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Abstract. The problem of scattering of two plane waves is exactly solved in the
Born-Infeld electrodynamics. The shape and the direction of the plane waves after
scattering turn out to be unchanged. There is only a change in the wave phase by the
value which is the product of its frequency and the momentum of the incident
wave. It is shown that in the interaction region the solution becomes a multiple-
valued function of x, t when the electromagnetic field exceeds a certain value which
plays the role of an absolute field scale.

1. Introduction

In the authors' paper [1] the identity was established between the
equation

describing the non-linear scalar field in the two-dimensional pseudo-
Euclidean space x, t with the Born-Infeld Lagrangian [2]

and the equation of the minimal surfaces z = φ (x, t) in the three-
dimensional pseudo-Euclidean space with the metric ds2 = dt2 — dx2 — dz2

where the surface area is given by the integral

(3)

The extremum conditions of this integral lead also to eqs. (1). The
solution of the Cauchy problem for eq. (1) was found there [1].

On the basis of the analogy between eq. (1) and the minimal surfaces
a generalization of the Lagrangian (2) was suggested to the case of many
non-linear fields interacting in a definite way in the two-dimensional
space. This system gives also the exact solution. To make this generaliza-
tion we consider the problem of the minimal two-dimensional surface in

n
a n + 2-dimensional space with the metric ds2 = df2 — dx2 — Σ &z\

» = ι
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Let the surface be given by the equations

zl = ψifa t); Z2 = φ2(x, t);...zn= φn(x, t) . (4)

Then the surface area is determined by the integral

=- / / / 1 +^?f* I l -27?fcJ J \\ \ i = ι A i = ι /
xdt.(6)

The quantity S may be interpreted as the action function of the n field
system with the Lagrangian density

Σ
ί=l

We write the equations of motion for this system

/ n \ I n \ ί n

i - Σ ψit )ψjχ.χ+2\ Σ ψixψn )<pj*,t- \l + Σ
\ i = l / \ί = l I \ ί = l /7,V)

In paper [1] the Cauchy problem for eq. (7) was solved for an arbitrary
number n of fields. For Cauchy data

)\t:=0 = bi(x) (8)

the solution is obtained in a parametric form

(9)

p\ <*{(<*) +at(β)
β) = - 2

The quantities Πi(x)ί @(x), ffl (x) in eqs. (9) have an important physical
meaning. Πi(x) is a canonical momentum of the field ψi(x, t) at t = 0.

Σ a'?(x) — a't (x) Σ a'< (x) b^x) (10)
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^(x) is the momentum density of the field system with the Lagrangian
(6) at t = 0.

n fi a, n

#(*) = - Σ -gjr Ψi.\t-0= ~ΣΠt (X) βί(*) =
i = 1 rW i= 1

— Σ a't(x) b<(x)

Finally, ffl (x) is the Hamiltonian density of the system with the Lagran-
gian (6)

n
~ Σ -f ai (%)
i = l — 1 =

Ίv ί\\

(12)

= 1 + K2(*) + Λ? W) +
F ί = ι

We show that the problem of scattering of two plane waves in the
Born-Infeld electrodynamics reduces to the solution of eqs. (7) for n — 2.

2. Solution for the scattering problem

We consider the electromagnetic field equations in the Born-Infeld
electrodynamics [2]. The Lagrangian of this system is of the form

£>=l- i/i + F - G* (13)

where

εskim jg a completely antisymmetric tensor e1234 = -o" fijc are the com-

ponents of the electromagnetic field tensor.
If the vector-potential of the electromagnetic field is introduced then

fik = —^p- --- -1- φi obeys the Lorentz condition g = 0. In varying

with respect to φ^ from eq. (13) follow the equation for the electro-
magnetic field:

9aj«
or

t /"-where

It is easy to prove that the plane wave of an arbitrary shape
ψi(v> y> z> 0 = ψi((kτ) - |k|0 is the solution for eqs. (14). Indeed, for
22*
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the plane wave with the four-momentum eqs. (14) takes on the form:

