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Abstraet. The two sided ideals of the C*-algebra generated by local v. Neumann
algebras are investigated.

I. Introduction

B. M1sra [1] has shown that the algebra of all local observables is
simple when the following conditions are fulfilled :

1. The algebra is given as a concrete C*-algebra in a Hilbert space
fulfilling the usual assumptions of local ring systems,

2. The rings associated with bounded open regions are v. Neumann
algebras.

3. For any bounded open region ¢ exists another bounded open
region @, containing @ such that the ring associated 0, is a factor.

The third condition, however, has not been derived from the other
two assumptions even when we assume that the von Neumann algebra
generated by the global C*-algebra is a factor. Since in recent years
different representations of the C*-algebra of all local observables have
been discussed [2], [3], [4] it is desirable to have a characterization of all
two-sided ideals in the general case where 3. is not assumed. We will
show that the theorem of Misra stays true without assuming 3., i.e. the
C*.algebra generated by all local observables is simple if it contains no
center. For later use we will also consider some more general algebras.

II. Assumptions and netations

We denote by O open bounded regions in the Minkowski-space and
write:

0, x 0, if 0, and 0, are spacelike separated.

0, < 0, if 0, C O, and there exists an 0; C 0, with 0; x 0.

0, < 0, if there exists a neighbourhood A" of the origin such that
O+ x< Oy forall z ¢ A,

We denote by a local ring system {Z (0)} a family of rings of operators
in a fixed Hilbert space 2 submitted to the following conditions:
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1. Z(0) is a v. Neumann algebra for all ¢ and

a) 0;C0y= Z(0,) CZ(0s)

b) Z., = {Y 2(0)}"

¢) R = smallest C*-algebra containing {lg Z(0)}.

2. In o2 exists a unitary representation U (z) of the translation groups
with

a) (0 + 2) = U(x) Z(0) U~ (x)

b) The spectrum of U (x) is contained in the closure of the future
lightcone.

¢) U(z) € Z,, which can be assumed without loss of generality by [5].

3. If 0, x O, then Z(0,) CZ%(0,)" (local commutativity).

4. For any @ we have %, = {9 R(0 + )} (weak additivity).

We denote by a generalized local ring system {&(0)} a family of
rings of operators in a fixed Hilbert space & submitted to the following
conditions:

1. &#(0) is a von Neumann algebra for all @ with

a) 0, C 0, then & (0,) C L (0,)

b) £ ={Y £ ()"

¢) & = smallest C*-algebra containing {%J S (0)}.

2. There exists a local ring system {Z (0)} with
a) Z(0)c &L (0) for all 0.
b) If U (x) is the representation of the translation group given by
{Z(0)} then
PO+ )= Ulx) L(0) U ().

3. If 0, x O, then Z(0,) C ¥ (0,)".
Let y € o and P, be the energy operator. We say o is analytic for
the energy if y is in the domain of every power P? and the sum

i n
2 I1Pry) - -;—, has a nonzero radius of convergence.
n=0 :

III. Some properties of loeal rings

For the investigation of the ideals of local ring systems we need
certain properties of local rings which we study first.

IT1.1 Theorem. Assume we have a continuous representation U () of
a one-parametric group with semi-bounded spectrum. Moreover assume
we have two projections E, I such that

U(t) EU-Y()F = FU (t) EU-(t)

for |t < 1. If we have £ - F = 0 then follows U(¢) EU*(t)F = 0 for
all ¢
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Proof. In order to make the proof transparent we make first a special
assumption, namely, that the spectrum of U (¢) is bounded. In this case
U(t) = exp{it P} with P a bounded self-adjoint operator and hence

U (t) EU-1(¢) is also a bounded self-adjoint operator and

d» d»

