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Can Current —
Operators Determine a Complete Theory?

J. LANGERHOLC* and B. SCHROER**

II. Physikalisches Institut der Universitat Hamburg

Abstract. For the free field currents jμ (x) in the sector of charge zero we prove
that one can reconstruct the bilocal fields ψ(x) ψ(y).

1. Formulation of the problem

Of all the space-time-dependent operators in local quantum field
theory, current densities seem to be the most 'physical'. Certain matrix-
elements of such operators (form factors) are directly measurable in
electromagnetic and weak interactions. Attempts have been made to
formulate relativistic dynamics directly in terms of current operators [1].
The main theoretical problem is the question whether the knowledge of
the current operators1 (i.e. all their vacuum expectation values) com-
pletely determines a theory. How, for example, do we compute processes
involving charged or baryonic particles if the local operators to be used
do not create a charged or baryonic one particle state from the vacuum.

As another application we mention that an answer to this sort of
problem would be a prerequisite for a better understanding of quantum
electrodynamics within the framework of general quantum field theory.
It is well known that there exists no covariant gauge in which the
KALLEN-LEHMANN [2] spectral function of the spinors is positive
definite; the indefinite metric of the A^(x) field creeps into the spinor —
two point function in higher orders of perturbation theory. Therefore in
order to obtain a physical (positive definite) Hubert space one has to
consider the vacuum-expectation values of the currents jμ(x) (resp. the
closely related electromagnetic field strength Fμv(xty only. Hence one
runs into the physical completeness problem mentioned before.

It seemed to us worthwhile before trying to understand this problem
in the interacting case, to get a complete solution for the free field current.
In this paper we show that the free field bilocal operators φ* (x) φ (y) can
be obtained from the free field current operator jμ (x) by a certain large

* Supported by the National Science Foundation.
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1 Here the currents for all space time points (not only for equal times) are

needed.
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distance limiting procedure. This technique is in a way opposite to the
short distance limiting technique defining the current in terms of the
free field [3]. We discuss this in the case of the charged scalar and charged
spinor fields (section 3). In the next section we explain the basic idea of
the method in the simpler case of an even-odd-superselection rule as
defined by the second power of a neutral scalar free field before going
over to the slightly more complicated charge superselection rule where in
addition to new algebraic complication caused by the presence of indices,
one is forced to make use of a charge testing operator to separate two of
the terms appearing in the limit.

2. The limiting process for the neutral scalar field

In order to obtain a preliminary connection between the bilocal
algebras Eς&iίς&z(A) (defined in Appendix 1) for the free Bose field A and
the local algebras Rς&(j) of the 'current' / = :A2:, we will use a limiting
procedure in which certain points are moved to co in a lightlike direction
while remaining timelike separated from another fixed cluster of points.
For notational convenience, we introduce certain definitions. If 33 is
a bounded region in Minkowski space, then F+(33) will designate the
union of the forward light cones V+(p) for all p whose backward cones
contain 93 (Fig. 1).

In this language, the first result, which we will show how to sharpen
later, can be expressed as follows :

Λβllβ.μ)ς5βιυβiU80 ) [8ίF+ (23^93^]. (2.1)

The proofs will always consist in showing the inverse inclusion for the
commutants one proceeds by taking p a member of R^ υ &2 υ g (j)' i.e.

for supp(/) C Sj \j 232 \j 8 and shows that P ζ R<%i}c$a(Ay. The connec-
tion between A and j which is needed for such a manoeuvre comes from
the structure of the commutator.

[? (a), j (2/)l = 4t J (x-y)A (x] A (y) (2.2)

If this distribution is smeared with / (x) g (y) with / ζ (̂̂ ) , g ζ &(%} , then
the left hand side becomes [?'(/), j(g)] which commutes with P according
to (2.2). The result is then

0 = Δ(x-y)Δ(x'-y') {(Ψ, PA(x)A(y)A(x')A(y')Φ}-

-(A(y')A(x')A(y}A(x)Ψ,PΦ}} (2'3)

for Ψ, Φ ζ ®y. Here one always has in mind smearing with f(x) g(y) x
x f ( x ' ) g'(x') where / ζ &(<&i)y /' ζ @(ς&^ g, g' ζ &(Q}. In this formula,

one takes Φ, Ψ to have the special form BΩ = A (/x) . . . A (fn)Ω where
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ft ζ (£ which is a space-time region spacelike to Q as well as 93i and 95 2

(fig. 1). The states obtained this way will be dense in the space £j; and
because of the continuity of distributions2 the results obtained may be
extended to all vectors in the polynomial domain of (£ on which the field
operators have the same closures as on the basic domain. This restriction
on the form of the states will be useful in the proofs of appendix 2.

