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Abstract. The asymptotic behaviour in the λ-plane of solutions of the Schro-
dinger equation for scattering on singular potentials is investigated. The asymptotic
behaviour of the Jost functions and the ^-matrix is obtained. Furthermore, the
general analytic form in the Λ-plane of the Jost functions and the $-matrix is estab-
lished. Some properties of the distribution of poles of the ^-matrix are proved.

1. Introduction

It is well known that for strongly singular potentials repulsive at
the origin, the Jost functions are entire functions and the $-matrix is
a meromorphic function in the A-plane [1], [2]. But the asymptotic
properties of these functions and the asymptotic distribution of their
zeros and respective poles, has not yet been investigated in a general
way. For real k several results have been obtained already in Reference [3].

In this paper we intend to establish the general analytic representa-
tion in the A-plane for the Jost functions and the ^-matrix in the sense
of the well-known Hadamard's factorization theorem for entire functions
of finite order. Also the asymptotic distribution of poles of the /S-matrix
in the A-plane will be considered.

In Section 2 we consider the behaviour of the Jost solutions and the
regular solution of the Schrόdinger equation for large λ and establish that
their order is one. In Section 3 we prove that the Jost function, defined
by the Wronskian of the Jost solution and the regular solution, is of
order one and infinite type and that it can be expressed as a canonical
product of genus one in the λ-plane for any k, Refc > 0, with an infinite
number of zeros accumulating asymptotically in certain angles. For
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instance, if k is in the first quadrant of the fc-plane, the zeros λn of the
Jost function /_(λ, k), which correspond to the poles of the $-matrix,
are in the first and the third quadrant with their arguments approaching
asymptotically π/2 and 3π/2 respectively. It follows also from our ana-
lysis that the Regge trajectories for singular potentials never cross the
origin in the λ-plane. We also prove the lower and upper bounds on the
number of zeros m\w\ ^r. Furthermore, we establish the asymptotic beha-
viour of the Jost functions and the $-matrix. The $-matrix tends to unity
for large λ in the same region of arguments of λ and k as in the case of
regular potentials (the shaded region in Fig. 3). We did not investigate
the exact asymptotic behaviour of 8 — 1 in this paper. For real k this
has been done in Reference [3].

The asymptotic behaviour of the Jost function for real λ, fixed
imaginary k, and a special kind of singular potentials has been investigated
previously in the Ref. [4]. The problems solved in our present paper,
however, require an investigation of asymptotic properties for any angle
in the λ-plane and for any fixed k.

2. The asymptotic behaviour of the Jost solutions and the regular solution

Before starting the investigation of the behaviour of the solutions of
the Schrόdinger differential equation, we have to specify more precisely
the class of potentials considered. Here the potential V (z) is assumed to
be a regular analytic function in the half -plane Rez > 0, real on the
positive real axis. At the origin on the positive real axis it has to satisfy
the following three conditions (compare Reference [3]) :

V(x)>Cχ-*9 <7>0, α > 2 , 0 ̂  x ̂  XQ , (2.1)

-<- (2 2)
0

x2 V(x) is monotonic in [0, XQ] , (2.3)

where x0 is a positive constant. The first condition requires that at the
origin the potential is repulsive and singular more than l/x2+e, ε arbitra-
rily small. The other two conditions exclude potentials with undesirable
oscillatory features when approaching the origin along the real axis.
Finally, at infinity in the half -plane Re 2 > 0 we shall assume the following
asymptotic condition

lim z2 F(z) exists for z = r expiτ , |τ| < ~ . (2.4)
z— > oo 2t

For such potentials the Jost solutions f± (λ, k, z) exist and they are
defined by their asymptotic behaviour at infinity : f± (A, k, z) ~ exp (f ikz)
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as Re z -> oo. The regular solution φ (λ, k, z) also exists and it is defined
by its behaviour at the origin (compare Reference [2]) :

lim . * = 1 χΐeΆl (2.6)

z->0 <Po(x)

where

- v ) d y . (2.6)

