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Abstract. It is shown that the von Neumann algebra R<&(B) generated by any
scalar local function B(x) of the free field A0(x) is equal either to R&(Aϋ) or to
R<as>(ιA\ι). The latter statement holds if the state space ξ)B obtained from the
vacuum state by repeated application of B(x) is orthogonal to the one particle
subspace. In the proof of these statements, space-time limiting techniques are used.

§ 1. Introduction

Von Neumann algebras of local observables have been introduced
into relativistic quantum theory by R. HAAG [1]. A detailed study was
made notably by H. ARAKI [2] in a series of papers. ABAKI has shown that
most of the rigorous results of general quantum field theory can be
obtained in the framework of local observables.

One motivation for introducing these objects is therefore similar to
the motivation of introducing algebraic concepts into ordinary quantum
mechanics, namely to investigate general structural properties. In
quantum mechanics, these algebraic concepts are not of much help in
the discussion of a concrete dynamical problem and similarly in relati-
vistic quantum theory, one would expect dynamical laws to be simple only
in terms of unbounded field operators associated with (bounded) local
observables. From this suggestion of Lagrangian field theory, dynamical
equations should have the form of local nonlinear equation of motion in
these fields. However, powers in the field operator, viz. Az(x)) cannot be
dealt with naively. A well known discussion [3] of two-point functions
shows that any Lorentz-covariant field is necessarily an operator-valued
distribution. Ignoring this problem, one runs into the well known trouble
of ultraviolet divergences. The conjectured remedy [4] for this trouble
is a careful treatment of the nonlinear term as a local function obtained
by delicate space time limiting procedures. This has indeed turned out to
be true in certain soluble models [5]. Little is known about the formulation
of such a procedure in the general case. It is in this area that one expects

* Supported by the National Science Foundation.
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the local rings to be of practical use and this was indeed another motivation
for their introduction. Using these objects, one obtains a very lucid
definition of local functions of a local field : A local field B (x) is called a
local function of a local field A (x) if the von Neumann algebras generated
by B are always contained in those generated by A (x), i.e.

for arbitrary space time region 93. For example a Wick polynomial in the
free field

B(x) = Σcn A%:(x)
n

can be shown to be a local function in this sense. It is much less trivial
to prove that the converse is also true. The statement

can be shown for any Wick polynomial which contains at least one odd
power. The space-time limiting techniques for proving this statement are
less trivial than those which are involved in the definition of Wick
powers [6]. Both statements can be combined and generalized to the
following structure theorem on local functions of the free field :

0) if B is irreducible in $)A(t

*( ) = = : ) i f B i s reducible in

Here § ô is the Fock space generated by the free field A0(x). The second
case happens if and only if the Wick polynomial B contains only even
powers. In the latter case it would be more appropriate to formulate the
equality on the state space §:̂ : which is cyclically generated from the
vacuum by applying the : A% : algebra. Although this structural simplicity
of different fields in terms of their von Neumann algebras is surprising
from a mathematical point of view, exercises on free fields and their trivial
modifications are bound to be physically uninteresting. The only justi-
fication for this investigation is our belief that the space-time limiting
techniques used in the proof have some bearing on realistic cases i.e. on
the problem of definition of currents in field equations.

We are able to prove the mentioned ring-theoretical statements
without using self-adjointness for the Wick polynomials of larger than
second degree*.

In order to achieve this, we had to study some intricate properties of
local von Neumann algebras generated by fields. The relevant theorems
(which are of a fairly general nature) are derived in the next section. In the

* In the light of recent investigations of A. S. WIGHTMAN the self adjointness
of Wick-powers of higher than second degree seems to be very doubtful (private
communication) .
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third section we briefly outline the space-time limiting techniques and
derive the previously indicated ring-theoretical structure theorems. The
general idea here is to invert a relationship of the type B(x) — A% with
respect to A0, i.e. to give an operator analogy to the classical cube root
inversion A0 =

 3]/B . We discuss this problem for all Wick polynomials
without derivatives.

The fourth section contains a detailed proof of the convergence of the
space-time limiting procedure. In the concluding remarks we will mention
some statements which can be obtained by using techniques analogous
to the ones outlined in this paper.

§ 2. Definitions and preliminary discussions

If A is a field defined on a basic domain §> [7] on which the operators
A (/) are symmetric, one defines S& (A) for an open region of space-time 23
as the set of all bounded operators P such that

(Ψ, PA(f)Φ) = (A(f)Ψ, PΦ) (2.1)

for all Φ, Ψ ζ £) and for all / £ ^(®> (the set of all functions of 2 having
support in 93). This is not necessarily an algebra although it is a linear
space closed in the topology of weak convergence and stable with respect
to the operation P ->• P*. It contains the identity for every 23, so it is non-
empty, and its commutant

is the von Neumann algebra (also called local ring) associated with the
region 23. It can be proved, using a technique of REEH and SGHLIEDEB [8]
that (2.1) is equivalent to

P A ( J ) g A ( f ) * P . (2.2)

It is easy to see that (2.2) implies (2.1) conversely, if P satisfies (2.1), then

({0, P* Ψ}, {Φ, A (/) Φ}) = ({Ψ, A (/) Ψ}, (0, PΦ}) (2.3)

where, in the notation of NAGY [9], ({Φ, Ψ}, {Φ, Ψ}) = (Φ, Φ) + (Ψ, Ψ)
is the inner product in the space £j x $). If we define,

B{Φ, Ψ} = {0, P* Φ}, 0{Φ, Ψ} = {0, PΦ},

then B and C are bounded and therefore continuous operators, and (2.3)
reads

(Bψ, φ) = (y, Oφ)

for γ = {ψ,A(f)Ψ}9 φ = {Φ,A(j)Φ}. This equation is valid for all
the graph of A(f). Since both sides are continuous

functions of φ and y, the equation holds for all φ, ψ ζ 93 (-4 (/)) = 23 (-4 (/))
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and thus (2.1) is extended to