2 U BU-0) = U0 [ U@ BU- @)y U10)
can be written as U (t) {47 — A} U~(¢) where A ¥ resp. A~ are the
positive resp. negative parts of {% Ur)E U‘l('r)},= o Which are also
bounded. Assume we have already proven F(4% — A7)=0 for
n=20,1,...,N. We want to show that this holds also for n = N + 1.
Now F(Af — Ay) = 0 implies FA} = FA; = 0. FU@) AFU-1(t)is a
positive operator for |t| < 1 and since for arbitrary y € 5# the function
(p, FU(t) A5 U= (t)y) is analytic in ¢, positive for real ¢ with |¢| < 1 and
zero at ¢ = 0, we see that this function must have a zero of second order
and hence by Schwartz inequality

|, FU @) A3 U (= )p)| = |f* [wl® [[Ay e

wnd i PO AU (0] = Iyl 145 1o =1

But this 1mphesF U (t) EU-1(t) has a zero of second order at ¢ = 0

dtN
and hence F W U(¢t) EU-(t) is zero at ¢ = 0. Since F U (t) EU-1(t)

:lit" U(t) EU-(t) is zero at ¢ = 0 by

induction for all n. Since P was a bounded operator we see that
U (t) EU-(t) is an entire analytic function and hence identically zero.
Now the general case. Without loss of generality we can assume
U(t) = exp{it P} with P a positive operator. Consider the operator
e PFU () EU(t)e P which is the boundary-value of an analytic
function holomorphic in 0 < Im¢ < 1 and bounded by 1 in this strip.
The operator e-P U (t) EU-1({)Fe~? is holomorphic in —1 < Im¢ < 0
and bounded by 1. Since now

e PRU@)EU-(t)e? =ePUW) EUL({t) Fe P

for realt, —1 < t < 1, we see that e PF U (1) E U~ (f)e~? is holomorphic
in the unit circle and bounded by 1. Since it is a positive operator for
real ¢, |t] <1 and zero at t = 0, it must have a zero of second order or
lePFU{#) EU(f) e~P|| < [t|? for [t| < 1. But this implies
PP U () BU-(t)eP] = 10 a for <1

Let & be real, then U () EU-1(h) — E is a self-adjoint operator and let
G;F, resp. G5 be the projections onto the positive resp. negative part. G
and G- commute with F for sufficiently small A.

is zero at t = 0 by assumption, ¥
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Let now ¢ be real then we get
0= FUWG (UMEU(-h)~E)U(-1)
=FUWNG UR)EU(-h)GFU(=t)-FU@) G EGF U(=t)
and hence
U(=h)GFEGFU () =0.
This implies
FU(-h) G} EU(h)=0.
In the same manner we get:
FGUMR)EU(—h)=0.
From this follows:

S e P FUW) (G B+ BG) U(—t)e?

ol bl

since the positiv and negativ part have a zero at { =0 and = A.
In the same manner we find:

H%e”’FU(t) (G-UR)EU(—h)+UHR)EU(—h)G)U(—1) e-p” =

< o'[tf2 ]t + A2
Adding both equations we have
|5 P FUQ) G VR EU)+ U BU(-H)+6+ B+ EGHT(—)eT| <
< ¢ G |t+ B2,
But this gives:

e_PFU(t)E+U(k)EU( Mgy er

P
7{ le? FU@){(Gy —6;) E—UR) BU(—h) +
+E-UGR)EU(—h) (G} —6;)y U(—t) e T|.
Since the last term converges weakly to zero for k going to zero we
see that the remainder has a zero of fourth order.

Hence:
le=PFU@) EU(—t)e P < [t]*.

Assume now we have shown that e=PF U (t) EU (—{)e T has a zero of

order 2n. Then —5—5 e—PFU( ) E U (—t)e~P has a zero of first order.

