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Abstract, We want to construct, for every local irreducible quantum field
theory which fulfils the spectrum condition, a new theory with the properties:

1) It is physically equivalent to the given theory (in the sense of HAAG and
KASTLER).

2) The representation space contains a vacuum state.
3) The new theory satisfies the spectrum condition.
4) For every bounded region 0 the two representations of the algebra $l(Θ)

are unitarily equivalent.
5) The new theory is uniquely characterized by the properties 1)—4).

I. Introduction

In the usual treatment of quantum field theory one assumes the
existence of a vacuum state, i.e. of a state which is invariant under all
Translations. In an earlier paper [1] this postulate was discussed. We
showed the possibility of associating to every field theory another
theory in which the Hubert space also contains a vacuum state. However,
we proved only the existence of a translation-invariant positive functional
on the algebra generated by all local rings. We did not know at that time
what properties the theory described by this functional would have.
It is the aim of this note to fill this gap. The results we get are those
expected intuitively from the "particle behind the moon" argument.
This confirms that the vacuum assumption is only a postulate which
one can add for convenience.

The frame for our investigations will be the theory of local rings of
observables which has been developped in recent years by ARAKI,

HAAG and KASTLER [2]. For our purpose the existence of a unitary re-
presentation of the translation group fulfilling the spectrum condition
is very essential. This implies that we cannot adopt the purely algebraic
view of the theory of local ring systems. But even if the problem had
a purely algebraic aspect the author would not omit the spectrum con-
dition, for the following reasons:

From the well studied equal-time commutation relation it is known
that the number of inequivalent faithful representations of a free Bose-
field is at least that of the continuum. SEGAL [3] showed that there
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even exists a one-parametric family of inequivalent representations
having translation-invariant states. But in only one representation is
the energy-operator non-negative. In analogy to this we have to expect
for an arbitrary local ring system also a non-countable number of in-
equivalent representations, and also that in most of these representations
the energy will not be positive.

On the other hand one would like to link the notion of "physical
equivalence" to superselection-rules. Since experimentalists have asso-
ciated superselection-rules to quantum numbers like charge, nucleon
number etc., one would prefer a notion of physical equivalence which
leads to only a countable number of representations. This seems to
indicate that not all inequivalent, equally faithful representations fulfil
every assumption made implicitly while doing experiments.

Since we do not know exactly which information is missing, we only
can hope that the spectrum condition gives the right selection-principle.
In SEGAL'S example this was just the condition which was needed to
get a unique representation of the given ring system in a Hubert space
with vacuum.

We will not achieve an equally strong result. But we will show that
the spectrum condition leads in a natural manner to classes of represen-
tations which are locally unitarily equivalent. This means, for every
bounded open region the equivalence can be established by a unitary
mapping. This unitary operator, however, depends on the region and
there exists no unitary operator which does the mapping for all open
regions simultaneously. Within such a class we get again the result that
the theory with vacuum and positive energy is unique.

Another aspect of our result comes from the usual field theory in
terms of boson and fermion field operators. In such a theory the super-
selection-rules are given in a natural manner in terms of the "charges*."
In every charge sector we have a local ring system which is generated
by the neutral boson field and by the neutral bilinear expressions in the
charged fields. The charged fields ψ(%), however, give rise to operators
which map one charge sector into another. If we consider a bounded
region Θ and the associated ring 91 (Θ) then we can find a test function
f(x) whose support is spacelike with respect to Θ. The operator ψ(f)
then maps the ring 9^ (Θ) in the one charge sector onto the corresponding
9ΐ2 (Θ) in another charge sector. If we make a polar decomposition of ψ(f)
we get a unitary operator which does this mapping. As we change 0
we have to change the test function f(x). We see from this that we
get local unitary equivalence between the different charge sectors but not
a global one.

* We mean not only quantities like the electric and nucleonic charge, but also
the distinction between integral and halfintegral spin.
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II. Assumptions

We assume we have assigned to every bounded open region 0 in
the Minkowski space a ring 21(0) of bounded operators in a separable
Hubert space § . Moreover, we assume there exists in § a unitary re-
presentation U(x) of the translation group. U(x) and 21(0) shall have
the properties:

1) The spectrum of U(x) is contained in the closed forward light-
cone f+.

