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Abstract. We construct unitary and non-unitary representations of the complex
inhomogeneous Lorentz group, including all its unitary, irreducible representations.
We discuss the decomposition of these representations when they are restricted to
the real inhomogeneous Lorentz group. We also discuss the representations of the
Poincaré group for which the translation subgroup transforms under a not necessarily
unitary representation. We summarize briefly the physical motivation for this
study.

I. Introduection

This is the first of (at least) two articles on the structure and possible
applications to scattering theory and particle physics of the complex
inhomogeneous Lorentz group, CILG. In this article we discuss the re-
presentations of the group. We do not restrict ourselves to unitary
representations. Although we say nothing about irreducibility or “com-
pleteness’ of the non-unitary representations, we do find all the unitary,
irreducible representations of CILG.

In the next article we plan to discuss some possible applications and
the physical interpretation of CILG.

We begin in Section IT with a series of definitions, for the purpose of
naming the various objects we will construct in later sections. We
believe that a comparison of the general structure with the particular
examples given, will clarify the constructions for the reader. We then
define the CILG and several of its important subgroups in Section III.
The method of induced representations, which we will use in finding the
representations of CILG, requires us to find the “‘sesquilinear system”
representations of certain subgroups of CILG: the “little” groups 8 and
SL(2C) (Sections IV and V), and the translation group, 7' (Section VI).
Finally, we put the results together to find the representations of CILG
in Section VII, and of its physical subgroup &, (the Poincaré group) in
Section VIIIL.

In Section V, which reviews the representation theory of SL(2C), we
derive the asymptotic form of a certain operator. In Section VIII, we
discuss how representations of & are contained in the representations
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of CILG. In the final Section, IX, we indicate briefly how these results
are connected to the physical interpretation of CILG, and its application
to complex angular momentum.

II. Representations in topological spaces

For not necessarily unitary representations of non-compact groups,
the machinery of finite dimensional vector spaces, which was appropriate
for irreducible, unitary representations of compact and abelian groups,
no longer suffices. Indeed, we now need to consider representations in
linear topological spaces which, if they are Hilbert spaces at all, are
infinite dimensional. In general, they will not even be in Banach spaces?.

In order to have an invariant sesquilinear form, we consider pairs
consisting of a space D and its dual D’, with the representation in D’
being the adjoint of the inverse representation in D.

We shall introduce these sesquilinear systems, then define induced
representations. The theory of induced representations, using sesqui-
linear systems, will be our main tool in constructing representations of
CILG.

Def. A sesquilinear system, SLS, is a pair of complex linear topo-
logical spaces D; and D,, and a sesquilinear (linear — antilinear) form

(,):D;® D,—~ C 2.1)
such that

(&1 + &y iy + Bama) = &y P (& M) + %a By (62 1) + (2.22)

+ & Ba(€rs M) + o a(Ea 12) 5
the definition of sesquilinearity, and

(&, Dy)=0 iff £€=0 (2.2Db)
(Dy,m)=0 iff =0
where
§ 86,5 €D; and 7, M, N €D,

oy % Py, B2 € T

Def. Let D, and D, be the linear spaces of an SLS. Let E, and E,
be the spaces of endomorphisms of D, into itself and D, into itself,
respectively.

A homomorphism

G—~E® E,

g~ Ti(9) ® T:(9) (2.3)

1 A discussion of this point, as well as the most complete discussion of non-
unitary representations that exists, to my knowledge, in the mathematical literature,
is given in reference [1]. See also references [2], [4], [5] and [6] for the material of
this section.
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of G into B, ® E, is called an SLS representation if for all &£ € D;, € D,,
g€a
(T:(@) & To@m) = &), (2.42)

(T ()&, m) = (& Talg")m) - (2.4D)

There are fairly satisfactory notions of equivalence and irreducibility
for linear system representations, but they require much more detailed
topological and algebraic considerations than we wish to discuss here?.

or equivalently

Def. A G space is a triple, (¢, X, D), consisting of a topological group
G and a topological space X, with a map @ called the action,

D:0e XX (2.5)
D(g, ») =z,,

continuous in both ¢ and X, such that
r,=x, z¢X (2.6)

(x(h)ga = Zg0.0 gy Lgyg, E X’ 915 92 E G.
If the action of G on X is transitive, which means that for every
x,y € X there is a g € G such that

Yy=12,,
then X is called a transitive G-space, or a homogeneous space.