We shall investigate now the rate of growth in λ of these solutions.
The order ρ of a function f(λ) analytic and regular in an angle
cϋj ^ argλ ^ ω2, a measure of its rate of growth, is defined in the follow-
ing way [5] :

e = limsup . . ω^arg^ωa. (2.7)

Here M (r) is the maximum of the function \f(λ)\ for \λ\ ̂  r in the angle
coj ^ argλ ^ co2. Our main task in this section is to find the maximum
M (\λ\) of the Jost solutions and of the regular solution. An upper bound
on the function M (\λ\) can be obtained relatively easily as shown at the
end of the Appendix. In the whole A-plane Jlf(|λ|) < K exp(7|λ|2, where
the quantities K and C depend on the variables z and k only. We shall
need this rough estimate later. We shall need also the exact form of
the function lf(|A|), which we shall be able to derive only for certain
angles. Fortunately, these angles will be larger than π/2. This fact,
the evenness of the solutions in λ and the mentioned upper bound of the
function Jf(|λ|) will be sufficient for the extension of the properties
obtained for these angles to the whole λ-plane.

Let us find the function Λf (|λ|) for the Jost solutions first; it is
closely related to their asymptotic behaviour. The first step towards the
proof of the asymptotic behaviour of the Jost solutions is to choose an
auxiliary differential equation as the asymptotic substitute for the
Schrόdinger equation. It must contain those terms of the Schrόdinger
equation which are dominant for λ -> oo, and for all z. Both solutions of
this auxiliary equation must be known to us in an explicit form and be
simple enough to allow simple estimates. The solutions of such equation
will be used for constructing the Green's function and the corresponding
integral equation for the Jost solutions. We expect that the Jost solutions
will approach asymptotically a properly chosen solution of the auxiliary
equation. This method, close to the application of the W. K. B. method
to the scattering problem [6], has been described in detail in Reference
[3]. Here we shall make use of the following expressions from this re-
ference. We can write /±( λ, k, z) = χ±(λ,lc,z) g±(λ, k, z),
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are the auxiliary functions:

χ±(λ,k,z)= i==χ

(2.8)

ί ι Γ /ΊΛ*5—;τ .Λ *AX exp j^f ιkz~}~ I 11/ -*F — AT T * & I α ς I .
JT < J \Γ ^ / I

( 0±(z,oo) j

The functions g±(λ,kyz) are the solutions of the integral equations:

<7± (λ, k,z)=l+ f H± (λ, k, z, z') g± (λ, fc, »') ί»', (2.9)
C±(2,00)

wliftΓft

^_(l-exp(-2 /"
7 2 \ I '

X

The paths C± (z, oo) are defined in the Appendix and they are drawn
in Fig. 4.

It is shown in the Appendix that the functions g± (λ, k, z) tend to
unity uniformly in z on the path (z φ 0), if the arguments ω = argA
and σ = argfc are in the shaded regions of Fig. 1 and Fig. 2, respectively.
This means that the functions g± (λ, k, z) are of order zero in the cor-
responding shaded regions. Hence, the order of the Jost solutions
f± (λ, k, z) is given by the order of the functions χ± (λ, k, z). To obtain
their order we have to consider the maximum of

\χ±(λ,k,z)\--=

ί r / /i5— \ )
=F ReiA a + Re / (|/ — — P =f **) ^*f *

0±(z,oo)

The integral in the exponent can be evaluated explicitly so that

iχ±α,^2)i = TΪ7̂ L=-x

X expί-Rel/P-Pz2 =p Re^ + Re Alog (-/- + ψ-J^-1}} .l y ^ \κz γ K z /)
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The leading term in this expression for large λ is of the form

|χ±(λ, *»z)| ~ exp{cosω|A|log|A|} .

