of 91 then 3 r\ &n contains a
nonzero element for some n.

Proof. Let A = A* ζ 3 and ||^4|| = 1. Then for some n exists an

operator B ζ 9ίn with B = B* and \\A - JB|| ^ y . Since &n is a von

Neumann algebra there exist projections En9 n = — 4, —3, . . . +4,

EnEm = 0 for n =j= m such that
+4 »

- Σ T ,.n _4-. From Ml = 1
tt = — 4

follows that not all En = 0 for |w,| ^ 3. Combining both equations we get
n

A V —-
•"• X t -4 ^ -Γ . Denote by Π a faithful representation of 9ί/3 then

4
W

we have \\ΣΠ(En) ^~. Since we have again Π(En)Π(Em)

= δnmΠ(En) follows Π(En) = 0 for n > 2 or J£n ζ 3 since 77 was a faithful
representation of 9ί/3 qed.

IV.2. Lemma. Let 0tn and 91 be as in the preceding lemma, and 3 a
norm closed twosided ideal then 3 coincides with the normclosure of
3n{UJ>n}.

Proof. Let A = A* ξ 3 and \\A\\ = I . Give ε > 0 then exists a &n

and an operator B ξ 9ίn n / such that \A — B\\ ̂  2ε. This holds since
we can find a B^&n with ||4 - B^ ^ ε and a ^ ζ ̂ n n 3 with
||-B — -Bill ^ ε (see the proof of Lemma IV.1.) ^u^ ̂ nis implies A is a
norm limit of elements in 3 ΓΛ {U &n} qed.

The combination of the last two lemmas with the results of section III
gives us

IV.3. Theorem. Let {&*(&)} be a generalized local ring system and
{&(θ)} the local ring system contained in {£f(Φ}}. Assume we have a
vector ψ analytic for the energy such that ^^ ψ is dense in 2£'. If 3 is a
non-trivial two-sided ideal in @ then

a) 3 n {̂ 'oo r\ 6} is a non-trivial ideal;

b) 3 is generated by 3 r\ 3%'^ n Θ i.e. / is the smallest norm-closed
ideal in β containing 3 r\ 3%'^ r\ 0.
23*
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Proof. Let 3c<2> be a two-sided ideal, then by IV. 1. and IV.2.
3 r\ {U £?(&)} is not empty and 3 is the norm closure of this set. Let

now A ζ 3 r\^ (Φ). Then also its symmetric and skew-symmetric parts
are in <3r\ £?(&). Hence it is sufficient to consider the self -adjoint
elements.

+ M
Let A = A* = fλdEλζ3r\<£(&). Since S?(Φ) is a v. Neumann

-M
-e M

algebra we find that / + / dEλ is also in 3 r\&(0). Denote by M(Θ)
-M + e

the set of projections in 3 r\ &*(Φ). Then the ideal generated by M(Φ) is
+ M

norm dense in 3 n &(β) because if A = A* = / λ dEλ ζ 3 r\ & (0) then
-M

E_ε + (1 - E+8) is contained in M(Φ). Hence -4£#_β + (1 - J8+β) is in
the ideal generated by M(Φ). But \A - (E_E + (1 - Eβ))A\ ^ e which
means that A is in the norm closure of the ideal generated by M(Φ).
Since now 3 is a two-sided ideal and &*(Φ) a von Neumann algebra, it
follows from E ~ Fmoά^(&) and EζM(Φ] that also FζM(Φ). Now
by theorem III. 3. follows that for Φ± ^> Φ there exists a projection F in
^(^) n ̂  with FE = E and F ~ # mod^tfy. Hence 3 n ̂  n β
is a non-trivial ideal since 1 $ 3. This proves a). Let now £j be the two-
sided ideal generated by 3 r\ ^^ r\ © then § C 3. But U Λf (β?) generates

3. If E £ Jf (0) there exist J? - ̂ 7 mod^ί^) and FE=--E with jP ζ 3 n
r\ ̂  n 6. Hence E ζ § which implies UJf (0) c§ or 3 C§ and thus

ί) = 3 which proves statement b) and the theorem.

Y. Application to local ring systems

If we restrict ourselves to local ring systems then it is possible to
remove the assumption about the existence of a vector which is cyclic
for ^OQ. Theorem III.3. becomes:

V.I. Theorem. Let {̂  (Φ)} be a local ring system and E be a projection

a) If 0X > Φ and F is the smallest projection in the center
with FE = E then E - F mod^^),

b) Is Φ^Φ then F ζ 8(^(^1)) n 8(9ί), where 8(91) denotes the
center of the <7*-algebra 91.

Proof. Let 6?α be a family of projections in ^^ such that O^Gβ= 0
f or α -H |8, 2? 6rα = 1 and in ΘΛ 3? exists a vector ψx analytic for the

α

energy such that ^00^α= ̂ α^ By virtue of theorem III. 3. we have
FGX~ EGX mod& (Φ±] £α. Let jPα be the smallest projection in 8 (Si (ΦJ)
with FXGX=GX then we get FΛF - ̂ α^/ mod^ί^) ^ ([7] chap. I §2
prop. 2). But since now \JFx3f = 3f follows F ~ E moάdl(Θ1). This



A Eemark on a Theorem of B. MISRA 323

proves statement a). Let now Θ^ ;> Θ, then by theorem III. 3. b) we have

F G« ζ βt'n. Hence F = Σ FEK ζ St'w which proves b).

This result makes it possible to generalize also theorem IV.3. we get:

V.2. Theorem. Let {&(£))} be a local ring system and 3 be the center

of 91. Denote by 3 norm-closed two-sided ideals of 91 then

a) 3 is not the zero ideal if and only if 3 r\ 3 is not the zero ideal

b) 3 is generated by 3 n 3

c) The mapS -> 3 n 8 is one-to-one mapping from the two-sided

ideals of 91 onto the ideals of 3

Proof. Since we have used in the proof of theorem IV.3. only the fact

that to every projection Eζ<9^(&) and 0±^> Θ exists a projection

F ζ &*(0ύ r\ ̂  with F ~ E and FE = E the statements a) and b)

are a simple consequence of IV. 3. and V.I. Now statement c) follows

from the fact that 3 commutes with 9t. Hence if $ is an ideal in 3 the

ideal generated by $1 is 9ί $ which implies that $ = 3 ̂  21 ' ® or

together with b) the map 3 -> 3 n 3 is one-to-one.
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