(2.1)

for all ψ, Φ ζ §> ( J(/)). But this is simply the condition that P Φ ζ © (J(/)*)

and that A(f)*PΦ= P A ( f ) Φ . Since this holds for any Φ
we have the relation - -

P A ( f ) £ A ( f ) * P

which implies (2.2) since A(f)* = -4 (/)*** = -4 (/)* .
It is seen from (2.2) that if A (/) is essentially self-adjoint on §>, then

!"(/) == A (/)*, which is self adjoint, and P J(/j £ ^U/j"P. This means that

P commutes with all spectral projectors E£W of A(f), and that if one
defines alternatively the von Neumann algebra R<&(Ά) to be the one

generated by all spectral projectors of A(f) for / £^(®>, then S&(A) C
£ R'CQ (A}. The converse inclusion is trivial so that by taking complements,
" '

(2.4)

In this case,
(2.5)

which is an algebra.
If two fields A and B have the same domain S>, then one says A is

a local function of B : A ci B if for every open region 23, R<% (A) Q R<# (B).
For use in the following sections, we prove the

Linearity Principle: IiA,B}C are fields having the same basic domain
§> on which A and B are essentially self-adjoint, and if A c(7,

Proo/: $8(0) ς E^(O);. Since EΦ(A) C S^(G), B«(C)' C 1^(4)' and
since A is essentially self adjoint on the domain 5>, ^(-4)'= /S^(-4).
These three inclusions yield S® (C) ζ, S<g (A) and similarly 8% (C) C S& (B).
It is clear that Sc$(A) r\ Sς&(B) C 8^(λA + μB) and therefore

S S®(4) π S*(B) Q SvψA + μB)

which, on passage to commutants, yields

μB)

°Γ λA

This principle will usually be applied in the form of a subtraction, and
often in the case that A c: B where one concludes that A — BtiB.
A simple remark that will be useful later is the following : If κ' : & -> 2 is a
continuous linear mapping which leaves 2(^ invariant for each 33, and
one defines a new field κ Am terms of A by the formula
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then κA is a local field which is a local function of A. If, in particular,
κ = D = dμdμ* then κ = κ', and

ΠAdA; (Π + m*)AtιA .

In order to consider the situation in which the vacuum is not cyclic
(for example :A*n:), we prove the following

Theorem: // A (/) (/ ζ &) has a self adjoint extension A (/) and the
vacuum is an analytic vector for A (/) and if E^ is the operator projecting ί)
onto the closure of ξ)^, the polynomial domain of A, then

E9A(f)ςA(f)E9.
Proof: From the work of BOUCHERS and ZIMMERMANN [10] it follows

that in ξ)^ there is a dense set §>0 of analytic vectors of A (/). For any n

so that E A (f)nΦ = QiiE = I — EJ>; and thus for any Ψζξ>

0 = (Ψ, EA (/)«Φ) = / λnd(EΨ, Ef^Φ) .
— oo

As in the next theorem, analyticity of Φ insures the uniqueness of the
moment problem involved, and thus

0 = (EΨ, EfWφ) = (Ψ,

for all Ψ £ §, Φ £ §>β, from which it follows that

if Φ ζ Sj,= §V i.e. if Φ has the form E^ΨίoT some ϊ7 ζ §. Consequently,

0 -

Because of the self adjointness of the last term on the right, the term
preceding it is also equal to its adjoint

and thus E^ commutes with A (/).
This implies that Ep is a superselecting projector (WIGHTMAN [3]) for

the field A: E9£ S&(A) C R&(A)' for every region 93. If the field A is
essentially self adjoint and each operator is restricted to the coherent
subspace S)^ (in which the vacuum is cyclic) then the new algebra of
observables Rc&(Aί>) will consist of all operators P\$p where P ζR&(A).
To prove this, we show that S& (A^) is the set of all operators EvQ\$p with
Q ζS&(A), from which the conclusion will follow. It is easy to see that
any operator of this form belongs to 8c&(A,p) from the following mani-
pulation: let Ψ, Φ £ ?>„, / £ 3f(^ then

(Ψ, E9Q\^A9{f)Φ)9 = (E9Ψ, QA(f)Φ) = (Ψ, QA(f)Φ)
= (E9A{f)Ψ, Q\^Φ) = (A9(f)Ψ, E9Q\^Φ)9.
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On the other hand, if Q ζS&(A9), one may construct the operator
(on ξ))Q=QoEv. It is clear that EvQ\§p= Q, and we show that
Qζ Sς&(A) as follows:

(Ψ, QA(f)Φ) = (S9Ψ9 QE9A(f)Φ)9 = (B9Ψ, QA9tf)H9Φ)9.

Equation (2.1) holds for Ψ, Φ in the domain of Ap (/) and, as a consequence
of the discussion at the beginning of this section, also for Ψ, Φ in the
doinain of A^ (/). But since Av (φ) is essentially self-adjoint, Ap (/) = Aυ (/).
This means that in the last term on the right, the Av(f) may be shifted
to the left

(Ψ, QAWΦ ) = (A,<f)JS,ψ, QE9Ψ}V

= (B,A (f)Ψ, QΨ)V - (A (f)Ψ, EVQΨ) = (A (f)Ψ, QΦ).

This completes the proof that 8^(AP) — Ev o S&(A) o l$p.
But [11] the fact that Sc&(A) is an algebra stable with respect to

adjunction (which follows from essential self-adjointness of A (/)) implies
that (E9 o S&(A) o 1%^)' = E9 o 8c&(A)/ o 1̂ . According to the general
definition, this yields EcS>(AJt) = E^ o R<&(A) o 1^= R<&(A) o E v o 1̂

All of the assumptions above hold for A = :A%:, and thus all results
are valid in this case.