It follows that the functions χ± (λ, k, z) are of order one and infinite
type in the angle ω2± ^ ω ^ ω1±. Here ω1± = ωmax± — ε and
ω2± " ωmin± + ε> ^maxi and ωmin ± being ^ne maximum and the
minimum value of α> in the shaded region in Fig. 1 and Fig. 2 respectively,
for a fixed a. Hence, the Jost solutions f± (λ, k, z) are functions of order
one and infinite type in the same angles.

Figs. 1 and 2. The Jost functions are of order one and infinite type in the shaded regions

Since the Jost solutions are entire even functions of λ (see References
[1], [2]) we can consider them as functions of the variable w = λ2 and
define h± (w, k, z) == f± (λ, k, z). The functions h± (w, k, z) are then of
order 1/2 in the angles A± in the w-plane larger than π, for every k,
Re& > 0. But we have also a rough estimate of these functions, quoted
earlier for the A-plane, which is valid in the whole w -plane: \h± (w,k,z)\ <
< exp(C\w\). So we can apply the Phragmen-Lindelδf theorem to the
angles ΔG

± complementary to A±. We divide h± (w, k, z) by E(w)
= exp{—i ]/w (logtί;)2} , a regular analytic function of order 1/2 in AG

±

with the cut along the positive real axis. This quotient is a regular analytic
function in Δ^. (except of the origin) vanishing asymptotically along the
boundary of Δ°±ί and bounded by an exponential function exp(K\w\)
in the angle Jξ.. Then, by the Phragmen-Lindelόf theorem, this quotient
vanishes asymptotically in Δc

±. Hence, the order of h±(w, k, z) in Δc

±

is 1/2. In this way we have proved that h± (w, k, z) is of order 1/2 and
infinite type in the whole w-plane and, consequently, f± (λ, k, z) is of
order one and infinite type in the whole A-plane.

Now, let us turn to the regular solution. Again, we choose first an
auxiliary differential equation, which now must contain the potential
because the boundary condition (2.5) depends upon the potential.
From its two independent solutions ψ± (λ, k, x) we construct the Green's
function and the integral equation for the regular solution. Apart from
a normalisation factor the auxiliary solutions ψ± (λ, k, x) are equal to
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the corresponding ones in Kef. [3]. The regular solution, satisfying
the boundary condition (2.5) can be written as φ (A, &, x) = ^+(A, k, x) x
x u(λ, k , x ) , where

ψ± (λ, k, x) = 4 =" x

X0 _

X e x p J T / J/F(y) +•£-*• dy± (2.11)

±/(/
0

and u (λ) k, x) is the solution of the integral equation

Here

u(λ, k,x) = l+ f H(λ, k, x, y) u(λ, k, y) dy .
o

H(λ, k, x , y ) = -

X

x

[l-exp{-2/ |/

X

- _ _ & 2 dξ\\X

(2.12)

(2.13)

X
2/3

42/2

,
λ*

It is shown in the Appendix that the function u (A, k, x) tends to unity
as λ tends to infinity along a ray, |argλ| < π/2, for any fixed & in the
&-plane. On the other hand, we can find easily the asymptotic bound
for the function ^+(λ, k, x). The first term in the exponent of ^+(λ, k, x)
behaves like + λ logx for large λ. The second term can be rewritten as
follows :

#

f
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We denote the absolute value of this integral by I(λ). Using the condition
(2.1) we can make the following estimate for |argλ| < π/2:

If yίV(y) has a positive limit when y tends to zero, we shall replace
y<ίV(y] by the minimal value of the function y^V(y) in the interval
(0, XQ). In this case after calculating the integral we find I(λ) < B\λ\,
where B is some constant. If y^ V (y) tends to zero, we can always find
a number β, α > β > 2, such that y& V (y) tends to infinity. Then again
we can estimate yP V (y) by its minimal value in the interval (0, x0)
and calculate the obtained integral. We have again the estimate I(λ) <
< B\λ\9 with another constant B. It follows from this that the order
of the regular solution in this angle is one at the most. Since the regular
solution is an entire function bounded by exp((7|Λ,|2), we can use as
before the Phragmen-Lindelόf theorem and prove that the order of the
regular solution is one at most in the whole A-plane. But it can be easily
checked from (2.11) that the regular solution increases exponentially
along the positive real axis, so that its order has to be one.