The problem in (2.3) is the occurence of the Δ functions whose zeros
become more closely spaced in lightlike directions and cannot be side-
stepped with the support of g as it moves up the cylinder g. In the scalar
case it is possible to show that the Δ functions may simply be cancelled
so that (2.3) is true without these factors as long as y — x and y' — x' are
timelike. However, it will not be possible to factor them so simply in the
case of the charged fields, so we shall use a somewhat more complicated
method that will work in all cases.

Recalling the explicit form of the Δ function and the asymptotic

behavior of the Bessel function ([5] page 526) we have with z = J/Ϊ2"

Λ (t\ =
 Jι(mz) == ]/_

'̂ ~~~ mz f (cos ίmz

2 Even though it is not explicit in the Wightman axioms, both terms in (2.3)
are tempered distributions since A(x1) . . . A(xn)Ω is a vector valued distribution;
cf. [4].
9 Comimm. math. Phys., Vol. 4
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and with 2 cos2 θ = 1 -}- cos 2 θ, the expression

π(mz)3 Δ (£)2 = 1 + sin(2mz) + 0(z^) .

Thus the multiplication of (2.3) by π*m*(}/(x~ t/)2 /(i' — 2/TJM (a: — y)
• J (a;' — 2/') gives symbolically

0 - (1 + sin2m)/(^^j2) (1 + sin2m)/V — y ' f ) -

* [P, 4(α) 4(y) 4(aO A(y')]Φ) + (2.4)

where the terms not mentioned contain factors which are 0(γ(x^ — yO ĵ "1) .
It is fairly easy to see that if the distribution in (2.4) is smeared with
/ ® gλ Θ /' ® gλ with gλ(y) = g(y — λa) (a being a light-like vector
parallel to the elements of 3), the unmentioned terms drop out for
λ-> + oo. This is proved in appendix 2 as a by-product of the more
difficult considerations needed for the discussions following.

The term in (2.4) containing no sines is the one desired since after
smearing it becomes

(Ψ, [P, A (/) A (gλ) A (/') A tf*)]Φ) -+ (Ψ[P, A (/) A (/')] Φ) <A (g) A (g'))0 .

With g = g', the last factor is the norm of A (g)Ω which is not zero thus
implying that

i.e. P ζ S&ίt^(A) — ECQ^^AY which in turn establishes (2.1).
The convergence above is proved by rewriting a typical term in the

commutator

" (A)Ω, Pffi(A) A(ί)

n U ( λ a ) A ( g ) A ( g ' ) Ω )

U(λa}A(g')Ω)

where (P(A) and @"(A) are polynomials in the field A taken from the
region £ and 0>"(A) = 0>(A)* P0>'(A). As A^oo, the second term
approaches 0 because of the two-point function, and the first approaches

(3P' (A)Ω, PS? (A) A (/) A (/') Proj(Ω) A (g) A (g')Ω)

which can be rewritten as

(̂  (A)Ω, PA (/) A (/') 3»(A)Ω) (A (g) A (g')\ .

The mirror-image process is performed on the other term, and after
factorization of the two-point function, one is left with the limit written
above. We will prove in appendix 2 that the oscillating factors give no
contribution in the limit.
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One would be able to go a step further and remove the cylinder 3
from the result for a certain class of regions if the duality theorem (in a
weak form) were proved for the field j (in its cyclicity subspace) and
arrive at:

for any diamond 23. A proof follows. For terminological convenience, one
denotes by c93 the space-time region obtained from 23 by taking the
interior of 23', its causal complement.