To complete the previous theorem and obtain a tool for the study of
the Borchers class of a field, we prove the following

Theorem: If a self -adjoint operator A has a dense set §>' of analytic
vectors and for every n ζ N and Φ £ Φ'

(P*Φ, AnΦ) = (AnΦ, PΦ) ,

then P comutes with A.
4-00

Proof: In terms of the spectral resolution A = / λ dE$, this equation
— oo

becomes

and thus

0 (2.6)

with /(λ) = (Φ, [PEf—E£P]Φ). The statement that f(λ) - 0 for all
λ ζB would lead to the conclusion of the theorem since, with C = PE$—
— E£ P, this implies (Φ, OΦ) = 0 for all Φ ξ £>', Because C is a bounded
operator, this bilinear functional is continuous; and this equation can be
extended by continuity to the whole space. This means that £7^0, and



Von Neumann Algebras Generated by Local Functions of the Free Bose Field 221

that C has a positive square root D: C = _D2, and hence 0 = (Φ, CΦ)
= (Φ, D2Φ) = (DΦ, DΦ) = ||DΦ1|2 for all Φ £§. Since the norm is
definite, DΦ = 0 and CΦ = D(DΦ) - 0. Thus PE$ = J0Pf for every
λ ζ E and P commutes with A.

The task now remaining is to show that analyticity of Φ implies the
identical vanishing of/. This question can be reduced to one in the problem
of moments. To do this, we set f(λ) =•- g(λ) -f ih(λ) and decompose
g — g+ — g~ and h = h+ — h~~ into differences of monotone increasing
functions. Equation (2.6) yields, in this case, the two equations

sn^
 +fλ»dg+(λ) = yWflΓ(λ)
— oo — oo

tn^ fλndh+(λ) = f λndh~(λ)
— oo — oo

for all n ̂  0 in each of which, two monotone increasing, right- continuous
functions are seen to have the same moments. In order to be able to
conclude that g+(λ) = g~(λ), h+(λ) = Λ~(λ), and thus f(λ) = 0 for all
λ ζ R, it is necessary to have some properties of the sequences (sn) and
(tn) since the moment problem is not in general determinate. For this,
we determine upper bounds for the measures given by g^ and h^. If
γ = [μt y] is a nonempty closed interval, then we define / [γ] = / (v) — / (μ).
From the definition of the total variation g+, we have the formula for the
measure of γ induced by g+

g+[γ] = sup/2; \g[Yi]\:Y = U γλ ^ sup/^ |/[y<]|: γ = U γλ
U l } U * J

But from the definition of /, we have the inequalities

l/[y]| ^ \(P*Φ, EfaΦ)\ + \(EfaΦ, PΦ)\
= \(Efy]P*Φ, Efγ]Φ)\ + \(Efv]Φ, Efv]PΦ)\ ^

£ \\Efγ}P*Φ\\ \EfaΦ\ + \\Efv}PΦ\\

and the sum in the last supremum is majorized by

Σ \\Ef

+ (Σ i
= \EfaP*Φ\ \\EfaΦ\\ + \\Efγ]PΦI \\Efv}Φ\\ ,

where we have used HOLDER'S inequality and the law of Pythagoras.
From these inequalities, it follows that

oo Γ oo -|l/2

i / ψ(λ)dg+(λ)\ g (1|P*Φ| + IIPΦI1) / φWdlStΦW . (2.7)
— oo L— oo J
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For the proof, we consider a particular integral sum (λ{ ζ

+[γί\\ ^ Σ

for which HOLDER'S inequality gives an upper bound of

£ [
Equation (2.7) is obtained by passage to the appropriate limits. The same
result holds for h+, and with φ (λ) = λn, one derives the inequalities

+ 00 / oo \ l / 2

K| = I / λ«dg+(λ)\ ^ I λ^d\\EfΦ\\ή (fP'φf + IPΦI)
— 00 \— 00 /

(2.8)

We may now apply the following criterion [12] for the uniqueness of the
integrating function g+ in the problem of moments : if

Km sup\sn/nl\l/n= — < + oo ,
n— >oo H

then the function g+ is unique. But this hypothesis is equivalent to the
statement that the series

Σ

has radius of convergence R > 0. Because of the analyticity of Φ for A,
the series

^Λ nl
n = Q

has a nonzero radius of convergence; and with the inequalities of (2.8),
this implies that the moment problems generated by (sn) and (tn) are
definitive. Thus g+ = gΓ, h+ = h~, and f(λ) = 0 for all λ ζ E.

If P is an unbounded operator such that Φ ζ®(P) n S> (P*), the
proof is still valid up to the conclusion

(P* y, Ei®Φ) = (JS/Wy, PΦ) . (2.9)

(The equahty f or Φ = ψ implies the equality for φ ̂  ψ.) This can be
used to prove that if B is in the Borchers class of a dual field A, and every
vector in the basic domain of B is an analytic vector of A (as in the case of
the free field) then
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This may be obtained by taking P = B(g) with g ζ &(<&) and taking
/ £ ® (%>')', equation (2.9) yields

{EfW : λ e Λ, / € 9φ)} Q 8*(B) . (2.10)

Because of the dense set of analytic vectors, A (/) is essentially self -adjoint
on the domain of B and thus Rc&> (A) is the von Neumann algebra generated
by the set of all spectral projectors in the set on the left of (2.10). But
the von Neumann algebra generated by any set 921 is its double corn-
mutant 911", so

Rw(A) = {EfW : λ 65, / ζ 9φ$' ς S*»(B)" = R*(B)' .

If A satisfies the duality principle* E^(A) — R<%"(A)' , then passage to
the commutants once more yields

JK® (B) Q Rφ (A') = RV- (A) , (2.11)

and with 93 replaced by 93',

R&> (B) g Rφ (AY R& (A) ς B& (B)' .

Combining these two yields

R*(B)ς R*> (B)f R& (B) ς R& (BY ,

i.e. the rings generated by B are local; and replacing 93 by 93" in (2.11)
gives

R*»(B)£B*»(A).

This shows that the functional relationship holds for diamond shaped
regions: BE: A. It should be mentioned that the locality of the algebras

is not a trivial consequence of locality of B unless the vacuum is analytic
for the operators B(f). If it is known that 8%>(B) is an algebra (and thus
S&(B) = R®(Bγ), then one can prove that

B*(B) = (U{£Δ (B) : Δ = Δ" S 93})"

from the fact that the set of all diamonds is a basis for the open sets of
Minkowski space, and from this it follows that B^A.