3. The asymptotic behaviour and the structure
of the Jost functions and the Si-matrix

Knowing the asymptotic behaviour of the solutions of the integral
equations (2.9) and (2.12) and the bounds on their derivatives, proved
partly in Section 2 and partly in the Appendix, we can establish the
asymptotic behaviour of the Jost functions. They are defined by the
Wronskians

f±(λ,k)=WU±(λ,k,x),φ(λ,k,x)')

- χ± (λ, 4, x) ψ+(λ, k, x) W(g± (λ, fc, x),u(λ, k, x)) + (3.1)

+ g± (λ, k, x) u(λ, k, x) W(χ± (λ, k, x), ψ+(λ, k, x)) .

The factor in front of the first Wronskian can be easily estimated and
proved that it is of order 1 / j A j compared to the second Wronskian. The
first Wronskian is bounded by a constant because both the functions
and their derivatives entering the Wronskian are bounded as shown in
the Appendix. The factor in front of the second Wronskian tends to unity
as shown in Section 2 and the Appendix. The domain of validity of these
assertions in the arguments of λ and k is the interior of the shaded do-
mains of Fig. 1 and Fig. 2 respectively. Hence, the asymptotic behaviour
of the Jost functions is given by the asymptotic behaviour of the second
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Wronskian, which can be calculated from (2.8) and (2.11).

101

f ± ( λ , Jc) = ( +.) 2J/* exp dx +

(3.2)

This asymptotic formula is valid in the interior of the shaded domain
respectively in Fig. 1 (in case of f+(λ, &)) and Fig. 2 (in case of /_(Λ, &)).

From (3.2) we can prove the asymptotic limit of the ^-matrix

8(λ, k) = exp (in (λ- y)) ̂ 1 (3.3)

in the interior of the shaded domain of Fig. 3. This is the same result
as in the case of regular potentials.

Fig. 3 Fig. 4

Fig 3. The ^-matrix tends to unity in the shaded region

Fig. 4. The integration-pats of the integral equations for the Jost solutions

Now we are able to prove the order of the Jost function in the whole
λ-plane. From the asymptotic behaviour (3.2) we can establish the
order in the angle Δ±. We know from Section 2 that the first term in the
exponent of (3.2) is bounded by C\λ\. The rest of the exponent behaves
asymptotically like A log A. Thus the Jost function is bounded by
N exp (M \λ\ log |λ|) in the angle Δ ±. It follows that its order in the angle
Δ± is one at most. But we can easily check from (3.2) that for real λ
the Jost function grows faster than the exponential function. Hence,
in fact it is of order one and infinite type in the angle Δ±. On the
other hand the Jost function is bounded by K exp(C|λ|2) in the whole
Λ-plane. This follows from the definition of the Jost function and the
corresponding rough bounds on the solutions of the Schrόdinger equation
and their derivatives, as shown in the end of the Appendix. Applying
now the Phragmen-Lindelof theorem as in Section 2, we conclude that
the Jost function is of order one and infinite type in the whole Λ-plane.
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Knowing the order of the Jost function we can establish its analytic
representation. As the Jost function is even in λ we prefer again to use
the new variable w = λ2 and to define the entire function h± (w, Jc)
= /-j- (A, Jc) which is of order 1/2 in the whole w-plane. According to the
Hadamard's factorization theorem [5] we can write

h±(w,k) = wm±eQ±w P±(w),

where Q± (w) is a polynomial in w of degree q ̂  ρ, ρ being the order of
h± (w, k). P± (w) is the canonical product of genus p.

Since in our case ρ — -^ > we have q = 0. Furthermore, m± — 0.