Def. An SLS function space {F, over a space X, is an SLS together
with a space Kz of functions

kE:X->~D,®D,, k€Kgz. (2.7a)
For every k in an SLS function space, there is another function &
F:X->C

defined by
E(x) = (ky (%), by (@) = (ky, ky) () by €Dy, ky €D,.  (2.7D)

Suppose that the space X is a G-space with action (g, ) = x,.
Then we define

ey () = B(x,) . (2.8)
Correspondingly,
k(@) =k(,) . (2.9)
Def. If d p, is an invariant measure on a G-space X, and § is an SLS
function space, then the space of all functions % € K5 such that
A{ k(@) dpg = [ (ks (@), by () d o (2.10)

2 See reference [1], also reference [2].
17+
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exists and is finite, with the representation
T k="Fk, (2.11)
is called a functional representation space of G.
Obviously, then

[E@) dpy= [ R@)dp, = [k, (2)dp, . (2.12)
X X X

Note that if the SLS is a Hilbert space with its natural dual, and the
function space based on it consists of all integrable functions (for
some measure on X) from X into ## ® 3£, then the SLS function space
is a direct integral Hilbert space.

Def. Let H be a closed subgroup of G. Let Ry be an SLS representa-
tion of H based on the SLS D;, D,, (, )p. Let F be a functional represen-
tation space of G, and suppose that K contains all functions such that

f:G—~D;® D,
satisfies

fi(¢g) = T1(8) fHi(9)
f2(69) = Ty(§) f2(9) (2.13)
ECH, g€d, fEK%.

In each G/H coset we pick a representative k € G. Let ¥ be the set of all
¥ € Kg such that

[ (k)dpu, exists and is finite,
G/H

where d y,, is an invariant measure in G/H. Then ¥ is the space of an
induced SLS representation, in which the representation is defined by

ToHh¥Y=Y,. (2.14)
Clearly, the sesquilinear form satisfies
f TR dp = [V, (k)d s (2.15)
or
J (P W) (k) d g~ [ (P, W) (kg)d py, (2.16a)
= [(T, (&)W, To(&)W,) (k') d py, (2.16Db)
= [ (P W) () d e (2.16¢)

where & = kgk' -1 ¢ H and ¥’ € G is the representative of a coset in G/H.

I11. The group CILG

We discuss the representation of the covering group of the connected

component of the complex inhomogeneous Lorentz group. We call this
group CILG.
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To define CILG precisely, we need both the additive and the multi-
plicative structure of two-by-two complex matrices. Hence, we define
GL(2C) to mean the ring of all two-by-two complex matrices and
SL2C)cGL(20) to mean the subring of elements which have unit
determinant.

We can realize an element of CILG by the triple

(X, 2, A)
X eGL20) (3.1a)
2, A¢8L20),
with the multiplication law
(X, 24X, 2" A" = (X, 2, 4), (3.1b)
where
X=X +2X"A™* 3.1¢c)
=23
A=41".

(* denotes Hermitian conjugation.)
An equivalent realization, which we need in Section VII, is obtained
by setiting

I'=2A*
3.2
II=4. 3.2)
The multiplication becomes
(X, e, my(x”, ', iy = (X, I, IT) (3.3a)
where
X — X/ 4 IVH/*'JX”H,*
=TT+ [ (3.3b)
II=I1rir.
The translations are the subgroup
(X, L, L,)=(X"+X",1,1). (3.4)
Any X € GL(2C) can be written
X=X, o=Xy—X"0. (3.5a)

This defines a one-to-one correspondence between X and X,,. Given X,
we define X, to be
X, +X6=X,. (3.5b)
X,= XL+ X2 is a complex four-vector, and ¢ are the Hermitian
Pauli matrices.
The metric is
(XY = X, X = (X1, (X — (X2), (X + 20 (XY, (X3)

Lrrxx,). 3.6
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The map S xA
X - *

(or X— I'IT*-1X]T%)
leaves (X)? invariant. The pair (—ZX,—A) (respectively (I, —II))

produces the same effect as the pair (X, 4) (respectively (I, +I1)). If (—)
denotes the equivalence of such pairs then

(3.7)

(2, A)/(—) =2 connected component of the complex Lorentz group.

The group £, which is the covering group of the connected component
of the Poincaré group, is the group of triples

(X, 4, 4) (3.8a)
in the first realization of CILG, and
(XL, ITIT*, IT) (3.8Db)

in the second realization of CILG. X' is a Hermitian matrix. Clearly
2 c CILG.