With (2.1) and locality of j , one has

R*,*(A)' 2 Λ*U80')' 2

for all 8 £ V+ (23). As a consequence

where the join and union are extended ober all 3 £ F+(23). One may be
easily convinced by fig. 2 that \ j c ( 2 3 w 3 ) 2 c 2 3 since if x ζ int23', one

Fig. 2

may always find a cylinder 3 S T^+(23) such that x ζ 3' This done, one
has

x ζ (int23') r\ (int3') - int(23' r\ 3') = int(23 r\ 8)' - c(23 u 3)

which completes the proof of the assertion. This assertion, applied to the
last term in (2.5) gives the further result

B*9v(A)' 2 R0*(j) (2.6)

to which a weak version of the duality principle may be applied. Accord-
ing to a result of ABAKI [6] for the free field, one would expect

for an open diamond C; here R& designates the intersection of all algebras
Eg with ® an open set containing clS.
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If c!23 Q (£ and cl® Q (£ then the definition immediately implies

Taking commutants in the second of these statements and connecting
the results with the duality assumption gives

•Rcc& 2 Rc<& = -R& 2 ŝ:
and with (2.6)

if c!23 C £. Passage again to commutants gives

where the first equality is proved in appendix 1 . Since j is obtained from
A as a limit of bilocal expressions, the inverse inclusion is trivial and
consequently

R*.t(A) = It*®
for any diamond £.

3. Charged fields

In this section we discuss the charged scalar field

with the local current

and the spinor field ψκ (x) with current

and show that similar connections exist between the bilocal rings of the
field and the local rings of the respective current density. We thus need a
method of recovering the bilocal quantities φ* (x) φ (y) and γ;α (x) ψβ (y)
from their currents in a bilocal fashion. For the spinor case, the current
commutator has the expression

i(γvS(x~y}γμY
β:y (3.1)

in which S(ξ) = (dλ γλ — m) A (ξ), and for the scalar case, the form

(:φ*(x) φ(y}: + 'φ*(y) φ(x) :) idμdvA (x — y) +

+ (' ψ*(χ) ψv(yY + φΐ(y) φμ(χ)t) *Δ (χ — y) —
— (:φ*(x) ψ(y): + :φ*(y) φμ(x)'^ i dvΔ (x — y) —

— (:φ*(x) φ v ( y ) : + :φf(y) φ(x):) idμΔ(x — y) ,
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in which the derivatives φv — dv φ of the field appear in such a way as to
make the various rates of convergence of the terms difficult to compare.
Bearing in mind the Riemann-Lebesgue type of trick, we multiply by
Δ(x — y] and after smearing with a function F(x, y), perform as many
partial integrations as are needed to bare the field operators. The result
is that the smeared commutator

fF(x, y} iΔ (x - y} [jQ(x), J0(y)] d*x d*y

can be written as

x x , y x - y x - y ) + G(x,y))d*xd*y
where

To argue away the function G (x, y) as well as to be able to decide asymp-
totic behaviors of terms appearing later, we compute the relevant
derivatives of the Δ function and their asymptotic behaviors. Since Δ (ξ)

is a function only of z = Yξ*,dμ may be replaced by ξμ — -7— and dμdv by

JLA i t t ΓlAgt*v z dz + ξ^v[z dz
With the formula

and the fact that
1 d Jk(z) = _ Jk+1(z)

z dz zk zk+l

one obtains
J2(mz)

so that with the asymptotic formulas on p. 526 of [5] one finds

A (x-y) d*A (x-y) = — J |̂ {cos (mz-^ ) cos (mz-Ί-f) + 0(z^

provided that ξQ = 0(z2), and for the other terms,

Δ(x — y) d0A (x—y}= -^ -~ jcos (mz -- ̂  cos (mz — ̂  + 0 (z-1

J2 (χ _, y) = _J_ _i_ (Cv y) πm3 z3 (

It is thus clearly desirable to choose

COS2 mz __
4
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so that what will turn out to be the leading term in (3.3) is

The oscillating factor will go to 0 in norm when applied to the vacuum,
and it will be sufficient to prove that G(x,y — λa) approaches 0 as
λ -> oo. We note that if f = α; — y + λa, then both ξ0 and £2 are asymp-
totically linear in λ since α2 = 0 so that both |0/z4 and 1/z3 approach 0,
and the rest of the proof consists simply in verifying that z^/z% and its
first two time derivatives do not increase as rapidly as λ, λ, λ3/2 respec-
tively. Having proved that the smearing functions go to 0 in L^ norm, we
rely on the proof in appendix 2 that this insures the vanishing of the
smeared distributions in spite of whatever oscillations the smearing
functions may manifest.