The function h± (w, k) is holomorphic in the poly circle

Z)ΞΞΞ {w, k \ \W\ < T, \k — kQ\ < ImkQ} ,

Λvhere r is arbitrarily large, being continuous in both variables together
in D and being entire in w and analytic regular in the ά-plane cut along
the imaginary axis [7] (the positive and negative imaginary axis for
h± (w, &), respectively). Then there exists the expansion h± (w, k)

= wm± Σ hn1}ns ±
wHl '(k — &o)Wa uniformly convergent in D. Hence the

WI.WB

function h± (w, k)jwm± is analytic in k and integers m± cannot depend
on k. Then it follows from the unitarity that ra+ = m_ = m. If m Φ 0,
both Jost functions vanish for λ — 0 and consequently the regular solu-
tion φ (0, k, x) vanishes identically. This contradicts the integral equa-
tion (2.12). Hence, m — Q, h±(Q, &) Φ 0 and we conclude that the Regge
trajectories for singular potentials cannot cross the origin in the A-plane.
Finally, the genus p of the canonical product P± (w) must be zero be-

cause of the inequality p ^ ρ = -^ (compare (2.5.19) of Reference [5]).

Hence P± (w) — Πn (1 — w/wni)> where wn± are the zeros of the Jost
function. Since h± (w, k) is an entire function of non-integral order it
has necessarily an infinite number of zeros (see Theorem 2.9.2 of Re-
ference [5]). After this discussion we can write the general representa-
tion of the Jost functions and the /S-matrix :

, k) = /± (0, k) Π l — TM- > (3.4)
n = 1 \ An ± W /

Π- -, (3.5)
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At the end of this section we want to investigate the asymptotic
distribution of zeros of the Jost functions f± (λ, k) as a consequence of
their being even entire functions in λ of order one, k fixed, Rek > 0.
For this purpose we introduce again the variable w — λ2 in the expression
(3.4) for the Jost functions h± (w, k) = f± (λ, k). This is an entire func-
tion of order 1/2 in the w-plane. According to the theorem 2.5.12 of Re-
ference [5], the number n(r) of zeros in \w\ ^ r is bounded from above
by Cίr1/2+ε for every positive ε. The lower bound on n(r) follows from
the theorem 2.9.4. and our previous result on the asymptotic maximum
M(r) of the Jost functions: M(r) > C exp^/Mogr). We obtain that
asymptotically n(r) > Nr^logr. Hence the number w(|λ|) of zeros in
the λ-plane cannot grow asymptotically faster than |λ|1+e, ε>0, and
slower than \λ\ log|λ|.

For k in the first quadrant (0 < a < π/2) of the &-plane the zeros of
/-(λ, k) are distributed asymptotically in a region along the imaginary
axis which is narrower than any angle, as it can be seen from Fig. 2.
Furthermore, because of the eveness of the Jost function and the con-
tinuity equation, these zeros can occur only in the first and third qua-
drant of the /Uplane. These zeros correspond to the poles of the S-
matrix. Similar discussion can be done for k from the fourth quadrant
(—π/2 < σ < 0). But, as it can be immediately seen from Fig. 2, in
this case we cannot claim that the region of zeros is asymptotically
narrower than any angle.
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Appendix

The Appendix is devoted to the proofs that the functions g± (λ, k, z)
and u (λ, k, x) tend to unity, to the discovery of the uniform bounds with
respect to λ of the derivatives of these functions and finally to the deter-
minations of an upper bound on the Jost and regular solutions.