2) 21(0) and 21(0 + x) are related by the equation

21(0 + α) = U(x) 21(0) U-^x) .

3) 21(0) is closed in the norm topology and is generated by its self-
adjoint elements. This means 21(0) is a O*-algebra.

4) If two regions Θ1 and 02 are spacelike to one another, then the
corresponding rings 21 (0X) and 21 (02) commute.

5) If Θ1C 02, then 2l(0x) C 2l(02).
6) If {0W} is any covering of the Minkowski space by bounded open

regions, then the weak closure of the algebra generated by the family
{21 (0n)} is independent of the covering.

We do not want to make any more assumptions about the structure
of the global v. Naumenn algebra 9 ΐ (^) . From these assumptions it
follows already that the center of 9 ΐ (^) (which we denote by £(-#))
is pointwise invariant under the action of the translation group

u{χ) A u^ix) = A if A ζ eμr) .
This result is due to ABAKI [4].

We refer to condition 6) as the weak additivity property. This is the
weakest known assumption to get the Reeh-Schlieder theorem. [5].
For v. Naumenn algebras we will always use the letter 9ί. In particular
9ί(0) is the weak closure of 21(0) and 9ί(~#) is the weak closure of 21 (Jΐ).
With this notation condition 6) can be rephrased as follows:

6') If {0W} is any covering of the Minkowski space by bounded open
sets, then the v. Neumann algebra generated by the family {9t(0J}
is equal to K(^#).

We have assumed that 21(0) are C*-algebras. Since every v. Neumann
algebra is also a (7*-algebra it is allowed to think that 21(0) and 9ί(0)
are the same. However 21 (~#) and 9^(^#) will never be the same.

With 91' we denote the commutant of 9t.

III. Definition of the vacuum functional

The definition of the vacuum functional is based on the following:
Theorem 1. Assume we have a theory fulfilling 1) through 6). Let

a be a spacelike vector. The there exists a sequence {λn}, λn ~> oo such
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that U(λna) B ί/-1(Anα) converges weakly for every B ζ 21(Jί). The limit
elements

L(B) = weak lim U(λna)
n-»oo

are contained in the center of 9ί(^). They are linear functions on the
algebra and they are non-negative for non-negative elements. Moreover
L(B) = L(U(x)BU~1(x)) for all x.

An immediate consequence of this theorem is the following
Corollary 2. We add to the conditions of Theorem 1 the assumption

that 9ίpf) is a factor. Then, for every B ζ 21 p i ) , L{B) is of the form
ω(B) 1 where ω is a translation-invariant positive linear functional on
the algebra %{Jί).

Proof of the theorem:
Let us denote by (£ {Jt) the center of 9ί («^). £ (<J?) is an Abelian algebra.

If Ψ is a separating vector for (E (yffl) then U (x) Ψ is again a separating
vector for C(^#) since every element of (£(-#) commutes with £7(#).
Since § is a separable Hubert space we can pick a vector Ψ which is
separating for £ ( ^ ) * .

We define a larger algebra 21 (~#), which is the O*-algebra generated
by 21 (~#) and the center £(~#). Consider now the set of functional
(U(-λa) Ψ, BU(-λa) Ψ) on Φi(Jΐ) for a fixed spacelike vector. This
is, of course, a bounded set of positive functionals. It is known that the
positive functionals of norm 1 form a weakly compact set in the topology
induced by the self-adjoint elements of 21 (^#) (see [6], § 3, subsection 7,
III). We therefore can pick a subsequence {λn}, λn->co, so that

lim (U(-λna)Ψ,BU(-λna)Ψ)=ω(B)
n-+oo

exists for all B from ®L(JΪ). We have clearly ω(B*B) ^ 0.
This means ω is a non-negative functional.
We now want to show that U(λna) BU(—λna) Ψ converges. We do

this in several steps.
α) Let E be the projection onto S ( ^ ) Ψ. Then E is a projection in