A feature which the last expression displays for the scalar case is
immediately visible in the spinor case; the bilocal quantities always
occur in hermitian combinations that cannot be separated by algebraic
manipulations. For this separation, we use the charge testing operator

Qh = jQ (h) f& f JQ (x, x0) cZ3 x which approximately tests the amount of
v

charge in the volume V of space at time xϋ. In view of the fact that the
distribution j0 (x) cannot be restricted to a spacelike surface, we will use
the four dimensional test function3 (Fig. 3)

h(x) = hs(\)hτ(xQ)
3 This construction is similar to one used by KASTLER, ROBINSON [7] and

SWIECA in a proof of the Goldstone theorem, but we do not envisage passage to a
limit in which © swells to cover all space-time the local affiliation of Qh is essential
to our purpose since it should asymptotically commute with φ(x). We use here only
the infinitessimal operator instead of its exponential to avoid the difficult question
of the convergence of the Taylor expansion of the latter.
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with hs ζ ^(]R3) and ̂ p £ ^(R> cnosen s° that
+ 00

fhτ(t) = 1 supp(Λ) ςQ
- 00

h(x) — hτ(x0) unless x is spacelike to ©.

The last requirement can be insured by setting /z^(x) = 1 when x belongs
to a certain region V of space and keeping the support of hτ sufficiently
small, as the figure makes clear.

We confine the supports of the functions g, g' to the diamond © so
that

Thus commuting Qh with φ* (x) φ (y) -f φ* (y) φ (x) gives

φ*(x) φ(y) - φ*fy) φ(x) + [QΛ, φ*(x}] φ(y) + φ*(y) [Qh, φ(x)]

and averaging with the original expression produces

φ*(χ) φ(y)
plus some terms containing commutators [Qh, φ* (x)]. But we will shift
the region © up the tube simultaneously with the supports of the g
functions and so these commutators will approach 0. Since one has
chosen supp (h) Q 3 , the extra factors of Qh will not destroy commutativity
of the operator P with the expression obtained above.

With these preparations one may now apply the techniques of § 2 to
the charged fields as well. With the scalar fields, one obtains

0 = (Ψ, [P, φ*(f) φ(f)]Φ) {ψ(g) ψ*(g')\

which leads immediately to the analog of (2.1) upon cancellation of the
factor on the extreme right which can be again made nonzero by choosing
g = g' . With the spinor fields, the result of the limiting process is the
commutativity of P with

(yμ(y«) γ,Yβv*lf) (wte) γW>0 v«'(/') (TV (y *) vW = v«(/) v«'(/')
/ (γμ(γ «) y,((y3) - )̂ γμ'(y «) y,')αα/ <^(+)(y — y') g(y) e'(y') -

By various tricks such as setting g' = dλg etc. one can separate the
y -matrices in the middle term to get

' (3.4)

where C is any matrix representable as γμ(γ % a,) yvΓγμ>(γά)γv> with
Γ = γ or jΓ = 7. It is further possible to show that in spite of the singular
behaviour of (γ a) — (γ α)2 = α2 = 0 — linear combinations of such
matrices are capable of producing all products of y- matrices with fewer
than 5 factors. With linear combinations of these, however, one can
construct any 4 x 4 matrix — in particular <7αα' = όg(3g' which when
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inserted into (3.4) gives

0 = (f, [P,^α(/)yv(/')]Φ)
to complete the proof.

4. Concluding remarks

The ring-theoretical construction of the bilocal algebras makes use
of free field properties and cannot be carried over to the interacting case.
From the point of view of applications, the most useful thing seems to be
the construction of particle states over the current algebras, i.e. the
construction of expectation values

</in /SUite) w(*m) !/in /!?>
Using considerations recently proposed by ARAKI and HAAG [8] one can
show that all scattering information can be obtained from these ex-
pectation values (scattering probabilities for finding a certain number of
outgoing charges in a given incoming state). In analogy with the free
field treatment in the previous sections, one would expect that one can
approximate states |/ίn . . . fn^iλ A) where the wave packets gλ are
shifted timelike to the / by a large A, by using products of commutators

and letting x0 and y0 approach oo such that A2 = (x — y)2-+oo. Un-
fortunately, we have not yet found a rigorous argument for the inter-
acting case.
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Note added in proof. It may perhaps be interesting to point out that the free
Hamiltonian density and all the other components tμv of the free matter tensor can
be expressed explicitly in terms of a local function of the free current jμ (x) . This is
done by a short distance limiting procedure which in [9] was applied to the j(x)
= :A2(x): case. This method works with appropriate modifications also for the
current of charged bosons or fermions.