As a final result, we mention the invertibility of the functional
relationship. If B is local in the sense that R%>> (B) C R<& (B)' for every 93,
and A is a self -dual field, then

From A c B, it follows that

B& (A) g Rφ (B) Rφ (A) ς B&> (B) .

Passing to the commutant in the first and using duality of A (for 93', 93")
we obtain

B& (BY Q B& (AY - Res- (A) C R& (B) . (2.12)

* This discussion is similar to the one found in [13].
Commun. math. Phys., Vol. 1 15
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Locality of B (for23', 23") expresses tne inverse inclusion E^ (B) QE^ (B)'
and so

R^(B)' = R^(B).

Combined with (2.12), this gives

Rφ,(B) = R&,(A):Bc:A.

In the case we will be discussing, we see that all vectors in ξ> are
analytic vectors of AQ(f) for any f ζ£? (cf. appendix 1) so that fields in
the Borchers class of A0 are local functions of A0 (considering only dia-
monds) and that the associated algebras are local. From the proof in the
following sections that A0 t:B if B contains an odd power, it would im-
mediately follow that the converse relationship Bt:AQ holds. However,

it is possible to derive the stronger result B c AQ showing that the algebras
even satisfy the relation

Λ u «,(*) = V, £»,(£) = (U, *

since this is, in fact, true for fields which are essentially self -adjoint on
their domains, in particular α :A%: -{- βAQ.

§ 3. General features of the space-time limiting procedure

The aim of this section is to outline the proof that if B is a Wick
polynomial in the free field AQ, then R&(A) C Rc$(B) for any open space-
time region 23 where A = α :A$ : -f βA0 for some α, β £ E depending on B.
Further reduction will occur at the end of § 4 in which it is seen that the
inclusion holds with α = 0 if B contains any odd power, and with β = 0
in the opposite case.

The result actually obtained is that S&(B) ξ, S&(A) from which the
first mentioned result follows upon passage to the commutants. Let
P £ S&(B) : for each Φ, Ψ ζ © and /x £ ̂ (φ),

(!P, PJ?(/!)Φ) = (BtfJΨ, PΦ) . (3.1)

Replacing Φ by B(f2) . . . B(fm)Φ ζ ξ) and repeatedly applying (3.1) we
obtain

(Ψ, PB&) . . . B(fm)Φ) = (B(/J . . . B(f1) Ψ, PΦ) (3.2)

as long as ft ζ ^(®>. Using a method of a previous paper [14], we form the

operator m

) . . . B(sJ / m-i Γ xλ X
\ i«ι /

which, after subtraction of multiplies of the identity and division by a
polynomial in λ, converges in a dense domain to A (/). To obtain an
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equation such as (3.1) for G (/λ), one defines C (/x <8> <g> fn) = B(f1)...B (fn)
and rewrites (3.2) as

OF, PC(f1 ® ® /JΦ) = (C(fn ® ® fjψ, PΦ ) . (3.3)

This equation may be extended by linearity to the linear span of @>fc$)
and then by continuity to S&^ny The first extension is trivial; for the
second, one takes a sequence {hn}n^N of elements of the linear span of
2f^ converging to fλ in the topology of S&^ny It is shown in Appendix 2
that if ιμ ζ 2, hn can be chosen so that it is a sum of terms /x ® ® /w

with fi ζ &(%>) so that (3.3) holds for each hn. By the methods of § 5 it can
be seen that C(hn)Φ-> C(fλ)Φ (in norm) if Φ ζ ξ) so that

(ψ,pc(fλ)Φ) = (aifλ)ψ,pΦ) (3.4)
where f^x^ . . ., xn) = h(xn, . . ., tfj). It will be seen in § 4 that C(fλ)
= Cλ-\- φ(λ)I where φ (λ) is a numerical function of λ and Cχ is an operator
such that (Γ^λ^G^Φ -> A(f)Φ for a suitable choice of c and #> whenever
Φ ζ §>. If ^ is taken symmetric about the origin, then fλ = /λ; and sub-
stituting Cλ-}- φ (λ)/ into (3.4), one sees that the multiples of the identity
drop out, and one is left with

(Ψ, PCλΦ) = (OλΨ, PΦ) .

If the terms of this equation are multiplied by c"1^ and λ is allowed to
approach 0, the equation

(Ψ,PA(f)Φ) = (A(f)Ψ,PΦ)
results.

This means that P ζS^(A) and thus S%,(B) Q Sc&(A)) which was to
be proved.

§ 4. Decomposition of C(/jt)
Let

B(x)= Σ*i Ak(x) (αn=t=0)
i = 0

and for n even, consider the product

Σ Σ

where 4! I , I is the number of ways one may select ^0(a;)A; times from

: Afa : (x) and i Λ / designates the minimum of i and j. If ί = k = j, the
contributions to the sum are simply multiples of the identity which are
to be dropped as mentioned in § 3. Of the remaining, it will be seen that
the only terms which survive the limiting process are those for which k

15*
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is largest, i.e. equal to n — 1. This leaves the possibilities i — n = j,
i -f- l = n = j, and i = n = j + I f or which the corresponding terms are

The terms c~1λpCλ of § 3 will then approach

if the "smearing" function fλ(x, y) = f((x + y)/z)g((x — y)/λ) is applied
to these terms and λ is allowed to approach 0. This will be investigated in
more detail below and the convergence proved in § 5.