Spf) ' . We now want to show that for Φ with EΦ = 0 we get

lim (Φ, C7(λnα)5l7(-Anα)?/) = 0.
«—> oo

To prove this we give an ε > 0. Since §ί(^£) is generated by all 2l(<̂ )
and the center, we can find an Θ, and an operator Bx in the algebra

generated by 21(0) and the center, such that ||JS - J3J ̂  y x

* At this point we need the assumption that ^f is separable. This assumption
is not essential, but the proofs are much more elaborate without it.
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On the other hand (E(*jf') is generated by all rings 91{Θ) and
This means we can find an Θ2 and an operator E1 in the ring

Ύ} generated by 9t(0a)
 a n d 9ίMΎ> such that

and

We choose now N in such a way that Θx +
one another for n > N. Then we have

\\(Φ, ϋ(λna)BU(-λna)Ψ)\\^

< I (Φ, ff^α) ^ U(- λna) Ψ)\\ + -

nα and 02 are spacelike to

if

/3) Let now EΦ = Φ.
Then by definition of E there exists an element A ζ such that

This impKes

\\(Φ, ϋ(λna) BU(-λna)Ψ) - (Φ,

= l(Ψ,U(λna)A*Bϋ(-λna)Ψ)-(Ψ,U(λva)A*BU{-λ,a)Ψ)l +
2

+ y ε ^ δ for n,p>N.
α) and β) together imply U(λna) BU(— λna)Ψ converges Λveakly.
We now want to show that U(λna)BU(—λna) is a weakly conver-

gent sequence of operators.
Since this is a bounded sequence it is sufficient to show the conver-

gence of the sequence on a dense set. Since Ψ has been chosen to be a
separating vector for £(~#) we know that ^{Jί)'Ψ is a dense set in
the Hubert space. £(^#)/, on the other hand, was generated by an in-
creasing sequence of rings 9t{9t(0n), 9i(-#)7}. This means, it is sufficient
to show the convergence on all vectors of the form 9ί{9t(0), 3l(
for all Θ.

Let now A ζ 9l{9ί(0), 9ί(~#)'} and B ζ %(Jt) and ε > 0 and Φ ζ
We choose B1 from a certain 21 (dy such that
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Then we get for sufficiently large n, p

\(Φ, U(λna) BU(~λna)AΨ) - (Φ, U(λ,a) BU(~λPa)AΨ)\ <Z

g \(Φ,U{λna) BxU{-λna) AΨ)-{Φ,Ό{λ»a)B1U{-λΊ>a)AΨ)\ +

+ -f-e = \(A*Φ, U(λna) B.Ui-λ^Ψ) -

- (A*Φ,U(λpa) BJJ(-λpa)Ψ)\+^ε £ ε

for n, p> N sufficiently large. This implies the weak limit L(B) exists.
If B is a non negative self-adjoint operator, then L(B) is as limit of
non-negative operators again self-adjoint and non-negative. And from
the definition of L(B) it follows that L(B) is linear in B. We also see that
[]JL(JB)|| <: ||J3||. This means L is a continuous linear map of 21 {dt) into
the bounded operators. To show that 2v(2l(~#)) is contained in the center
of 91 (u?) it is sufficient to show this for a dense set of 21 pf). If B ζ 21(0),
then L(B) clearly commutes with ^{Jί)' and all 91(0). Since these
rings generate <l(Jί)' we have £(5) ζ £(~#) and hence £(21 (-#)) C £M0

That L is an invariant map follows from the fact that the translation
group is Abelian and the center contains only invariant elements. We
have

L(U(x) BU(-x)) = weak lim U{λna) U(x) BU(-x) U{-λna)

- U(x) (weak lim U(λna) BU(-λna)) U(-x)

- U(x)L{B) U(-x) = L(B).

This proves the theorem.
At this stage we are unfortunately not able to show that this limit

L(B) exists independent of the choice of the spacelike vector a and
independent of the selected sequence {λn}. This implies in particular,
if we had started with a theory covariant under the inhomogeneous
Lorentz group we would have to drop this additional invariance prop-
erty. This gap can be filled, but we have to wait until the very end.