Appendix 1. Definition of bilocal algebras and some mathematical results

In analogy with the local algebra ECQ (A) associated to an open region
of space time and a neutral scalar field A, one defines bilocal algebras
RcQ^(A) = 8^t^(Aγ where 8^t^(A) is the set of all bounded operators
P such that

(Ψ, PA(f)A(g)Φ) = (A(g)A(f)Ψ, PΦ)

for all / ζ @(q&) , g ζ Q}^ and all Φ,Ψζ® the basic domain of the field A.
For the charged scalar field 99(0;) and spinor field ψ(x) one uses the
operators 99* (x) φ (y) and γ;α (x) *ψP (y) which are invariant under the gauge
transformations φ -» el α φ, ψ -> el "y. Symmetric operators may be formed
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as follows :

Since A (/) A (g) = C(f ® g) — iD(f ® g) and the functions / <g> g span
(̂® x <£)> a result obtained in a previous paper [3] insures that /S

is the set of all P such that

PC~(h) ς C(h)*P PD(h) £

for all ^ζ^(S5χ(T); and, if C(h) are essentially self adjoint on S>, the
condition reduces to

[P, $p»] = 0 = [P, -#?<*>]

for & ζ (̂<8 x(£) and λ £ JR. This last characterization implies that S&t%(A)
is an algebra and that SςS>^(A) — R^^(Aγ this fact enables one to
prove that if 23 = U 23t, £ - U £κ then R^^(A) = V VB& ^. A

t c -*• x ζjtt ίζ-t κζ.K

result which is used in the text is that if 93 = U 33t and the family

i f°rπιs a chain (totally ordered set), then

S^^(A)^VιB^t^(A).

This is most conveniently proved in its dual form

Clearly the left side is included in each term on the right and therefore in
their intersection. Conversely, let P ζ S^^^A) for each Iζ / and let
/ ζ St^) . Since supp(/) ζ, U 93, there is a finite subcollection of {St}t€j

covering the compact set supp(/). But because this collection is totally
ordered, there will be a largest set 93ίφ, and consequently supp(/) 2 93ίφ,

and since this result is valid for any f ζ & ( ® ) , one has PζS
To complete this discussion, it is only necessary to point out that for

the free field A, the operators C(f <S> g), D(f 0 g) are given in the Fock
representation by bounded operators connecting the w-partiele space to
the n — 2, n, n -f- 2 particle spaces and that the norms of these bounded
operators do not grow faster than n [3]. This situation has as a conse-
quence that the operators C and D are essentially self adjoint on any

domain £> £ φ 5)<n> such that §>n §<n> is dense in §(n>, the ^-particle
n = 0

space. This insures that the S&t%(A) are algebras and justifies the above
computations.

For the same reason, the operators j(f) = :A2:(f) are essentially self
adjoint on their domains and S&(j) = R^(j)r is an algebra.
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Appendix 2. Computation of some light-like limits

The terms whose vanishing we must demonstrate can all be put into
the form

f(0>'(φ)Ω, [P,:φ*(x) φ ( y ) : : φ * ( y f ) φ(x'}'}Ω) X
x f(x) c(x-y] gλ(y) g'λ(y') c'(y'-x') /'(*') d*(xx'yy') (Ά'L)

where c<'> (ξ) is either sin2raz, 0(z~1), or constant. Here we are permitted
to use Wick products for simplicity because the bilinear terms appear in
a commutator and the subtraction of scalars does not change the ex-
pression. The product of Wick products may be rewritten as a sum of
totally Wick ordered products and the scalar term dropped.

We consider each term of the commutator by itself. The polynomial
0*(φ) may be commuted past the field operators and, along with P,
taken to the other side of the scalar product. Designating

(P
by χ one may rewrite (a.l) as

(x, (:?>*(*) ψ(y) ψ*(y') φ&)'

smeared with the same functions that occur in (a.l). By Schwartz's
inequality, it will suffice to show that the vectors on the right approach
0 in norm after smearing.