If n is odd, we consider

B (x) B(y)B(z)= Σ Σ Σ *i «* «* Ά («) 4 = (») Ά («)
i=ί 3 = 1 fc = l

The greatest number of contractions possible is -g- (3w — 1); these can

only occur when i^=j = k = nίί
jrl=j=k = nί i = jj

rl = k = n, or
a* = y = & + 1 = w. In any of the last three cases, i + j + k is even
(= $n — 1) and the resultant after contractions is a multiple of the
identity which disappears from equation (3.4). The only terms that need
be considered come from the case i = / = k — n. Each term will fall into
one of three classes depending on whether A0(x), A0(y), or A 0 ( z ) is
left over. The contribution from the first class will be (to within a non-
zero factor depending on n)

- ~ (X _ Z)ϊ(n-l> Δ(+) (y - Z)^(n + l) AQ (X)

and those of the other two will be similar. Thus c-lλpCλΦ -> A0(f)Φ in
this case. With the results below, we will have proved that

where A = AQ for odd n and n :A%: + ocn-ιA0 for n even.
All of the operators obtained in the decomposition of the products

above have the form
m

:AQI (xj ... A^m (xm): Π Δ(+) (Xi — xj)βli

We apply this to /λ using the Fourier transform of the operator:

( m \ m—1 ^
ΎYt —1 \ Ί o* I / / / 7 / / ~ " l -̂7* - —, />< ^ j >4 ^i ί Ύ\ \ Δ fyn (tγ\ \ v"* X' *"i i •*••*• y\ ^ \^i — <") +l)J ""• \jrl/ ••••"• \Pm) ^

ί=1 Λ1 « , (4 Dm βn i m m βij »

x IJ Π dΩ(+)(q$)Qxpi\ Σ Pίxί+ Σ ~
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To get rid of the ^-integrations, we make the coordinate transformation

i = Xi — xi+l , τ == m- xi
i = l

which can be seen to have a Jacobian of + 1 . To invert this transf orma-
j— 1 m j— 1 m

tion, we note that Σ ίi — xι — xi an^ thus Σ Σ f ί — Σ (xι — xs)
i=l ? = 2 i= l ? = 2

n

= (m — l)xl — Σ χj ~ mxι — mr Since the number of choices of j for
? = 2

m—l
which i 5g j — 1 , j ̂  m is equal to m — i , the first sum is Σ (m — *') ί <

i = l
m—l

so that ίCj = τ -f 27 (1 — *7m)£i This is the first step in an induction
i = l

proof that

The second consists in showing that x'j + ι—Xj = ξs = Xj+i—Xj With
this expression for xί9 the exponent above becomes

m m—l Γ m ί m β«t '

*£ Pi + Σι ξt [.£ P,(i -θ(j- i) - ί/») +Σ^ t Σ ι ̂ &

and the operator (4.1) becomes

ίτ Σ Vi m—l ( m
fd*τf(τ)e <-ι d^ξ1...d*ξm,ί Π g(ξjlλ)expiξj\ Σ

j=ι U=ι
m βΐj f>J /^/

Π Π dΩW (<$f) :Attl (Pl) . . . Aam (Pm): d*Pl. . . d*P,t

With a change of variables ζ$ — ξj/λ and r$ = λq$ the differentials
evolve a factor of λ4^"1). The τ, ξ integrals may be evaluated and the
result is

( m \ m—l / m \ m ftj

ΣPi)Πg(Σ foiiPi + Σ W } Π Π dΩM (rW/A) :
i = l / i = l V = l sίfc / ΐ < 7 fc=l (42)

\ /

If dΩ[m) refers to the measure having support on the mass hyperboloid
{p : p* = m2}, then dΩ$(r/λ) = A-^fi^) (r) so that the integral (4.2)
finally becomes

...9pm)
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with

( m \ m βij

Σ pήf Π Π
ί = l / ΐ < ? fc = l

m—l

) Πg
ΐ < ? fc = l j = l \stlc

Apart from the combinatorical factors obtained in the decomposition of
the products, the constant c will be the coefficient of / in lim hλ :

m βij m—l . .

c α / Π Π dΩ[$(rVj>) Πg(Σr(?A.
i<j fc=l j=l \stk I

M = I

This manipulation and the considerations in § 5 show that each of the
terms in the decomposition of a product converges, after multiplication
by a power of λ, when operating on a vector Φ in a suitably restricted
class. The one with the lowest power of λ will then appear alone in the

n

result. But the power of λ is lowest when the sum Σ βa *s greatest, i. e.in

the terms with the most Δ(+) functions. This justifies our neglect of the
remaining terms in the two calculations at the beginning of this section.

Since g was taken symmetric, g is real, and so, therefore, is c. To show
that c can be taken not to vanish, one takes a sequence {gn}™= ιQ@ such

- Σ*
that gn ^ > (70, a Gaussian function: gQ (xμ) = e A* = ° . Because the Fourier

transform is a continuous automorphism on ̂ , gn—^ g0. But g0 is also a

Gaussian function and thus strictly positive. One can show from LEBES-
GUE'S bounded convergence criterion and the properties of convergence
in £f that the c obtained from gn converges to that obtained from g0 so
that for some n, this number is nonzero.

By somewhat simpler limiting procedures (used in the definition of
the Wick polynomials*), one can show conversely that Rc& (B) Q R& (A0)
for any polynomial J5, and Rς&(B) C Rc$(:A$:) if B contains only terms
with even powers**.

* For n = 3, the definition of the Wick power can be formally written (without
smearing functions) as

Σ <A(xi)A(xi)>A(
perπu?

xύ[.
f
)

The generalization to arbitrary n is straightforward and can be found in [6].

** This statement belongs logically at the beginning of this paper. However
since the connection between Wick polynomials and ring-theoretical local functions
involves a limiting procedure, it is most conveniently discussed in the present
context.
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If the highest and next highest powers appearing in B are even, then
the considerations at the beginning of this section show that

This may be strengthened if B contains an odd power. Let C be the sum
of all the monomials in B with even powers and D — B — C. Then from
the remark of the previous paragraph, S&(:A$:) ζ S&(C) so that
S&(B) £&s(C). But this last inclusion implies that S&(B) g
since if P ζ S& (B), then P ζ S& (C), and for any / £ 2^ ,

(Ψ, PD(f)Φ) = (ψ, PB(f)Φ) - (Ψ, PC(f)Φ)

= (B(f)Ψ, PΦ) — (C(f)Ψ, PΦ) = (D(f)Ψ, PΦ)