1 d
f2n—2 dt e—PFU() (_t)eﬂp

has a zero of second order or e=PF U (1) E U(—t)e~T has a zero of order

27 + 2 and by induction it has a zero of all orders. But this implies
e~PFU(t) EU(—t)e~P is identically zero for |¢| < 1. Since it is for

1
ten—2 dt
Repeating the same argument we find -7
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arbitrary real ¢ the boundary-value of an analytic function holomorphic
in 0 < Imt < 1, it follows by analytic continuation that

e PFU@W)EU(t)e P =0
for all real £. Since e~ is an invertible operator we get
FU@BEU(t)=0 qed.

As a next step we have to generalize a lemma proved in an earlier paper
([4] corollary 7) for our generalized situation. This lemma tells us that
every operator belonging to a bounded region which maps one vector
analytic for the energy onto another vector also analytic for the energy
commutes with all translations.

IIL2. Lemma. Let {&(0)} be a generalized local ring system and
{Z(0)} the local ring system contained in {& (0)}. Let 4 ¢ ¥ (0) for
some @, p € £ be a vector analytic for the energy, and assume A4y is
also analytic for the energy. Then for every ¢, > O exists a projection
inra:l SO0, + x) "R, such that By = pand A - E € Q SO+ 2) N\ R

Proof. Let By ... B, ¢ ' (0,), %, ...2, €N, B,(x) = U(x) B;U ()
then we have

Bi(xy) ... B,(x,) A =A4B;(x;) ... B,(,) for a...2, 6N .

Now B;(z;)...B,(x,)4 and 4 B;(z;) ... B,(z,) are both boundary-
values of holomorphic functions since y and Ay are analytic for the
energy. Since these functions coincide for z;, ...z, € A" they coincide
everywhere. Hence we get for B¢ {LzJ (0, + )} the relation

BAy=ABy. Let now E be the projection onto the closure of the
vector space {U (0, + 2)}"'y then we get BAE=AE-B or

AE ¢ {LZJ &' (0, + x)}'. But also K¢ {l&J S’ (0, + )} and E has the
property Ey = . Since &’ (0;) D Z(0,) for O; x O, we have

{Lx" SO + x)}"” D{L;EJ R0y + 2)}" = Ao .
Hence £ and A E are elements from Q SO, + x) N R, qed.

In the following argument we have to consider equivalent projections.
We say two projections B, E, from a fixed von Neumann algebra R are
equivalent when we can find in R a partially isometric operator V with
B, =VV* E,= V*V.If E is equivalent to E, then we write B, ~ E,
mod R. (For a detailed discussion see [7] chap. III.) With this notation
we geb

IIL3. Theorem. Let {& (0)} and {Z (0)} be as in Lemma II1.2. Let E
be a projection in & (¢). Assume moreover that there exists a vector y
analytic for the energy such that %y is dense in the Hilbert space.

a) If 0, > @ and F is the smallest projection in the center (& (0,))
of & (0,) with FE = E then E ~ F mod % (0,).

23 Commun. math. Phys., Vol. 4
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b) If 0, > O then there exists an F ¢ & (0,) N %, with F ~ E and
FE=E.

This theorem enlightens the well-known result that the local rings
are not finite [8], [9], [10] by showing explicitly some projections which
are not finite.

Proof. a) Let ¢ be the cyclic vector analytic for the energy. Then by
the Reeh-Schlieder theorem we have for any Z(0), Z(0)y = # ([11],
[6] Lemma 5). Now define the projection F by F ¥ = & (0,)Ey. We
have F ¢ & (0,)". But since ¢; > @ there exists an 0, x 0 and 0,0,
hence

FH=SFO)Eyp= L (0,) Z0)Ep=F(0) ER(O))p = FL(O)EH .
Therefore we get
F(O) FH =L (0,) L(O,)EH = FO,) L0, EH

=L (O) EL0) H = F(O)EH .
This means FJ# is invariant under & (0;) or F ¢ & (0;) hence
Fc3(&L(0,)). Since we have & (0)Fy= F(0)Eyp=F follows