IV. Some facts about local ring systems

This section is devoted to problems which can be treated by analytic
methods made available by the spectrum condition. We need the follow-
ing notations:

Definition 3. Let EΔ be the spectral projections of the translation
group, and Ψ ζ S). We define support Ψ as the smallest closed subset Δ
of the spectrum of the translation group such that EΔ Ψ = Ψ.

Definition 4. A vector Ψ ζ § is called an analytic vector for the
energy-operator Po if Ψ is in the domain of PQ n = 1, 2, . . . and the
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series

has a non-zero radius of convergence.
Lemma 5. (REEH-SCHLIEDEK, [5]).

Let Ψ ζ ξ) have the two properties
1) Ψ is an analytic vector for the energy,
2) Ψ is separating for <&(Jί).
Then Ψ is cyclic for 9t{2l(0), 9ίMQ'} and separating for 91(0),

and this for every bounded open region Θ.
Proof. Since Ψ is an analytic vector for the energy this means

Σ II PQΨ\\ ~r converges for \z\ < a, a > 0

we see that U (x) Ψ is an analytic function with values in a Hubert space
holomorphic in the tube Imα; ζ — ae0 + ^+, where e0 is the unit vector
in the time direction.

We pick now a region ΘxC @ such that Θ1 \- xQΘ for all a ina small
neighbourhood JV* of the origin. Assume Φ is in the orthogonal comple-
ment of 9ί{9l(0), 9t(^)'}ϊ /. We want to show that Φ is zero.

Let Bl9 B2, . . ., Bn be elements from ^{^(tfy, 9t/(e^)} then

(Φ, Ufa) BxU{x2 - Xl) B2U(x2 - x2) - P ^ - ^ - J BnU{-xn)Ψ) = 0

for ^ ζ ./f .

On the other hand this function is the boundary value of an analytic
function holomorphic in the tube

ϊm(x2 - xx) ζ "T+ r\

Since a is a positive constant this region is not empty. It contains e.g.
a neighbourhood of the point: x^ = 0

0 < Im#5 < Imα;§ < < ImxJ < a .

A standard argument on analytic functions (see [7]) implies then that
the above function vanishes for all values of x. By means of assumption 6)
it follows that (Φ, 9ί{9ί(.#), <3f{(Jί)'} Ψ) = 0. Since we have assumed
that Ψ is a cyclic vector for 9t{9t(u^), 9t(uT)'}, we find Φ = 0. This
implies S7 is cyclic for 9ί{9t(d?), 91 («^)'}. Since Θ is a bounded region,
Ψ is also a cyclic vector for 9i(0);, the commutant of 9?(0). But this
implies !Fis separating for 9t(0). This proves the lemma.

Theorem 6. Assume Ψv . . ., Ψn are analytic vectors for the energy.
n

Let Bv . . ., Bnζ3{{Θ) and assume Σ BjΨj=0. Then there exist
1

Gih ζ S(uT), ί, h = 1, . . ., w, such that Of̂  = (7fci and 27 OihGkl = (7 f,



64 H. J. BOUCHERS :

and moreover ^ ^ = , , a n d £ ^ = Q

* 7

If in particular Ψk is a separating vector for S ( ^ ) then Ckkis invertable.
Corollary 7. Let Ψ ζ § be an analytic vector for the energy and

separating for S(^#).
If B ζ $l(Θ) such that BΨ is an analytic vector for the energy then

We show first that the corollary follows from the theorem. We set
BΨ = Φ. Then we have the relation BOn + 1 O21 = 0. Since Ψ was
separating for ?ί{Jί) we see that O^1 exists. This implies

Proof of Theorem 6. Form the space § = n <g> £j of all systems
{Ψt. . . lFn} with the inner product

( { ^ . . . ψ n } , {Φ,...Φn}) = f ( ^ . Φ 3 . ) .
7 = 1

In § we define a subspace 921 by the two properties
1) {Φ±. . . Φ J ζ 2n implies Σ BjΦf = 0,
2) {Φ1. . . Φn} ζ 9« impUes {^Φ,,. . . AΦn) ζ 921 for all 4 ζ £ (u?)'.