IV. The group 3

We construet unitary and non-unitary representations of the group,
which we call 8, which arises as a little group for ‘“‘zero mass” in the
representation theory of CILG.

The general element { = [4, 2z, w] of § may be written as a pair of

matrices )
[(j /1(—)1)’ (lw_! 2)] =[4zw]=C (4.1)

where A, z, and w are complex numbers, and the multiplication law is
A2, w] [, 2", w'])=[4, 2 w]
A=A

. (2
w=A""1w + Vw’.
Notice that
1,2, w'][1,2",w']=1[1,2"+2",w + w'] (4.3)
and that for any { = [4, 2/, w']
LML, z,w]lt=[1, A~2%z, A2w]. (4.4)

The subgroup of all elements of the form [1, 2z, w] is an invariant,
abelian subgroup 7', isomorphic to the two complex dimensional trans-
lation group.
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The irreducible representations of 7' are labelled by four complex
numbers P;, @;, ¢ = 1, 2, and are defined by

TP;,Q,' (1} 2 w) ]Pz’ Qz> = eiEPi+20 +wPs + 0wy} IPZ, Q,> . (45)
This representation is unitary when P; = @, and P, = Q,.

We can define an action of the whole group on this space 7' of
irreducible representations of 7' by

Tip., (1,2, w) = Tr,e:l(C) (1,2, w) (1]
= Tpi,Qi(l, }r"z, }sz) .

This can be interpreted as

(4.6)

Tir, P00 = TP, 22Q, 2P, 2Q, - (4.7)
The quantities

G4, PP=B, ad L -0 4,BCCC
2

are invariants of this action. B is an invariant of an irreducible represen-
tation of 3. 4 and C measure the strength of non-unitary representations.

‘We now use these results to construct the irreducible representations
of 8, by the method of WicNER and MACKEY.

A. Suppose P; = Q; = 0. The representation is given by T'({) = T',(4)
where T, () denotes an irreducible representation of the multiplicative
group of complex numbers. These are labelled by a pair of complex
numbers (ny, n,), (denoted collectively by x) whose difference is an
integer % and whose sum is an arbitrary complex number g.

_'_ U
x:(nl,nz)=(92n, @2n)w<g;n>. (4.8)
The representation is defined by
T (A 2, w) [ng, gy = A1~ 1 ny ) = |Aje—2ein[ar2 2] g 5 . (4.9)

B. Suppose some P; or §; is not zero. Let it be P,. Identify P; with
the multiplicative group of complex numbers, i.e. with the subgroup

A ={(4,0,0)}.
Let f: 8 — T have the property for all { €3, that
FLL 2, w) L] = € CPH T+ 0P T [(0) (4.10)
where P;=1,Q, =4, P,= B,Q,= BC and f(4,0,0)= 4-f(—2,0,0).

The representation is defined on a suitably restricted (in terms of
their integrability and asymptotic properties as A - oo) class of such
functions, and is given by

(TEN11©) =1L - (4.11)
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An irreducible representation is denoted by 4, B, C and +.

We can make this into an SLS functional representation space of &
in the following way.

For every P, @; we define an SLS by
D, = {a|P;, Q;)} where «€C (4.12a)
D, = {p|Q; P;)} where p¢cC.
The sesquilinear form is defined by
(B 1Qis P, | Py, @;)) = & B (4.12Db)
We define an SLS representation of {(1, z, w)} by
T (2, w) | Py, Qi) = eiPriz+ @izt Paw + Quw) | Py Q) (413 a)
correspondingly
T (2, w) |Qs P;y = ei@z+ Pzt Qu+Fw) |, Py, (4.13D)
Clearly
(1Q: P, [P:@:)) = (T2, w) |Q; P, T'(z, w) | P;@:)) (4.14)
hence this is an SLS representation.

The induced SLS representation is defined by equations of the form
(4.10) and (4.11), except the range of the functions is an SLS representa-
tion space, rather than simply the right or left hand D;-space as in
(4.10).

V. SL (2C)
In this section we review the representation theory of SL(2C)3.
The representation can be defined to act in various spaces. We can

choose the space on which the representation acts to have the following
properties:
1. There is a representation for each y = (ny, n,), where n; and n,

are complex numbers whose difference is an integer. Let the space of
functions on which 7', acts be denoted by D,.