Neglecting symmetrization, the norm will be the integral of the
square of the Fourier transform of the test functions over the appropriate
mass shells. The first term splits naturally into a product of two factors
each of which may be written

= e*
λqa fe* &*+**) f ( x ) c ( x — y+ λa) g(y) d*xd*y . ( )

We will treat the more complicated case of c (ξ) = sin2m£ and afterwards
indicate the simple modifications of the proof which enable the treatment
of terms which are 0(z~l). We want to adapt the usual proof of the
Riemann-Lebesgue lemma to the present situation, in particular, inte-
grate by parts to get a negative power of λ so we write

sin2raz = --~ — r- -y*-2m f0 dξ0

To avoid contributions from the boundary which do not fall off suffi-
ciently, we must cut off this function at the zeros of the cosine. Thus for

each ξ and λ an interval I(ξ, λ) is chosen for which cos2mJ/(£ -f λa)2 — 0
when |0 is one of the endpoints, such that supp(/)|0 —
+ λa Q U I(ξ, λ) and finally such the lengths of/(£,A)are bounded above

by a number independent of ξ and λ. We collect the additional factor of

-o — j- into / ® g by defining
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and have by Fourier's theorem after the promised partial integration,

/ (x) sin 2 m }/(x — y + λa)* g (y)
CO

= ψλ(x,y) f dr0e
ir°(*-rt* yV*r°l«~cos2wJ/(f + λάfi dξ0 (a.3)

= i φλ(x9 y) drQ e

ir <χ-rt rQ e~ίr«ξ« cos2m (ξ + λά^ dξQ .

-oo / ( £ , λ ) .

In this equation ξ ~ x — y and f 0 is simply an integration variable.
To show that the function in (a.2) converges to 0 in norm in

L2(dΩ(+)(p) dΩ(+)(q)*) it is sufficient to show that after multiplication
by \pQ -{- q0

 n it can be majorized on the mass shells by a number Mλ

which is independent of p and q and approaches 0 as λ -> oo. Multiplying
(a.2) by \p0 -f q0\

n and substituting (a.3) gives an expression bounded
above by (r = 0 by definition)

M φλ(x, y) X

X / e-
ίf«* cos2m J/(ϊ"+ λa)* dξQ\ .

J(ί,A)

For the (future) convergence of the r0 integral, we multiply and divide by
1 4- |r0|

2. Since pQ ^ 0 ̂  g0, one has |r0 ^ max{|^0 + r0|, \qQ — r0|} and

since p0 -j- ^0 = (̂ 0 + r0) -f too — ro)> one onfy nas °̂ worry about terms
of the form

ΓX e-
ίr°ξ» cos2m

The powers (p0 + r0)
α and (g0 — r0)^ multiplying the Fourier transform

can be replaced by derivatives 1-^ — | and lyr) acting on φλ since the

last integral is independent of XQ and yQ. The absolute value bars can be
brought inside eliminating the exponentials and giving

KM)
Using the fact that the last integral is the length of /(?, A) which is
bounded above by a constant independent of ξ and λ, we are led to
investigate the behaviour of

/_jMg ι/(IT~^F
I 3 £ I f I 0

\ σ £ o / £0 -f- X
Because it multiplies a function in @(Xt y) it will be enough to show that it
approaches 0 for any value of ξ. One may show by induction on α that
this quantity is expressible as
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where R^ is a series of (possibly negative) powers of (£0 + λ) with
exponents not exceeding k — 1 . It is clearly true for α = 0 and the passage
from α to α + 1 can be checked by differentiating the series above and
regrouping terms. Finally since (ξ + λα)2 = £2 + (2ξa)λ, each term is
asymptotically proportional to A"1/2"^ with K ^ 0.

In the case where C(z) is 0(z~1) it is not necessary to perform the
first integration by parts, and ψχ(x, y) will simply be f(x) g(y). The last
integral in (a. 3) can be arranged to be

f)| ^ M sup|c(f +λa)\

where, since one need not be so meticulous in the choice of the interval,
the supremum may be taken in a suitable cell containing supp (/) —
— supp(gr).

Next we show how the terms involving one contraction may be
reduced to quantities for which the preceeding method is used.

As a function of p and p' the (unsymmetrized) wave function of the
vector :

xf'(x')c'(y'-x')g'(y')d*(xyx'y')
can be written

f e^>> + ?'«'> g(y)c(x-y) f(x) X

x / 4*(*-<n dΩM (q) f (x') c' (x' - y') g' (y1) d*(χy x'y')

= fdΩM(q)Φ(3>,q)Φ'(p'-q)
with

Φ (p, q) = f έ<*v + « *> g (y} c(y-x)f (x) d*x d*y .

The negative sign of q can be compensated by making the change of
variables x' -> x^ — x' where x* is chosen in the middle of supp(/). For
this expression one may use the preceding method.
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