We rewrite the integral equations (2.9) for the functions g± (λ, k, z)
in the more convenient form for our purposes:

flMλ,fc,s)-l= / H±(λ,k,z,z') + f H(λ,k,z,z')x
C±(z,oo) C±(z,oo)

Xfo ± (λ, i , *')-!)**'• (AJ)

To prove that g± (λ, k, z) tend to unity we have to find the bound
K(λ,k,z') of the functions H±(λ,k,z,z') which is valid for large λ
and whose integral tends to zero as λ increases. Then the proof follows

Commun. math. Phys., Vol. 2 8
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from the estimates of the integral equations (A.I)

\g±(λ)k,z)~I\< f K ( λ , k , z ' ) \ d z ' \ x
c+ (zι>°°)

(A.II)
χ e x p ( / K ( λ , k , z ' ) \ d z ' \ ) , z

Certainly, the desired bound cannot be found for every choice of path.
The limiting values lim g± (λ, k,z) = l in the shaded region of Fig. 1

λ— >00

and Fig. 2 respectively can be proved for any fixed z, Rez > 0, but we
restrict ourselves to real z, z > 0, because we do not need more in the
investigations of the Jost functions. Let us choose some fixed x on the
positive real axis and draw two rays from the point x\ z = x -f ρ exp*τ±

where — π/2 < τ+ < min(— a, ω — σ), max(— σ, ω — σ) < τ_ < π/2 (see

Fig. 4). Generally the cuts z=±-j-u, u>\ of the square root

(A2/22 — &2)1/2 cross the mentioned rays. But for λ large enough this does
not happen. As we are interested in large λ we can put our integration
paths C± (x, oo ) of the equations (A.I) on the defined rays from the point x.
We prove now that this choice of the integration paths enables us to
obtain the bound K (λ, k,z'). First we consider the exponential function
in the definition (2.10) of the functions H± (λ, k, z, z'). The exponent is

-τ) ' <AJ[Π>
C(z1,z2) Si -*-

where τ is the argument of the point z = seiτ. It is easy to see that the
real part of (A.III) is negative for zl9 z2 ζ G+ if σ < 0, ω > 0 and for
zv z2 ζ C_ if σ > 0, ω < 0. For other choices of the variables a and ω
the real part of (A.III) is not negative generally except for Zj, z2

large enough, so that we have to change the paths C± near the real axis.
They start from the point x along the curves r = x exp(=t^.τ), r ̂  0,
to the points z± determined by τ = τ± respectively. The rest <7± (z±) oo)
are laid on the straight lines inclined by τ± respectively (see Fig. 4).

Now the real part of (A.III) is negative on G± for — γ+ a < ± ω <

< arc tg.4 respectively and A is as large as we want. We cannot obtain

the whole range ω\ < -$• because the branch point λjk pinches the paths

C± to the negative and positive imaginary axis respectively. In this way
the exponential function in the expression (2.10) for H± (λ, k, z, zr)
can be estimated by unity for a and ω in the shaded region of Fig. 1
and Fig. 2 respectively. We divide now the paths z = r eiτ, zζC±

into two parts 0 ̂  r < \λjk\ and \λ/k\ ^ r < oo. We can find the estimates
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of the functions H± (λ, k, z, z') on these parts of the integration paths

x-\-r [ A!
for r<

. -ίJ-2 i -"2 p
I = —z- λ r lor ^ r < oo

where α comes from the estimate of the potential for large z and
hence α Ξ> 2. The constants ̂  and J5t depend on the variable k only.
We insert the estimate (A.IV) into the inequality (A.II) and obtain that
g± (λ, k, z) tend to unity uniformly with respect to z from the integration
paths C± (x, oo) and the error is of order l/|λ|.

It is easy now to find the bounds of the derivatives ~τ~9± (λ, k, x)

uniformly with respect to large λ in the shaded regions of Fig. 1 and Fig. 2
respectively.

exp -2 / X

C±(z,oo)

X

We know the estimates of the functions under the integral sign from
before except of the square root (λ2jz2 — k2)1/2. This one can be estimated
by G\λ\ so that we have

d

and K depends on the variables k and x only.
We turn now to the proof that the solution u (λ, k, x) of the integral

equation (2.12) tends to unity when λ tends to infinity along the rays
λ = \λ\ expίω, ω| < π/2 for every fixed k and x. It can be proved that
the same property holds for every z, Re z > 0, instead of only for real z.
The proof is much more complicated because of the choice of the inte-
gration path and for our purposes the proof for real z is sufficient. (The
reader can see an analogous complication in the case of Jost solutions
in the Reference [3]). We rewrite the integral equation (2.12) in the form

u(λ, 4, s) - 1 = fH(λ, k, x, y) dy + fH(λ, k, x, y) (u(λ, k, y)