2. An element f, of D, depends independently on z and Z, it is single
valued on the complex (z,z) plane, and is infinitely differentiable in z
and z.

3. fe)y==2m—1zm—2y (—- ~1—) is also infinitely differentiable in z and Z,
and single valued.

4. Asymptotically, as z — oo, f(z) = 2 ~1z%~1 x (const.).

5. The topology of D, is given by the following:

3 See reference [2]. Reference [8] also has useful information.
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A sequence f,,(z) is said to converge to zero in D, if in every finite
region of the (z, %) plane and for all n, the sequences f (z) and % (z)
of the nt* derivatives of f,,(z) and f,(2) converge to zero.

6. D, is complete in this topology.

In this space, the representation is defined by

B

v
C g)GSL@O). (3.1)

It is sometimes convenient to use the notation

z = <o, ny instead of y = (ny, n,)

where g = n;, + n, and n = n, — n,. n by assumption is an integer. g is
an arbitrary complex number.

An “integer point” is a value of y for which n, and n, are integers of
the same sign, or p is an integer larger in magnitude than n. A “real
point” is a value of y for which p is real, and an “imaginary point’ one
for which p is purely imaginary.

We define 7 as (7, 7;) or {g, —n} (because if f € D,, then f € D; with
this definition) and —y as (—n,, —n,) or {(—p, —n).

If y is an integer point and g is positive then there is a finite dimen-
sional invariant subspace K, in D,, which transforms according to a
spinor representation.

If ¥ is an integer point and p is negative then there is an infinite
dimensional invariant subspace ¥, in D,, and D,/F, transforms according
to a spinor representation.

Two representations y and y' are equivalent if neither is an integer
point and either

xX=2
or
r==x"
If y is a positive integer point, i.e. p > n > 0, then
Doy B (omy = Dinyoy = Dy gy = F(_p_yy (5.2a)
and
B ony = D(-q,——n)/F(—-g,—n) . (5.2b)

The representation in the space D, is unitary if y is an imaginary
point (the primary series of representations) or if y is a real point for
which |p| < 2 and n = 0 (supplementary series of representations).

If =2, n =0, then the finite dimensional subspace E, ¢ trans-
forms according to the identity representation, which is unitary. The
identity representation is the only unitary representation which is
finite dimensional.
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One can also define the representation on a space B, of complex-
valued functions whose domain is S U (2)4.
For every representation g — T',(g) on B,, there is another represen-
tation defined on B_;
g— T-z(g)
such that there is an invariant sesquilinear form S on this pair of spaces:
S:B,® B_;~C

5.3
S0, g) = S(T_y () /. T, (@) ) (5.32)

namely,
= [}(u) g(v) du (5.3Db)
where f € B_5 k € B,, and du is Haar measure for SU(2) .
When we restrict ourselves to « ¢ SU(2) CSL(2C) the representa-
tions
u—>T,(w) and u—T_5(u)

of SU(2) are identical. Hence, S is an invariant scalar product for the
representation of S U (2) contained in .

The functions® Dj,,(u) are therefore bases for the spaces B, and
B_; in the sense that

(DJ mn (), DJ m'n )) = 6JJ’6mm'6nn' (5.4)
it D~%_¢B_-, Dt,

J,mn =% I, m'm E B
One can also define matnx elements

TJJ mm’,nn' g) S(DJ mn(u)5 T(g) D.’;"m'n' (u)) . (55)
S. StroM has studied these matrix elements for the case of a unitary
representation of the principal series®, (in this case —7 = y, hence Sis a
scalar product in the space B,).

A very important decomposition? of elements of SL(2C) is the
decomposition into generalized Euler angles.

Let
A= {(g' )

)

where 4;,¢,s € C and ¢ — s% = 1. Then almost every? X ¢ SL(2C) can

(5.6)

4 Up to equivalence the representation depends only on ¥, not on the realization
of the representatlon

5 By Dj. ,(u) we mean the m, nth matrix element in the representation J of the
group S U(2), viewed as a function of u ¢ SU(2). By D* 7 mm (%) We mean the func-
tion Dy, (u) viewed as an element of the space B,.

¢ See references [12], [13].