32̂  is obviously a closed subspace of § .
We first show that the vector {Ψτ . . . Ψn} mentioned in Theorem 6

is an element of 321. To this end let us consider an open region Θ1 such
that Θ1-{- xis spacelike to Θ for all x from an open neighbourhood Jί of the
origin.

For A1...A9£ 9t{9t(0!), 91 (u?)'} and xx. . . xv ζ yΓ we have with
the notation ^ (#) = Z7 (a;) A U (— a;)

Σ BiA(*i) Λ9(x9) Ψi = Λ(^i) Λ(**) ί ^ ^ = ° f o r

i=l i=1

The vectors Ψι are assumed to be analytic vectors for the energy with
the radii of convergence a^ Let a be the minimum of the a^ The vector

Σ BtA^xJ . . . Ap(xp)Ψi (*)
i = l

is therefore the boundary value of an analytic function with values
in a Hubert space. The domain of holomorphy is the tube with basis

( f + Λ Ίm{x2 - x±)ζ i^+ n
- a?^) ζ ^ + n I m ^ ζ α e0 + ^ ~ .

Vanishing of the function (*) on an open set of the boundary implies

that (*) is identically zero. Condition 6) of Section II implies therefore

Σ BiAΨi = Q for all A ξ S(Jί)' .
i = l

This shows {Ψ1. . . Ψn) is an element of 221.
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Since 921 is a closed linear manifold in § there exists a projection P
in &($) such that

921 = §

Now every bounded operator in § can be written as an n x n matrix
of bounded operators in fj. So

P =(<?<*).

Since P is a projection we have the relations

Gfk=Cki and EOikGkl=Gn.
k

Since {Ψ1. . . ί?^} is an element of 921 we have

P{Ψ1...Ψn} = {Ψ1...Ψn} or ΣCikΨk=Ψt.

Now 921 is invariant under the action of ((E(^#)' x 1).
Therefore P is an element from S(uT) <S> «S?(CΛ) ([8], Chap. I, §2,

Prop. 4). This means
Cik

Let now Φ ζ 5) then

because for every {Ψτ . . . Ψn} ζ 2K we have

{{B*Φ . . . B*Φ), {Ψx... Ψn}) = Σ (BfΦ, Ψt) = Σ (Φ, Bj^i) = 0.
i j

This implies

{BfΦ . . . B*Φ} ζ § Θ 921 for all Φ ζ ξ>
or

Σ GikBfΦ = 0 for all Φ ζ § .

This implies ^7 C^^JB* = 0 and taking the adjoint of this equation we
k

get

To show the last statement we see that Ψk cyclic for ^{Jί)' implies
{0 . . . 0Φfc . . . 0} ξ § θ 921 if and only if Φk = 0. This means Ψk is
cyclic for <&{Jί)' if and only if Gi1cΦk = 0 implies Φfc = 0. Now assume
Ô fc has a nullvector Φ; then we have

i i

This means CikΦk = 0 implies Φfc = 0 if and only if ChleΦle = 0 implies

Commun. math. Phys., Vol. 1 5
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Since GkΊc is self-adjoint this means Gkk has an inverse C^ . This proves
the theorem.

Theorem 8. Let 0 be a bounded open region and Θx a subregion such
that Θ1-\- xC® for all x from a certain open neighbourhood Λ* of the
origin. Denote by £(0) the center of 91(0). Then we have £(0) A £ ( 0 I ) C

Proof. Let Ψ ζ $) have the two properties
1) IF is separating for (£(-#).
2) Ψ is an analytic vector for the energy P o *.
Let A ζ €(0) n C(0X) and consider the matrix element

(Ψ,A*ϋ(x)AΨ). (*)

This function is the boundary value of an analytic function holomorphic
in the forward tube. On the other hand consider the expression

(Ψ,U(x)AU(-x)A*U(x)Ψ). (**)

