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Abstract. An Abelian set of generators Tu is adjoined to a semisimple non-
compact Lie group, and its metric chosen so as to have a subset of representations
with Tu Tu > 0. We study the dimensionality and transformation properties of the
Tu sub-algebra under the homogeneous part, such that they make its maximal
compact subgroup into the stability group ("little group") for the above representa-
tions. The problem is related to the appearance of inhomogeneous non-compact
groups in quantum mechanical problems.

Introduction

Infinite-dimensional unitary representations of non-compact algebras
generate the full spectrum of bound solutions of various problems in
Quantum Mechanics [1]—[9]. However, in some cases the relevant
SGA (spectrum-generating algebra) contains a set of translation-like
Abelian generators, in addition to the semi-simple non-compact ones.
One thus encounters an "inhomogeneous" SGA, bearing some resem-
blance to the Poincare algebra. This fact is especially useful whenever
that subalgebra of the homogeneous part of the SGA which commutes
with a translation-vector (i.e. the generators of the stability subgroup or
"little-group") coincides with the maximal compact subalgebra. The
"length" of this translation-vector (e.g. of the 4-momentum in the
Poincare case) may be fixed by the particular conditions of the problem.
In such cases, the set of bound solutions is no longer given by a unitary
infinite-dimensional representation of the discrete type; instead it may
consist of just one or several representations (finite of course) of the
(compact) little group, just as an irreducible representation of the
Poincare group is given by If2 and one spin?'. The infinite-dimensionality
is no longer of the discrete type, and resides entirely in the quasi-
momenta tu.

In this study, we shall answer the following question: what is the
representation-structure characterizing the translation-like set of
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generators under the homogeneous ones such that it yield the maximal
compact subalgebra as the stability subalgebra ? We shall answer this
question for the inhomogeneous extensions of semi-simple classical
groups.

Generators and commutators

Denote the set of translation operators by Tu, the generators of the
maximal compact sub-algebra as K\ the non-compact generators of the
homogeneous semi-simple SGA by Na. We have,

[K*9 K>] = i/" fc K*, i,j,k=l...nκ (I)

with fίj

k totally antisymmetric in any two indices,

[K\ Na] = icia

bN
b, i=l...nκ,a,b=l...nN (2)

Λvhere the N*> behave like some finite set of representations of the jBΓ*,

c*«6 = C"(«t) (3)

with C*, the fi^-dimensional representation of the Kl.
We also have

[Na, Nb] = — ifo^K* (4)

the fa*j being totally antisymmetric structure-constants of the compact
algebra generated by the K* and the Na/', the latter behaving under
commutation according to

Na' ~ iN" , (5)

though their actual structure may be entirely different. The Nα/ are
Hermitian and finite the Na are Hermitian and infinite, as far as their
quantum-mechanical application goes. In addition,

[Tu, TV] = 0 . (6)

They span a space of nτ dimensions they thus form the basis for a non-
Hermitian nτ-dimensional representation H of the {Kt N0} non-com-
pact algebra, with indefinite metric guv. Alternatively we may describe
them as spanning a finite-dimensional Hermitian representation H' of
{_/£*; jYα/}; with guv replaced by a positive-definite g'uv,

[£*, Tu] = ίhίu

vT
v [Naf, Tu] - ih'au

wT™ (7)
where

himn = Hι(mn) l=l...(nκ + nN)',m9n=l...nτ. (8)

To ensure that {K*} be in the stability subgroup, we should be able to
"rotate" a certain set of quasi-time-like Tu so that they will lie entirely
in a subspace which is not acted upon by the Ki. This requires the ex-
istence of at least one JUT*-scalar in the reduction of the H1 matrices with
respect to the {K1} subalgebra. We pick the signature so that this com-
ponent of guv has the value -j- 1 for a diagonal metric. We further require
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that Hl contain only one ./^-scalar in this reduction; and we give a
value — 1 to all other components of this quasi-Minkowskian metric.
Our quasi- time -like Tu will thus have

«τ
Σ guvTuTv = t*>0 (9)

u,v = 1

and our aim is to pick out the Hl representation so that for

[Xm, T] - 0, ί2 > 0, {X™} C {K\ Na} (10)
we should have

(11)

Clearly, T may be rotated so that it lies entirely in the guu = 1
direction, so that {Ki}c_{Xm}' However, to ensure that the Xm do not
constitute a subalgebra larger than the Kl, we have to impose further
restrictions on the H. This can be done by an explicit check in each
particular class of inhomogeneous classical non- compact algebras; in
fact, we shall see that it will correspond to taking the smallest representa-
tion of {Kl, Ma} which contains a ^-scalar (and only one).

ISL (n, C)

To pick H, we have to go over to the compact {K\ Na'}. The {K1} is
here SU(ri), the {Na} behave under them as (n2 — 1), the basis of the
adjoint representation of U(n). Here n = nκ = nN. We pick out the
n2 — 1 semi- simple generators in {./£*} and combine them in 2"1/2 (Kl ±iN*)
with the suitable components of N* to generate the compact group
SU(n)(+) x SU(n)(~). We now take either one of the representations (or
some linear combination as a direct sum)

&(n, n*), @(n*} n)

of that group. Under the SU(n) of the {K*}9 each one splits into
(n2 — l ) φ l ; taking the positive linear combination of the SU(n)
scalar we get our single real {K*} scalar. The n, n* being the smallest
(defining) representations in SU(n)(+ϊ and SU(n)(~ϊ respectively, we also
have the minimal answer. The quasi-Minkowskian space is then n2

dimensional. A detailed discussion of this case was given by RUHL [10].
Note that in that particular case, both spaces were used, i.e. nτ = 2ri*,
so as to satisfy a particular requirement of the existence of a parity
operation. However, there is one case in which n2 replaces 2n* even
though parity is defined; this is the Poincare group ISL(2,C), as
2* s== 2 in S U(2). The parity operation requires n -> — n' this generally
requires a second irreducible representation, if n* =J= n. In space-time or

momentum space, the translations form a (~tf>~2~) ^asis> reducing to
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3 + 1 under space rotations. The symmetric combination 3 of -5- x -3-

inverts under reflection, the antisymmetric 1 doesn't.