7 This decomposition is valid except on a subset of lower dimension. That is,
we do not use this form when ¢ = 0 or s = 0 in equation (5.6).
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be written

A 2qc A

1742

= 7= 404, ~ (M j) : (5.7)
A A

It can be shown that for the subgroup @, the properties (2) and (4)
of the representation

7= ) = (45, £52) = (o, m),

for any ¥ — not only those for which the representation is unitary —
together with the form of the functional § imply that, asymptotically as
¢—>oo,forany f€D,, g€D_;

x

8(g, T,(D)) oo lo[~0=2D; + [c|te 2D, (5.8)

where @, and @, are bounded functions of ¢ which depend on f and g.
A detailed discussion of this result will be given in the next papers.

VI. Irreducible representations of the translation group in four complex
dimensions

The translation subgroup 7' of CILG has irreducible representations
labelled by two complex matrices P, @ € G@L(2C). The representation is
defined by

X)|P, Q) — ei—%Tr[XP%-X_Q] P, Q)

(6.1)
= i (X} +iX)(PL+iPR) + (X}, —iX3)(Q) —iQp) |P, Q).
This becomes an SLS representation, Dp o, if for each space

Dy q={x|P,Q): « € C} (6.2a)

we take as the dual space
Dyo=1{B1Q: P): f € C} (6.2b)

with the inner product

(B1Q, Py, «|P,Q)) = fa. (6.2¢)

When P = ), the representation is an irreducible unitary representa-
tion in one dimensional Hilbert space.

VII. Unitary and non-unitary representations of the complex inhome-
geneous Lorentz group

To construct induced SLS representations of CILG we must compute
the action of CILG on the space 7' of irreducible representations of the
(abelian, normal) subgroup of translations, find the orbits under this
action, and the stationary group of some point on each orbit.

8 The result is derived in reference [9]. We comment on the significance in
Section 1X, as well as in references [9] and [10].
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(Given a point « on a G-space X, an orbit of x is the subspace of X
consisting of all points into which the point x can be mapped by the
action. It is obviously a homogeneous space. The stationary group of x
is the subgroup of @ for which the action maps x into itself. On the space
T, the translations generate the identity mapping on the entire space.
Hence it is useful to define the little group of « to be the stationary group
of 2 modulo the subgroup of translations.)

The action @ of CILG on 7 is defined by

OUX, 2, A), |P, Q)] = |[A*PX, A*Q2) (7.1)
(X, X, A) €CILG, |P,QYcT.

Observe that under this action the SLS representation Dp o is
mapped into the SLS representation D 4« p s 4x¢ -

The invariants of an orbit are

My =3 Te(PP,), My =3 Tr(QQ,), C =3 Te(PQ). (12)
We now tabulate the different types of orbits.
I. P=@Q=0.
II. P=0,0r =0, or P=1Q, A¢C.
Let P = 0 (the other case is equivalent). Then there are two subtypes
(a) Mp=0
(b) Mp 0.
III. P=0, and @ +=0, and P =+ AQ,
(a) Mp=0, and My =0,
(b) Mp=0.

CaseI. P= @ = 0.

In this case the translations are represented by the identity operator,
so the representation of CILG reduces to the representation of the sub-
group of elements of the form

0,2, 4) (0,5, Ay = (0, 55", AA") (7.3)

which is isomorphic to SL(2C) ® SL(20).

The irreducible representations are therefore given by the outer
product of two representations of SL(2C).

Case II (a). The space T: P+ 0, @ = 0, Mp = 0 or the equivalent
cases.

In this case the little group is the group 8. To see this we note that

the matrix
1 O)
(0 0
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is a point of this space. The action of CILG on this point is

1 0 (1 0
(0 O) e (O 0) z. (7.4)
The equation
1 0 1 0
b o= o=
is satisfied when
A 0 -t 0
hop (2 2_1) A= (a_) 3 (7.5)
Thus, an element of the little group J is a pair of matrices
A 0 710
[(Z 1_1) ’ ((T) j.)] = (l; 2, 00) (76)

with the multiplication law (4.2).
The representation is defined on functions

f:CILG - D

where D is an SLS functional representation space of Sg 7 C CILG, the
semidirect product of § and the translation group. With respect to the
translation group, D is precisely that representation whose stationary
group is Sz, 7. That is, the functions f satisfy

(X&) =To(X)[(§)
f(&- &) =Tg()[(&) (7.7a)
where X is a translation, £ € CILG { €8 and

1y(X) (&) = DT 5y @ AT DT ) (1.7D)
is an SLS representation of the translation group,