FH =S (O)Fy~ EH =8(0,)EypmodS (0;) ([7] chap. IIT §1 co-
rollaire de Théoréme 2). It is easy to see that F is the smallest projection
in (& (0,)) with the property F' B = E.

b) If now 0, m O then from (1 — F)E = 0 follows by theorem III.1.
that (1 — F) U(x) EU-1(x) =0 for all & which are timelike. Since
(1 —F) U(x) EU(x)e P with P, the energy-operator is the boundary-
value of an analytic function, it follows that (1 — F) U (x) E U~ (x)e~Fo
vanishes for all # and hence (1 — F) U(x) E U-1(x) = 0 for all x, which is
equivalent to FU (x) EU1(x) = U(x) EU-1(z) for all z. If now @ is
any vector analytic for the energy and g(z) a function with compact
support in momentumspace then [dxg(x) U(x) EU-(z)®P is again
analytic for the energy and we have the relation

Ffldeg) U@ BU ()@= [dagx)U@) EU ()P .
Hence by Lemma ITI.2. there exists for any @,> 0, a projection G
with the properties G € Q FL(Oy + 2) N R,

Gfdegx) UR) EU(2)D = [dag(x) Ux) EU(x)D
for all g () with compact support in momentumspace and all @ analytic
for the energy such that FG¢ f;] F(Oy+ 2) "N RY,. This implies
GE® = E®. On the other hand we have for B¢ { E F' (Oy+ x)}" the
relation
BF [dxg() U(x) BU-(2)® = FB [ dzg(x) U(x) BEU-(2)®
=B [dxg(x) Ux) EU(2)D
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which implies G = G. This means £ ~ G mod &(0,) since E ~ F =
= G =z E. Choosing 0, > 0; > @ in an arbitrary position we get the
desired result since G € & (0,) N RL,.

IV. The structure of two sided ideals
Now we are prepared to study the two sided ideals of local ring-systems.
First we need a

IV.1. Lemma. Let #%, be an increasing sequence of von Neumann
algebras, #,, C Z,, for m << n. Denote by R the normeclosure of ';;J R,. Let

9 be a nonzero norm-closed twosided ideal of R then F N Z,, contains a
nonzero element for some ».

Proof. Let A =A*¢F and |4| = 1. Then for some » exists an
operator B€ R, with B= B* and |4 — B| = % . Since %, is a von

Neumann algebra there exist projections F,, n= —4, -3,...+4,
+4
E,E,, = 0 for n+m such that ||B — }} —Z—En‘ = % From |4| =1

n=—4
follows that not all E,, = 0 for |n| = 3. Combining both equations we get

”A - % B, —i— . Denote by I1 a faithful representation of R/J; then
we have H ) %H (E”)“ < % Since we have again I1(E,)II(E,,)

= 8,11 (E,) follows II (E,) = 0 for n > 2 or E,, ¢ 3 since IT was a faithful
representation of R/F qed.

IV.2. Lemma. Let #,, and R be as in the preceding lemma, and 3 a
norm closed twosided ideal then & coincides with the normeclosure of
In{UZ}.

Proof. Let A = A*¢ 3 and |4 = 1. Give ¢ > 0 then exists a %,
and an operator B ¢ R, N I such that |4 — B| < 2¢. This holds since
we can find a B €%, with |4 - B)| < ¢ and a B¢ %, N3 with
| B — B,| < ¢ (see the proof of Lemma IV.1.). But this implies 4 is a
norm limit of elements in § N {U Z,} qed.

The combination of the last two lemmas with the results of section ITI
gives us

IV.3. Theorem. Let {¥(0)} be a generalized local ring system and
{% (0)} the local ring system contained in {#(¢)}. Assume we have a
vector y analytic for the energy such that % vy is dense in . If § is a
non-trivial two-sided ideal in & then

a) 3 N {# N &} is a non-trivial ideal;

b) J is generated by § N Z,, N & i.e. I is the smallest norm-closed
ideal in & containing I N\ Z,, N S.