0 °

1) dy ,
(A.V)

where the function H(λ, k, x, y) is defined by (2.13). Again we look for
the bound K (λ, k, y) of the function H (λ, k} x, y) such that the integral

w

f K(λ, k, y) dy tends to zero when λ tends to infinity in the half plane
o
Re A > 0, w being any positive fixed number. The exponential function

8*
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in (2.13) can be estimated by unity for large λ because the exponent
has a negative real part. Namely, the square root in the exponent for
positive x has a positive real part if λ is large enough in the half plane
Re A > 0 for any fixed k. The other factors in the expression (2.13)
can be estimated as in Reference [3]. Here we prefer to quote the re-
sults only rather than to derive them, since the proofs can be found in
Reference [3]. We define the point x1 as the solution of the equation
x2 V(x) = \λ\. There exists only one solution xλ for large λ because of (2.3).
Any fixed interval (0, w) can be divided into three parts (0, α^), (xly XQ)
and (xQ, w). The third part disappears if w ^ XQ. Then the function
H(λ, k, x, y) can be estimated by the functions K^λ, k, y) in the cor-
responding intervals respectively, where

Kl (λ' k' x) = B (x) in (0ί Xl) '
C

z (λ, k, x) = Ί , , ' - B (x) in (xv x0) ,

in(xΛ,w). (A.VI)

The function B(x) is the expression in the brackets of (2.2). We estimate
the integral equation (A.V) by

\u(λ, k, x)-l\< fK(λ, k, y) dy exp f K(λ, k, y) dy
o o

and using the expressions (A.VI) we conclude in the same way as in
Reference [3] that the function u(λ,k,x) tends to unity for large λ
Reλ > 0 and fixed k.

The bound on the derivative:
d

< C(x)) where C(x)

is finite for x > 0 uniformly with respect to large λ can be found from
the equation (A.V) and the boundedness of u (λ, k, x) for large λ.

At the end of the Appendix we find the rough bounds in the whole
A-plane of the regular solution and its derivative. The regular solution
defined by the boundary condition can be naturally f actorized in the way
φ (λ, k, x) = φ0(x) v(λ, k, x), where the function v(λ, k, x) is the solu-
tion of the integral equation from Ref. [2]

1-exp -

y / /
(A.VII)

X ~l/4 5 / F ' ( y ) \ 2 1 F"( ,,
X 2/2 16 I V(y) ) + 4 V(y) V(λ>
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The kernel of this integral equation can be estimated as in Reference [2]
so that we have the integral inequality

X

\v(λ, k, x)\ < i + μp =+ cR(y) l«α *> y)\ dy ,
0

where E(x) is the expression in the brackets (2.2). Finally we obtain

I φ (λ, k, x)\ = Ψo (x) \v (λ, k, x)\ < C, exp (C2 |λ|a) . (A. VIII)

The derivative -7— φ (λ, k, x) has all the dependence on λ in the

function v (λ, k, x) and its derivative. Therefore we have to estimate
only the derivative

, 2—1/4
X '

5 IΓ(y)γ 1 F"(y)\ , , ,

Ίβ lTfojV +Ί:-vw)v(λ>k'y)dy

Knowing the estimate of the function v (λ, k, x) expressed by (A.VIII)

we conclude that , k,x) < K μ|2 exp (<72 |λ|a). This means

that we can write

-fcφ(λ,k,x) <03exp(04μi2),

where <74 is somewhat larger than <72.
We do not want to repeat the whole procedure for the Jost solutions.

But one can do it easily in the same way, using the integral equations of
the Reference [6] for the Jost solutions since there the variable A2

appears in the kernels only in the same way as in the equation (A.VII).
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