Thus PζS<Q (D). But the highest power of D is odd and so S& (D) ς S& (A)
f or A = α :Al\ + βA0 with β Φ 0. So far it has been proved that if B
has no odd powers, then R# (B) = R<& ( :A$ : ) and that if B has an odd
power, then S&(A0) g S®(B) ς S&(A) for A = α \A\\ + βAQ(β Φ 0).
It remains to be seen that Sς&(A) g Sc$(A0) in order to conclude that
R^ (AQ) = Rc$ (B). We drop the subscript o to designate the free field and
consider the field

: -m* :^2: + α^ . (4.3)~

It will be shown that
:d»AdμA:c: D ['A*: + ocA] (4.4)

and thus, by the subtraction principle,

:A*: + ocA = m-*

But Π [:^42: + α^L] c :̂ .2: + α^L so in fact

:^2:+yα^c:^: + α

which, again by subtraction, leads to

A = 2α-1 [:^2: + α-4] - :^42: + α^i c :^2: + ocA ,

which is the result to be proved.
In the proof of (4.4), one proceeds in the usual way with

D [:4«: + α 4 ] ( * ) D M2: + *A] (y)

in which only the term with two derivatives of the Δ^ function are
retained because each derivative adds one λ"1 to the expression making
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this term dominant in the limit. As explicitly calculated in the preceeding
work [14], the result after passage to the limit is proportional to

f»:dμAd,A:{f) (4.5)

if the operator above is "smeared with" / \-^(x -f y)j g((x — y)/X). If g is

chosen so that g is symmetric in ri9 then J ^ v = 0 i f / / Φ v and I00 == /**

= —37(0 <<). The operator in (4.5) is then y I00 [2 : B0A dQA :+ :d"A dμA : ]

and we may write

2:dQAd0A:+ :3M9M:i=:Π [:A*: + ocA].

By subtraction with (4.3), one obtains

2:+γα^] c D [:-42: + ocA] . (4.6)

By an entirely similar squaring procedure, one obtains

2:d0AdQA:ϋ:Π [:A*: + <xA]

and finally, by subtraction from (4.6),

:A*: +γα^t=D [:A2: + ocA]

which, as we have seen, leads to the result

AQU: \Al\ + <zAQ

for any α Φ 0 .

§ 5. Convergence

It has to be shown that for Φ ζ 9ftW, c-*λ*CλΦ -> A (f)Φ as λ -> 0.
The decomposition of Cλ into totally Wick-ordered products gives rise

to terms of the form : AQI . . . A^m : (hλ) with

/ m \ I

t) = f(ΣP*)fΠ dΩβ>} (r,)
\i=ι / ? = ι

where Jj U U Jm-1= {1, . . ., Z}. By using LEBESGTJE'S bounded
convergence criterion and the "falloff" properties of g, it can be seen that

/ m \

' /( J? ̂  1
\i = i /

(pointwise convergence) where c= f IJ dΩffi x
? = i

x (^) $( Σ rj} δ( Σ r j \ - τhe coefficients c® all He between ± 1
\7€«/i / X^Jm-! /

(as is seen in the treatment of the general case).
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In forming :A%1 . . . A%m: (hλ) Φ, one gets a term for each partition of
fy = fy -f k" where k\ represents the number of particles "destroyed by

A®". This term may be written (as a function of Pjl ^ j < n) as

n Ic,

f\ PJ 1 ίί r :£ fcj, 1 ^ i g w, p} φ ̂ r)) 77

The corresponding term in c :A*fr + ' " + km : (/) Φ is gotten by replacing
/ m / Ίa ki \ \

Kλ(. . .) by cfλ[ Σ [ Σ ^r)— Σ Pίr} ) ) ' The norm of the difference of
\i = i \r = 1 r = 1 / /

these two vectors is obtained from the integral

/ π dΩw (j>,) \ffil Σ tf- Σ P
L V = ι r =l

r=l

where /§ (^) = 1iχ (p^ — cf I 27 2>i / converges pointwise to 0. LEBESGUE'S
\i = l /

criterion may be applied to infer that the integral (which is the square of

approaches 0 for λ -> 0 provided the integrand can be shown to be
majorized by an integrable function which is independent of λ.

To do this, we consider the integral

Φp^ΠdΩMipjΠ

kϊm f ki *, \ \

:^ + ^2;^ Σtf-ΣW}}•••
Jι i = l \r = l r = l / /

/ m / k'i k'ϊ \ \

• / £ LΓ ίίr)- Z1 ί>lr) Φ(aίr), ft)
\i = l \ r = l r = l //

V ) x

x 77
ΐ = 1 r = 1 ?' = 1
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and show that the integrand is bounded by a multiple of

m . v _ ! / m k'{ n

k = l \

which is independent of λ and has a finite integral for α suitably large.
From the functions / and Φ, one gets a bound proportional to

( m k{ m KJ

ί-1 r = l * i = l r = l *

/ m k'{ \-

x 1 + 12: Σ$)0+ Σ P?ή
\ i = 1 r = 1 -BίΦ »^ /

which, according to (4) of appendix 1 is majored by

/ m *Ί n \~1

ίι + 2-^12; i;gif)0+^^J .

Since we are considering bounds only up to constant factors, we may drop
the factor 2~0. From each g, there is a bound proportional to

Σ

We now set β = α(m + 1), and associate with each of the above factors,
the quantity (1 -f- \ΣqQ + ΣpQ\a}~λ and save one for the right factor in
(5.1). We investigate the product

m / kf kf' \ \- l

+Σ ̂  Σ &°- Σ ή'Ί \Ί x
i = ι \r = l r = l / /

( m ki n \ Λl

ι + l£ ^^+^p9le

i = l r = l ? =ι /

In the second factor, all terms under the absolute value bars are positive,
so we may drop all those appearing with positive coefficients in the first
factor without decreasing the quantity under consideration. In addition,
when λ < 1, all coefficients λc(& will have magnitude less than 1, so that
the remaining variables in the second factor may be multiplied by the
negatives of their coefficients still without decreasing the quantity
considered. If p* is the sum of all terms with positive coefficients and p~~
the sum of those with negative coefficients, then the result may be written

Σ
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which, according to (4) of appendix 1 is majored by

+ 2-«\ Σ

Again dropping the 2~α, we obtain the &-th factor of the left side of (5.1).
This completes the proof of the convergence

since it shows that each term in the decomposition converges to a vector
without its associated power of λ. When each is multiplied by c~~1λp,
all the limits will vanish except the one corresponding to A (/) which is
associated to the power λ~p.