T30 1(&) =1:(8)° (7.7¢)

is an SLS function space representation of § of the type discussed in IV.
The representation of CILG is defined by

T(&) 1) =1(&E). (7.8)

Case IT (b). Tyy: P+ 0, Mp==0, Q = 0 or the equivalent cases.
We use the second realization of CILG

(X', ", 1Ty (X", ", 1"y = (X, T, IT)
X = X'+ ["II*-1 X" [T*
I'= I~ [T+
=T

® The subscript notation is defined in equation 2.8. The variable on which f
depends, as an element of the space D, has been suppressed.
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The action of CILG on the point

P,=M1
is (7.9)
1—II*11'[1*-1 .
Hence the subgroup
{0, 1, 1)}
is the little group. Denoting by S the subgroup
S={X,1,1I)} (7.10)
we see that
CILG/S = (0, I, 1) = Ty, . (7.11)

‘We discuss in this case a few more details than we have before, since
this is the most important case (and because the fact that 7' is iso-
morphic to a subgroup of CILG makes the description in this case very
economical, hence pedagogically useful as an example of induced
representations).

Any element
(X, I, IT) ¢ CILG

can be factorized
(X, I II) = (X, 1, IT) (0, IT* I"'IT*-4, 1) . (7.12)
Let Dg denote an SLS representation of S. We make this into an
SLS function space representation of CILG.

Consider functions
f: CILG — Dg
which have the property

F(X, IV ID) = Ty, (X, 1, I) (0, IT* I'IT*, 1) (7.13a)
where
1 o1
T, (X, 11D | = M35 15 (D) fy@ 27T 1, (D), (1.13D)
and T, (I1) is an irreducible representation of SL(2C).
For brevity we may write
10, I,1) = {(I) (7.14a)
and since
{(O) -r': 1)} = T.M >
we may also write
() =f(P) (7.14b)
where P = M I'. (Equation (7.14Db) defines f(P).)
The representation is defined by

[T(E)1(8) =[(£&) & & ¢CILG. (7.15)
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Specifically, we have
T(X, I I = flo, I", 1) (X, I, IT)]
=f[(["X,1,)0,[I*I"'[[*-1,1)]  (7.16)
=TI"X,1, ) fII* " T'[T*1) .

Remark. This representation should be defined on a set of functions
f(I") which have suitable integrability and asymptotic properties, so that
it is closed under the action of the representation, and irreducible with
an appropriate definition of irreducibility.

We will not go into questions of this kind for non-unitary representa-
tions. For those representations of § in this case, and of Sg, 1 in Case II,
and SL(20) ® SL(2C) in Case I, which are unitary and irreducible, the
induced representation is unitary and irreducible if the function space
is chosen so as to be a direct integral Hilbert space. Indeed, by running
through all unitary, irreducible representations of 8, Sg, , and SL(20) ®
® SL(2C), all the unitary, irreducible representations of CILG may be
obtained.

Case III (a). P+0, Mp=40, Q+0, My=+0, P AQ.
We can set
P=ygpl,
and (7.17a)
Q=Iggolly 11,
where

gPEGL(zO)z(gl”MS) go CGLE2C) = (“J“f_g) %+ B. (1.17b)

Notice that
M3 = o — g2
and (7.17¢)

1
“é‘TI'gng+ = MPOC

are invariants which fix gq.
The action is

P JI* P+t (7.18a)
Q—~ITI*QI'II*1.

This can be represented as
Iy — II*I'yI'IT*-1 (7.18b)
IT, - IT,11 .

Remark. The analysis in this case is very similar to the solution of
the problem of reducing the Kronecker product of two representations.
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For that reduction we would proceed to “Fourier” analyze a function of
I'y and 1, with respect to I/, in the representations of S L(2C).
Equations (7.17) show that the little group in Case III (a) is the

diagonal subgroup A = (3 }r?) A € C, discussed in Section II (a).
We define
X, ILTYy=(X,1,II)(0, I 1) = (X, II**I'[I*,IT)  (7.19)
and recall that /] has a canonical decomposition given by equation 5.7
IT=4,94,

where /A, and /, are diagonal matrices and @ is of the form

@z(c s), A—s2=1.