Σ ki^-= °; (l= i* 2 ' 3 > 4 ) > where * = ( k r ) - | k | J . (14a)
ί= 1

The Lorentz condition is then written in the form

=0, F = 0. (14b)
i = I

Further it is easy to see that for the plane wave, taking into account
conditions (14 b), on has the equalities F = G = 0. Thus pil = f i l as in
the case of the linear Maxwell equations. The equation (14a), taking
into account (14b), is then satisfied by

The sum of the two plane waves

satisfies also eqs. (14) in a space-time region where they are not over-
lapped, i.e. in the region where one of the functions is zero.

We may assume that these waves are moving along the axis x. This
can be always obtained by the Lorentz transformation. In fact, let us
direct the time axis along the four- vector kt -j- k2 and the a;- axis along
kx — k2, then in a new frame of reference

2

Since eqs. (14) and the Lagrangian (13) are invariant under the Lorentz
transformation we are able to formulate our problem in the following
way.

We find the solution for eqs. (14) satisfying the following asymptotic
conditions, as £-> — oo the solution must turn into two plane waves
moving in opposition directions:

lim φi (x, y, z, t) = wz>ί (v) lim φi(x, y,zt) = ψ^ (u) (15]
W-»oo ' v-^—oo

where u = x ~ t, v = x + t are the isotropic coordinates. The limiting
values of the vector-potential must also obey the Lorentz conditior
which is expressed in variables u, v as follows:

du dv ~
(15a]

dv dv
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To satisfy the conditions (15) we shall find a solution for eqs. (14) which
would be independent of y and 2, i.e. we assume that φi are functions of
the two variables x, t only. In this case eqs. (14) takes on the form:

dφ

d I dx dt I d \ dt dx .

"aί \—-j? / = 0; aϊ \ i-j? "/ = °>
φ2 dφ3 dφ2 d(

dt dx \ do; 9ί δί a^_____

o ^3 d φ2 i d φ2 d φ3 d ψ2 d φ33<p2 (<
dt \dx dt \ dt dx dx dt , ,

= β> (16)

J_ _1XL ί -^ a 9^3 9^2

' ~r ^_ ra I dt ^ dx \ dt dx dx dt
~W

I dψz dφ2

1 -

dφ3
dφ2 d φ3 \ >

, _j_. ^^ dt \ dt dx dx dt

From the first two equations (16) it follows immediately that

~dx~ dt~= c^ ~ ^> where c = const. (17)

When φi depends on x, t the Lorentz condition relates only φ^ and φ2

Summing up and subtracting (17) and (17 a) and going over to the iso-
tropic variables u, v we get

1?1 + 1?L_CΠ v>\. l^l_-^L_ rπ CP\ nndu + dn -t\ί-^}, dυ dv -c(l-^). (18)

Now comparing eqs. (18) with (15a), the latter being obtained from
(15 a) at u -> — oo and v -> oo according to the limiting conditions (15),
we see that to obtain agreement with the limiting values it is necessary
to put in eq. (17) c = 0. From the physical point of view this means the

following. The quantity ~- ~ (1 - £>)~l in the Born-Infeld

theory is an x~ component of the electrical induction vector D. According
to (17) it is constant. If c =f= 0 then besides the plane wave, at infinity
there exists a constant longitudinal electric induction, as there would
exist a condenser with plates separated to infinity.

When c — 0 the Lagrangian (13) takes on the same form as (6) for
the two fields since when the field depends only on x and t the com-

ponents 994 and φI enter £? as ~~ -- ~- and consequently, due to (17)
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cancel each other in £?*

The last two equations of (16) for φ% and φ3 coincide with the correspond-
ing equations (7) for j = 2, 3.

Thus, our problem is reduced to the solution of eq. (7) with asymptotic
conditions (15).