To convince ourselves that equ. (11) is fulfilled, we note that the
time-like ®(n, n*)ι or $!(n*, n)lt being scalars under the summed action
of SU(ri)(+) and SU(ri)(~), and not being scalar under both subgroups
independently, they can also not be scalars under their subtracted action.

10 (n, C)

A similar treatment here would lead us to go over to 0(n, R)(+) x
x 0(n, jR)(~) and take the basis

@(n, ri)

which reduces to 1 θ 1/2 n(n — 1) θ [l/2n(n + 1) — 1] under the com-
pact 0 (n9 E) subalgebra.

However, for n < 7, the spinor representation is smaller than n\ we
may thus use for n = 6 2(8, $*), &(&*, s), some direct linear combination,
or their direct sum (if we require a parity operation); s* denoting the
conjugate type of spinor. When it doesn't exist, i.e. f or n < 6 we use
9(8,8).

ISL(n,R)

The compact subgroup is 0 (n, R) -> {K*}9 nκ = -^n(n — 1). The

non-compact generators behave like an irreducible 2nd rank symmetric

tensor with nN = -<r n(n + 1) — 1 The compact {Ki

ίN
a'} is SU(ri)\

we are after a finite representation of 8 U (n) containing an 0 (n) scalar.
This is not the adjoint representation, as the O(n) scalar in the product

n x n* = (n2 — 1) + 1

is also an SU(n) scalar 1. To get our answer we have to take the first
*̂ x 3f product with two 0(n) scalars. The ̂ (2, 0, . . ., 0) representa-

tion oiSU(n) has IT- (n + 1) components; under 80(n) it further reduces

into a scalar and the traceless symmetric tensor of rank 2. When multi-
plied by its conjugate it will of course thus contain two S0(n) scalars,
one of which will coincide with the SU(n) tensor, and the other will
occur in the representation ^(2, 0, . . . , 0, 2), with dimensionality

In the chain SU(n) -+0(ri), 0(n) is a maximal subgroup, so that our
, 0, . . ., 0, 2) is the quasi-Minkowskian fulfilling equ. (11).
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IU (n, m)

The maximal compact subgroup is U(n) x U(m). The {K\ Na'} is
U (n -f- m). Its adjoint representation @[(n + m)z — 1] answers our quest.
It contains a Kl scalar, as can be seen in the product of 2 (n + m) ®
Q)(n + m)* when taking the ?7(τ&) x U(m) content,

[(n, 1) Θ (1, m)] x [(n*, 1) e (1, m*)]

= [(n2 - 1, 1) e {(1, 1) θ -(1, 1)} Θ (1, m2 - 1)] θ [(1, 1) θ (1, 1)] .

The U (n) x U(m) algebra is a maximal sub -algebra of U(n + m),
so that equ. (11) is fulfilled.

10 (p, q)

The maximal compact subgroup is 0(pt E) x 0(q, E). The {Ki

) Na'}
is 0 (p -f q, E). Our answer is found in its symmetric traceless representa-

tion with nτ = -£- (p + q) (p -f q -f 1) — 1 appearing in the product

(p + q) x (p + q) = 1 θ [Y (p + q) (p + q— 1)] θ

e[γ(p+ q)(p + q + i) — 1 ]

In terms of 0(p) x 0(q), our representation reduces into

the last component being our scalar.

ISp (2n,R)

The {K*} algebra is SU(n), the {K\ N«'} is 8p(2n). In it

2\2ri\ x &[2n] = &[l]φ @[2n2 — n—I]® @[n(2n+ 1)]

has the SU(n) content,

(n-fn*) x (n + n*)== [1] θ [(n2- 1) e -J- (n- 1) θ ~ (n- 1)*] θ

φ [(n2 - 1) φ 1 φ -ϊ- (n + 1) e -J (n + 1)*] .

We observe that &[n(2n + 1)] contains our required SU(n) scalar.
U(n) is maximal in the 8p(2n) reduction, and equ. (11) is fulfilled.

ISp (2n, C)

The {K1} is USp (2n) we do as for SL(n, 0) and 0 (n, C) and use the
{K*,Na'} in the form USp(2n)(+ϊ x USp(2n)(~). The answer is then
provided by 0(2n9 2n) with dimensionality
13*
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Physical applications

Attempts aiming at a relativistic extension of SU(Q) have included
the application [10] of the inhomogeneous ISL(6, C) and [11] IS 17(6, 6).
The actual physical interpretation of the translation-like set of generators
seems to lead to difficulties [12]. However, some other problems [3], [4]
seem to contain such generators, with restrictions fixing their p2. It is
also possible that the finite space of bound solutions which arises in such
problems as the square-well potential etc., corresponds to situations in
which the inhomogeneous SGA projects out a finite little group. This
conjecture shall be further studied.
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