Concluding remarks

We have given an explicit proof of the ring theoretical statements
formulated in the introduction for the case of Wick- polynomials. How-
ever the most general scalar field B(x) which is a local function of A0(x),
is a Wick polynomial involving invariant (contracted) derivatives. This is
a consequence of the statement that any scalar local function of A a
fortiori belongs to the Borchers class of A. The form of the general
element of the scalar Borchers-class of the free field is however explicitly
known [15]. It is a Wick-polynomial involving contracted derivatives.
As the Wick-powers in the derivative free case, it can be gotten by a
(trivial) limiting procedure, and hence every element of this Borchers
class is a scalar local function. The ring theoretical inversion of this
local function relation can be worked out along similar lines as given
in the third and fourth section of this paper. For the determination of
the leading term in the inverse powers of λ, the degree of the power of
the Δ<+* functions as well as the number of derivatives have to be taken
into consideration. Since there is no new idea involved, we refrain from
giving a detailed account of the computation.

We would like to mention, that the free fermion current

can be obtained as a ring theoretical local function in the ?)bilocal"
von Neumann ring ^^(ψjψ) generated by elements of the form

Since the smeared out fermion fields are bounded operators [16], the
ring theoretical discussion would simplify considerably.

Finally we would like to mention, that all limiting procedures occur-
ring in the definition of currents for the known solvable models [17], can
be reformulated on a ring theoretical level by using the methods outlined
in this paper.
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Appendix 1. Definition of the fields
oo

The Hubert space is the usual Fock space [18] § = (J) ξ)^ where
tt = 0

§<n> is the tensor product of n one particle spaces £)<n) = SyffiV® ® §^].
ξ)M is the space of complex valued functions on JB4 square integrable with
respect to the measure dΩ^(p) = δ(p2 -f m2) Θ(p0)d*p (mod the class
of functions of 0 norm with respect to this measure). For the domains of
definition of the fields, we form the subsets 2ft(w) of functions Φ in §(n> for

which |Φ (p1. . . pn)\ 11 + I Σ Pi α) is bounded for pQ ̂  0, for each α ζ N.

The basic domain © is defined as the linear span of the sets 9ft <n> (n ̂  0).
To define the fields :A1

0:, one notes that a vector in § is a sequence
oo

{Φ(n}}n = o witn φ(n} € §(n) and U ||Φ(n)||2 < + °° For Φ ζ ξ> one defines

the component of :A1

Q: (φ)Φ lying in ξ>(n) as follows (6)

πl/2

(2π)2«-1> ? = 0

with the operators T(l.n>j}(g): gR<»-* + 2*)-» 92Kn> defined by

ψ(nr, Pi',l^r^k,l^i^ n[ks]) .

With a little patience, the usual formula for A0(f) can be recognized as
the special case when 1=1. It can be seen with the use of FUBINI'S
theorem (which is justified by inequalities derived below) that

(ZV;M)(flO)* = T(l n-l + 2i,l-i)(g*) (1)

where g*(p) = g(— p). (g = g* if it is the Fourier transform of a real
function.) In these operators, j represents the number of particles
annihilated and I — j, the number created. Since we obtain fields
A — α :A%: + βA0 in the intermediate stages of the proof and want to use
the results of § 2, we must prove that they have dense domains of analytic
vectors. It is not enough to show that the vacuum is analytic since it is
not cyclic in the case β = 0. However, it is easy to see that any vector in
2ft (n) for any n ̂  0 is an analytic vector for any of the operators
(α :A$: + βA0) (/). For this it is necessary to investigate the norms of the
operators T(l.n>j}(g) for I = 1, 2.
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For the free field, T(l>n,Q)(g)Ψ(pi}= ((n - l)!ΛI)1/a *Σ ff(P*) X
& = 1

x Ψ(pi\ 1 ^ i ^ n ί Φ Jc) and thus

\\T(l,n,0)(9)Ψ\\ £ ^\\g\\ \\Ψ\\ : IZWrtfcrt l l = nV l f i r l

Also, || UP* || = IT || for any bounded linear transformation T, so

because of (1). By similar manipulations, one sees that

So far, all the operators have had norms whose growth with n -> oo is
bounded by a multiple of n. It remains to show the same of the operator*

ΪWD to) = [21,
+ + [I ® /

where Tg: $)M-+ξ>P) is defined by

Clearly ||^(2,w,ι)(9r)l! ^ n\\Tg ® ^ ® * ' ' ® ^l l» an(i t3ιe desired result will
follow from the statements

The first inequality is essentially proved by DIXMIER on page 23.* The
restriction to two factors is not essential here. It is, however, essential
that this upper bound does not depend on the number of factors, n.

To show that Tg is bounded, we show that the bilinear form it induces
is bounded. Thus if Φ', Φ ζ

\(Φ', TgΦ)\ < f |Φ'

where F(p) - (p2 + m2)-1/2|φ(p> (p2 + m2)i/2)| a ndΛ(r) = sup \g(τ9 r0)|. If
r0£R

^ f \Ψ($)\2d?f is the norm with respect to the Lebesgue measure,
then

If p is any polynomial in r, then If ̂  = sup \p (r) ft (r) | = sup \ p ( τ ) g ( r ) \ < o o .