Solving the Cauchy problem (9) for the initial data (8) we can obtain
the desired solution satisfying (15).

With this aim we investigate the asymptotic behaviour of the solu-
tion (9), letting v tend to minus infinity for a fixed u, and u to infinity for
a fixed v. u and v are the isotropic coordinates (15); in both cases

£ = -- — _> _ co Further we assume that aΛx) and b^x) rather fast
Δ

decrease at infinity.
The parameters α and β in (9) are suitable for the Cauchy problem

while the parameters μ == μ(oc) and v = v(β) are more convenient for the
solution of the problem of plane wave scattering (15). We are led to the
latter parameters by considering the limits of eqs. (9) f or β -+ — oo and
for α -> oo. In the first case from (9) we get

α

= lim (x - t) = α -f- -1 f [Jf(λ) - & (λ)]dλ - μ(α)
β-+—00 2ι J

— OO

lim v= lim (x + t) = - <χ> (20)
β-^—OO β— >— 00

lim

Km ψi(x,β)=^-l fΠt(λ)dλ=Ψil(μ).
β~+—oo Δ Z J

— oo

In the second one
lim u = lim (x — t) = oo

^ = "(/?) (21)

Urn
α— >oo

Below it will be shown that the introduced functions \pit 1 and ψit 2

coincide with the limiting values of (15).

* When c 4= 0 9?! and φ% can be also excluded from <& and an exact solution can
be obtained. In this case

3

Σ
i=2
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This follows from the fact that μ = μ(oc) and v = v(β) are monot-
oneously increasing functions since &(λ) > &(λ). Consequently, the
transformations from α, β to μ, v are one-to-one, and as we saw from
eqs. (20) and (21) when β -> — oo, then v -> — oo and when α -> oo, then
u -> oo. From (20) (21) and (9) it follows that

00

Ψi(x, β) = Vt.ι(μ) + VίtM + T ΠΛλ) dλ . (22)

The quantity-^- / Π^λ) dλ can be expressed in terms of ψ^ and ψi2& j
— oo

since from (20) and (21) we have

lim ψi%(v) = 0 lim ψniμ) — 0
v~>oo μ—>—oo

(23)
= V < o = - 4 f Πt(λ)dλ.

Δ Jv—>—oo μ—>oo

Here it is taken into account that

lim μ(α) = ±oo, lim v(β) =

Thus we can write

Now we have only to express u and v as functions of μ, v. By determining
the functions //(α) and v(β) in (20) and (21) and the expressions for u
and v following from (9).

β

u(oc, β) = x - t = α + y f [&(λ) - 3P(λ)] dλ

it may be concluded that
β

(α) + y / [^(A) - Jf(λ)] ίU

(26)

In the first of these integrals we replace the variables a — v(λ) and in
the second one a = μ(λ). Since according to (20) and (21)

dμ *(λ)-9(λ) . dv
Ύλ^1-^ 2 ' Ίλ = l
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then
v ( β )

. . r
= μ(*)~ J

(28)

To express the integrands in (26) in terms of ψi:L and ψiz we make use of
ifn and ψi2 determined in (20) and (21) and find

dσ

77, (λ) _ ( '

dσ 2

Taking into account &(λ) and 3Ίf(λ) determined in (11) and (12) it is
easy to find that

3
v

^Λ dσ

(30)

Thus, we obtain
*(0) 3

u = μ(oc) - / 2;
— oo i = 2

(31)