23*
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Proof. Let 3 & be a two-sided ideal, then by IV.l. and IV.2.
In {%J & (0)} is not empty and J is the norm closure of this set. Let

now 4 € 3 NG (0). Then also its symmetric and skew-symmetric parts
are in J N F(0). Hence it is sufficient to consider the self-adjoint
elements.

+M
Let A=A*= [AdE, ¢TI Nn&(0). Since £ (0) is a v.Neumann
-M

—e M
algebra we find that [ + [ dE, is also in 3 N & (0). Denote by M (0)
—M + &

the set of projections in § N & (0). Then the ideal generated by M (0) is
+M
norm dense in I N F(0) because if A = A* = [ AdE, € T N & (0) then

-7

E_.+ (1 — E,,) is contained in M (¢). Hence A{E_, + (1 — E,,) is in
the ideal generated by M (0). But |4 — (E_, + (1 — E,))A| < & which
means that 4 is in the norm closure of the ideal generated by M (0).
Since now J is a two-sided ideal and & (0) a von Neumann algebra, it
follows from E ~ F mod & (0) and E € M (0) that also F € M (0). Now
by theorem III.3. follows that for @; > @ there exists a projection ¥ in
F(0) N R, with FE = E and F ~ E mod & (0,). Hence SN %L, NS
is a non-trivial ideal since 1 ¢ J. This proves a). Let now $ be the two-
sided ideal generated by 3 N £, N & then $ CJ. But lél M (0) generates

3. If E € M (0) there exist F ~ E mod ¥ (0,) and FE = E with F €3 n
NZ, N &. Hence E € & which implies L@J M(0)Cc9 or IC9 and thus

9 = 3 which proves statement b) and the theorem.

V. Application to loeal ring systems

If we restrict ourselves to local ring systems then it is possible to
remove the assumption about the existence of a vector which is cyclic
for #,. Theorem IT1.3. becomes:

V.1. Theorem. Let {Z (0)} be a local ring system and E be a projection
in Z(0)

a) If 0, > O and F is the smallest projection in the center (% (0,))
with FE = E then E ~ F modZ (0,),

b) Is 0;> O then F ¢ (% (0,)) N 3(R), where J(RN) denotes the
center of the C*-algebra R.

Proof. Let @, be a family of projections in %2, such that G, Gs= 0
for ¢+, 3] Gn=1 and in G, exists a vector y, analytic for the

energy such that #Z,y,= Q,5. By virtue of theorem IIL.3. we have
F@,~ EG, modZ(0,) - G, Let F, be the smallest projection in § (% (¢;))
with F,G,= @G, then we get F.F ~ F,E modZ%(0,)-F, ([7] chap.1§2
prop. 2). But since now 9Fa9f = follows F ~ E modZ(0,). This



A Remark on a Theorem of B. Misra 323

proves statement a). Let now ¢; > 0, then by theorem IIL.3. b) we have
F-G,¢R,,. Hence F = ) FE,€ R, which proves b).

This result makes it possible to generalize also theorem IV.3. we get:

V.2. Theorem. Let {Z(®)} be a local ring system and 8 be the center
of R. Denote by J norm-closed two-sided ideals of R then

a) O is not the zero ideal if and only if § N § is not the zero ideal

b) G is generated by N 8.

¢) The map3 -~ 3 NG is one-to-one mapping from the two-sided
ideals of R onto the ideals of .

Proof. Since we have used in the proof of theorem IV.3. only the fact
that to every projection K¢ & (0) and 0;> 0 exists a projection
FcFO)NR, with F~ E and FE = E the statements a) and b)
are a simple consequence of 1V.3. and V.1. Now statement c) follows
from the fact that 8 commutes with R. Hence if R is an ideal in § the
ideal generated by K is R+ R which implies that =8 "N or
together with b) the map 8 - g N § is one-to-one.
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