For a discussion of tensor product spaces, see [ll]I§3or appendix I of [19].
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For p(τ) = (1 + r2)*, let Mp be designated by Jfβ. Then

A(r) ̂  Λfα(l + r2)-α- fcβ(Γ)
and

3p d q . (2)

If α is chosen suitably large, kx ζ Lt and thus has a Fourier transform:

*β(r)= f eir *

which, because &α is infinitely diίferentiable, will fall off faster than the

reciprocal of any polynomial in x ([20], p. 46). As a consequence, &α will
be bounded and will belong to L±. Let us consider the integral in (2) with
the ranges of the variables p and q restricted to bounded cells CV9 CQ and
with the Fourier integral representation of kx inserted.

a

= /£Z 8xί.(x
R3 Cp Cg

where the interchange of integrations is justified by FTJBINI'S theorem and
the absolute integrability (kx ζ LJ :

f d*$ Ψ'ω fd*q y(q) / |£β(x)| d*x«». (3)
Cp Cδ R3

Recall that if Ψ ζ L2 (-K3) , then its restriction to C^ belongs to L^ (Cv) since
Ψ ζ L2(C9), 1 ζ L2(0V) and therefore

/ l^αol ^3P < \ /l^l'ί
Cp LCp

The integral (3) admits the upper bound

sup |ίβ(x)| /^ 3x I /^3p y'(p)e*»'x| | /^3

R3 Cp Ca

U/2

in which HOLDER'S inequality is used. But by PABSEVAL'S formula
([20], p. 53: 2.8, 12),

Cp

so that finally

(*', TΨΦ)

and ||ίΓff|| ^ m~2 sup|ία| , a number independent of n.
These bounds on the norms of T(ι>n>j)(g) ί or I = 1, 2 are suitable for

showing that any vector in §<w) is an analytic vector for the operator
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A = (:Al: + A0) (/). If \\T(l>n>ϋ(J)\\ £ K n and Φ ζ §<->, then \AΦ\\ £
^ 61SΓ(w + 2) I I Φ H since AΦ has components only in §(w>, ^(w^1),
and £(™±2). Applying ^ again gives ||^2Φ|| ^ 5#(m + 4) \AΦ\ ^
^ (5#)2(m + 4) (m + 2) |Φ||. For .4WΦ, one has the bound

\\AnΦ\\ ^ (5K)n(m + 2n)...(m + 2) \\Φ\\ ^ (WK)n(n + k ) l k l

where k is the smallest integer greater than or equal to-^m and k \ = (k I)"1.

Thus
(II^ΦH •^i)1/*^ 10K[(n+k)\nl]Vn[k\ \\Φ\\]ltn -+ 10 JΓ

which implies that Φ in analytic for A .
It is still to be shown that T(ltntj) (g) takes vectors from 3Jl(»--z+2i) j

into 921 <n>. This is however a consequence of the fact that dΦ(+)(p) is 0
for pQ ^ 0 and of the inequality, valid for pV ^> 0

Γ m I -l-l
h +1 y rf — y </o|α <
\L i I Δi Pi ΔΛ tf? I I ^

which can be checked in the three cases

1

n

-ΣP°

n + l

the second case relying on the inequality

2~α(α + &)α ̂  αα + δα if α ̂  0 ̂  6 .

With inequality (4), the falloίf properties of Ψ and Φ are bestowed on
T(g)Φ which, as a consequence, belongs to 9H(n).

Appendix 2

In order to justify the continued use of the commutativity property
(3.2) in § 3, it must be shown that the function hn can be made from linear
combinations of functions /i Θ ® /TO with /^ ζ (̂̂ >. To show this, we
consider the carrier and support of the function /λ:

fλ(xv . . ., xm) - /1— Σ xij 9(j&i — »a)) ff
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By the carrier of a function, is meant the set of all points at which it does
not vanish, and by support, the closure of the carrier. For all topological
concepts, the reader is referred to KOWALSKY [21],

j m
If (xv . . ., xn) is in the carrier of /λ, then — Σ xi £ SUP#(/) = $•

m i = ι
If the diameter of the support of g is ε, then also the distance from xi to
xi +ι *s IΘSS ̂ nan ελ:δ (xi9 α^ +1) < ε λ, and for any ί , j9 δ (xi9 Xj)<(m — 1 ) ε λ.

j m j m

The segment xt — — Σ χj can ^e expressed as — Σ (xi ~~ χj)> an(^ fr°m

m ? = ι m ? = ι
the usual inequalities,

^ Σ « (*„ *,) < (» - i)βλ .
? = 1

Thus, when (m — l)ελ < δ, the distance between xi and $ is

<$fo, Λ) ^ ό L, i ^ x\ < (m - l)βA < (5.
\ ? = i /

If '$0 is the (compact) set of points having distance from $ bounded by <5,
this result states that:

If (xv . . . , xn) is in the carrier of fλ and (m — l)ε λ < (5, then α -̂ £ ̂
or if £(/λ) is the carrier of /λ, then S(/λ) £ &δ x x ®δ, and since this
set is closed, ®(/λ) = S(/λ) C ^ό x x ®δ. Since K is compact and
B4 \ 93 is closed, the distance between the two sets

4 \23) = inf{ί(», y): x £ ®, y ζB4 \93}

is positive. If ό is chosen smaller than this number, then $d C 93 and as
a consequence, &(fλ) Q &δ x x % C 93 x x 93.

It is now a matter of finding a function /# ξ (̂̂ > which takes on the
value /* (#) = 1 when x ζ ^ό, for if such a function exists, we may set
f(xl9 ...,xn) = /*(#!) . . . f*(xn) and have

where hn /' will be composed of linear combinations of elements of the
form

with fn /$ ζ ̂ (̂ ). To prove the existence of such a function /#, one may
consider an open covering of the set RΛ by taking at each point x, a sphere
of radius 2r centered at x which is contained in 23 (since 93 is open). The
spheres βr (x) will cover the set Kd9 and there will be a finite subcollection
which also covers &# because of its compactness. For each of these
spheres, one may take a function which is 0 in @Γ(#) and 1 outside of
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(S2 r (x) and which is infinitely differentiable. The product of these functions

will have the value 1 on R,4 \ 93 and 0 at every point of &δ and will be

infinitely differentiable. If this function is subtracted from 1, a function

/.jj with the properties mentioned above is obtained.
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