The final solution expressed in new variables μ, v and initial functions

ψίi' Ψi2 is represented in the form

Ψi(μ> v) = ψi,ι(μ) + yίf 2 W ~

Σ ψ'&Wdσ (32)
— oo i =

υ=v+ / 1 ^(σ)^.
μ i = 2

It is not difficult to prove that the solution satifies the limiting con-
ditions (15) and eqs. (16). In fact, if the gauge is chosen so that φ4 = 0
then from (17) with c = 0 and from the Lorentz condition (17 a) we have
that φl = const. This constant may be put to be equal to zero then only
φ2(x, t) and φ3(x, t) remain different from zero. For then the solution is
given in a parametric form (32). A direct substitution shows that it
satisfies eqs. (16). From (32) for φ% and φ3 we have also when u -> oo
then μ -> oo, and v becomes equal to v.
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Hence,
lim 9< = φ,a(t>) (i = 2,3). (33)

If v -> — oo then v ~> — oo as well, and μ becomes equal to u.
Consequently,

lim ψi^ψniu). (34)
V— > — oo

Thus, the problem of scattering of two plane waves in the Born-Infeld
electrodynamics is solved.

Let us show how transforms our solution at u -> — oo and at v -> oo.

In both cases t = — ~ -- ^ °° ^ *s obvious from (32) that when u -> — oo

then μ -> — oo, and v becomes equal to v — H± where

#1= 7 Σ ψ£(σ)dσ. (35)
— oo i = 2

Consequently,
lim φt = ψί2(v- HJ - ψί2(- oo) . (36)

U— >~ oo

When v -> oo then v -> oo and μ — u -f H2 where

#2= 7 Σv&(σ)d<* (37)
— oo i = 2

Hence

Thus, two plane electromagnetic waves after collision pass to two plane
waves of the same shape but changed arguments. The quantities H19

— H2 which characterise the change of the arguments are equal to the
momenta of the first and the second wave respectively. If desired, the
collision may be considered in the center-of-mass system, where
HI = -H2.

3. Discussion of the results

The obtained solution (32) is, generally speaking, a multiple -valued
function of u, v. Indeed, let us consider the dependence of u, v on μ, v.

u = μ — B (v) v = v -f A (μ)
where

B (v) = / Σ Ψίί (o)Λa; A (μ) = /°° Σ ψίl (<r) do) . (39)
— oo i = 2 μ 1 = 2

Excluding v from (39) we get the equation

μ = u+B(v-A(μ)) (40)

defining μ as a function of u, v. The right-hand side of this equation is a
monotonely increasing function of μ since its derivative is

Σ ψil(υ - A (μ)) Σ vΆ 0«) ^ 0 . (41)
i = 2 7 = 2
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Since
Q£A(μ)^Hι

then
u + B(v - A (μ)) < u + B(v) ^ u + B(v + HJ . (42)

Consequently, all the roots of eq. (40) lie within the limits (42) and their
number is always odd.

If at all the points
Q

i = 2 j = 2

then there is only one root of eq. (40) and the solution (32) is single-
valued function of u, v.

We can write an approximate expression for our solution as a function
of u, v

ψi ̂  ψtl(u + B(v)) + ψi2(v - A (u)) - ψiQ . (44)

The smaller is the expression
3 3

ΐ = 2 7 = 2

the more accurate is the equality (44).
When the condition (43) is violated (in our units 1 plays the role of

the absolute scale of the field gradient) the Jacobian

-= i -

is not everywhere different from zero. If the Jacobian (45) is zero then
at these points the intensities of the field are infinite since

^ = 0
vίι(μ) [i — Σ vίϊwl — v4W [i— Σ v2(A*)l

Ey = - L * = 2

 8

 J - 3

 L ^2 - i (46)

i- Σ vZ(μ) Σ vSW
i = 2 7 = 2

EX = Q .
Now we may conclude that this theory, as it was assumed by its authors
[2], loses the meaning when the intensities of the field become larger than
some constant value (in our case 1) playing the role of the absolute
field scale. As was already noted, if the initial data are chosen such that
(43) is fulfilled there arise no ambiguities for weak fields; the theory
turns into the Maxwell electrodynamics.

In conclusion the authors are grateful to D. I. BLOKHINTZEV for useful dis-
cussions of the problems concerned.
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