S C

Then the representation is defined by
T(&) HE) =[(EE)

f:CILG - Dg

where

is defined by
XL I)) = T,,,(X, A4, 1) {({0, PA,, 7))

and

LT [P T + 02 il Yo X]
T, (X, A,1)f =2t vetin o)1 @ d2 et el (4,

(here y denotes an irreducible representation of the multiplicative group
of complex numbers).
Notice that

T(X,1,1) f(KO, 11, I')) = f[UT** "X 1T*,1,1) 0, I1, I')]

which induces the correct action on P and Q.
Case III (b). P=+0, Q=+0, P+ AQ, Mp=0.
We will not dicuss these cases in detail. There are two cases:

$IrPQ, =0 and 5 TrPQ, +0.

In the first case, the little group is the additive group of complex numbers.
In the second case it is the multiplicative group of complex numbers.
The reader should have no difficulty verifying this and constructing the
representations.

VIII. The Poinecaré group

In this section we will not discuss the construction of representations
as the procedure is essentially the same as in the preceding sections. We
will, however, list the different types of representations that occur.
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We first observe that the representations of the real translation sub-
group have the form
;L 1 X1T0)
T(XY)|P, Q)= 2" EPTHp oy P QeaLeo)  (81)
X! Hermitian .

Since X! is Hermitian, the argument of the trace can be put in the form
XY (P, + iPy) P,, P, Hermitian ,
where
Py =Py + @
P 2= P,—Q,
where b and o denote the Hermitian and anti-Hermitian parts respec-

tively.

Under the action

P, 4 ¢ Py— A*(P; + ¢ Py)A
P, and P, transform separately. Hence the invariants are

1 1
5 Tr(PyPy+) = (MLY%, o Tr (Py Py, - Tr(Py Pyt) = (M)

(8.2)

We now list the different cases and the little group for each case.

Mp, Mp, Extra conditions %Tr (P Py +)f Little Group
1. >0>0 P, =P, V303, M3, SU(2)
P, AP, >V, UQ)
2. >0=0 P,=0 0 SU(2)
or V.V. P,==0 >0 U(l)
3. >0<0 all cases equivalent =0 Uu@)
or v.v.
4. =0=0 P =P, =0 0 SL(20)
P, =AiP, 0 0 Euclidean group
of the plane
P =0, P,=0
or v.v. 0 Euclidean group
of the plane
Py ==0, P,40
P, == AP, >0 U@1)
5, <0=0 P, = 0 SL(2R)
or V.V. P,=0 0 Additive group
of real numbers
P,=0 >0 U(1)
6. <0<0 P, =P, V0%, 13, SL(2R)
P, 4 AP, > M3 M3, U(1)
P, AP, < VM3 M3, Additive group
of realnumbers

18 Commun. math. Phys., Vol. 4
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We now discuss the question of how an irreducible representation of
CILG decomposes under the Poincaré group.

The Poincaré group has the form
(X, A4, 4) (X, A4, 4) = (X + AX'A%, 44", 44") (8.3a)
or
(X, A%, ) (X', A A%, A") = (X + AX' A%, AN (AA)*,44") (8.3D)
where X is Hermitian, and A4 ¢ SL(2C).

Recall the form of the states of a representation. There is a subgroup
H, consisting of the translations and the little group, an SLS Dy, and a
representation
h—Tyh) hcH

of H on Dy.
The space of representations of CILG consists of functions
f: CILG - Dy
which satisfy

f(h&) = Tn(h) f(§) hcH, &§cCILG.

Let K = CILG/H. Let K be a subset of CILG consisting of suitably
chosen representations of cosets. K =~ K cCILG. Let X € Z be a trans-
lation.

Then for each k € K, a representation of X is defined by
X->T(X,1,1) f(k) =Ty kX) f(k) (8.4)
Ty being the representation in Dy.
Let T'x, g denote the space of all such representations for given K and

H.
Then £ induces an action on the space 7', ; given by

T(p) f(k) = f(kp) = Ty (kpk'~") f(K') (8.5)
ie. k—>Fk.

Each H, & double coset in H\CILG/Z remains invariant under this
action. (An H,, H, double coset, where H, and H, are subgroups of a
group @, is the set of all elements of the form h,gyh, where g, is a fixed
element of G and A, and A, run through H, and H, respectively. The
space of H,, H, double cosets is denoted H\G/H,).

Let o denote a double coset representative. Then op C K, where p
runs through £, is the orbit of ¢ under &. Suppose that A", CZ is the
stationary subgroup of & with respect to the representation (8.4) of X,
with k& = ¢. That is, suppose that

X>ThoX)=X > Ty(onX) (8.6)
for all y € A,
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The representation of CILG is now completely decomposed by
summing over the H, # double cosets, o, and for each ¢ summing over
the irreducible representations of .47, contained in the representation of

CILG.
As an example, consider the representations

. FIX 1, 7) 0, T, 1) = &2 X () (8.72)

an
X1, 7) 0, T, 1)] = eiM%ReTrX “n (8.7h)
GUBTTATIT 4y g 1) (8.8a)

TX, A4, 4 (D) =4
GMETNEp (AVf(A* T A) (8.8D)
Under the action, I'— A* I'/, the invariants are
o =%Trl}ﬂ+, B =*;—Tr]“2]’2+, y 2—%’1‘1']“1]’2-%
o, B, v label the cosets™0.

Given a particular coset, C, in case (a) each I3 + ¢, belonging to
that coset gives rise to a different representation of the translation sub-
group. In case (b), every I'9 + i1, for fixed I, gives rise to the same
representation.

Hence, given a particular coset, in case (a) pick a particular
I'? + ¢I'Y in that coset. Find the little group L of this vector. Suppose
1 € L. It is represented by

) - T,@) f@* 1) .
Restricted to the coset O, the representation of & reduces according to
how the representation y of S L (2C) contains irreducible representations
Aof LcSL(20).

In case (b), given a particular coset, C, each I + ¢ I, gives rise to a
representation distinguished only by the value of I]. Hence we pick a
I'? € 0. Let Lry denote the little group of this element.

It is represented by

f(y—T,0) f*I'ly, 1€Lry.
Under Ly a representative I'9 + i I, of the coset ' transforms by
IO+ il > (I + dTy)l=T9 + i1% 1.

Hence, the reduction of the representation, in a particular coset,
depends in general upon the reduction of f as a function of I', as well as
on the reduction of the representation y of SL(2C) to LCSL(2C).

Of course, if I, is parallel to I'{ (as it is for the case I’y = 0), then the
reduction depends only on how the representation y reduces (f(...I%)
transforms as a constant).

10 There are other invariants, such as the sign of the zero-th component of a
time-like vector.

18%
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IX. Physieal significance

CILG is a natural object to study in connection with the S-matrix as a
function of the invariants, for all complex values of the invariants. We
give a number of reasons:

(a) One can construct an S-matrix which is invariant under CILG
as well as the Poincaré group. Restricted to physical values (for a given
channel) of the invariants, the S-matrix is invariant under the restriction
of CILG to its physical subgroup, the Poincaré group.

(b) One can perform a “partial wave analysis” on the S-matrix. This
is performed on the S-matrix as a function of all complex values of the
invariants (not just on S as a function of the invariants in a physical
region for a particular channel). The reduced S-matrix is interpreted as
the matrix element of the S-operator restricted to the space of an irre-
ducible representation of CILG. We write

S~ [ 5,5 D, (cosh»g) dy ©.1)

where D, (cosh —2—) is a matrix element of the operator

cosh —0— sinh i

T 2 2
* sinh i cosh i
2 2

in the SLS of the representation y of SL(2C) (and cosh0 as a function of
S, and 7', the Mandelstam variables, is just the scattering angle).
(c) Each term in 9.1 has a well defined asymptotic behavior as

lcosh %j — 0. This behavior is determined by .

(d) The representations of CILG generalize the representations of
Z. They allow unitary and non-unitary representations with ‘‘complex
mass,”’ (and perhaps illuminate some of the structure of the non-unitary
representations of & with complex mass). They also allow both unitary
and non-unitary representations of the little group, which (according to
(b) and (c)) play part of the role of complex angular momentum for the
S-matrix, and every such representation has a natural interpretation as
a reducible representation of the Poincaré group.

(e) The analysis of the S-matrix, by means of CILG is a generalization
of the method introduced by SErTORIO and Torrer!l. The fact that
non-unitary representations arise naturally for CILG (as long as the
Poincaré subgroup is represented unitarily) as well as the fact that the
representations of CILG have an immediate physical interpretation in
the direct channel, are the most important reasons for considering CILG
rather than the three dimensional Lorentz group.

11 See references [11], [14], and [15].
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We believe that the CILG will prove to be of value in studying the
S-matrix. We plan to give a detailed discussion in another article, of the
physical interpretation and some applications of CILG.
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