Since Ψ is an analytic vector for the energy with radius of convergence
a > 0 we see that (**) is the boundary value of an analytic function holo-
morphic in the tube with basis

Since A and A* are from £(0) r\ £(0i) these functions coincide for
xCΛ"* From the edge-of-the-wedge theorem [9] it follows that the
functions are analytic continuations of each other. This means (*) is
holomorphic in a certain neighbourhood of the origin. In particular,

(Ψ,A*U{t,0)AΨ)

is holomorphic for \t\ < a1> 0.
zn

This implies JJ ( ^ A*P%AΨ)—p converges for \z\ < av

From this it follows (see e.g. [10]) that

converges for \z\ < -~ > 0.

This implies A Ψ is again an analytic vector for the energy. Since Ψ
is separating for (E(^f) we have by Corollary 7 i ( Qi(<J?). This proves
the theorem.

V. The spectrum condition for the new theory

In this section we start with the additional assumption that 9ΐ(«̂ #)
is a factor. This is exactly the condition of Corollary 2. The vacuum

* Since every element from the center commutes with the translations, we see
that for every vector Ψ separating for the center, exp (— Po) Ψ is also separating.
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functional is then defined by

Km (Ψϋ(λna)Bϋ(-λna)Ψ) = ω(B)
n-*oo

and this definition is independent of Ψ. To demonstrate that the new
theory fulfils the spectrum condition, we have to show that for every
vector Ψ ζ § the Fourier transform of the function (Ψ, Ό(x)Ψ) has
its support in the closed forward lightcone ir+. From continuity it
follows that it is sufficient to show this for a dense set of vectors. Since
21 {Jί) is the cyclic representation we have by the Reeh-Schlieder theorem
that 2t(0) Ω (Ω the cyclic vacuum state) is a dense set of vectors in f).
So it is sufficient to show that for all Zζ§ί(Θ) the expression
(Ω, A* U(x) AΩ) has a Fourier transform with support in 'Ϋr+. This,
however, is equivalent to: The Fourier transform of

ω(A*U{x)AU(-x))

has its support contained in the forward lightcone. In our case ω is
given by the following formula

ω(A*U{x)AU{-x)) = }im (U(-λna)Ψ,A*U(x)AU(-x)U(-λna)Ψ) (*)

and this formula is independent of Ψ. So we choose a Ψ which has com-
pact support. In this case

(U(-λna)Ψ,A*U(x) Aϋ(-x) U(-λna)Ψ)

is the Fourier transform of a function with support contained in

- supp. Ψ + "F+ (**)

independent of λn.
Now with every A in 21(0) we have also

fd*xU(x)AU(-x)f(x)£<&(.Jf) for f(x) ζ @* . (***)

Now since 21 {Jί) is norm closed we see that (***) holds for all test-func-
tions in Sf. This means in particular that equation (*) holds in SP.
This implies together with (**) that the Fourier transform of
ω (A* U (x) A U (— x)) is contained in

- supp. Ψ +

Since equation (*) is true for arbitrary Ψ we get

&{ω{A*TJ{x) A U(x))} (p)C Q - supp.

* In the terminology of SCHWARTZ [11], & is the space of C°°-ίunctions with
compact support (Chap I, § 2), y is the space of strongly decreasing C°°-functions
(Chap. VII, § 3), and y is the space of tempered distributions (Chap. VII, § 4).

5*
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At this point we have used the assumption that there are always states
whose support is arbitrarily close to the boundary of the forward light-
cone. But this can be proved and we will do this in

Lemma 9. The smallest convex closed cone containing the spectrum
coincides with the forward light cone.

Proof. Let us consider two elements A, Bξ:

<3l(Θ) such that
A(x) = U(x) A U(— x) does not commute with B for all x. Then there
must be vectors Ψ and Φ with compact support such that the expecta-
tion value (Φ, [A (x), B]Ψ) = f(x) does not vanish. Let *β be the smallest
convex closed cone containing the spectrum. Now the Fourier transform
j(p) of f(x) has its support contained in (supp Φ — Ή) \j ( —suppϊ7-^-^7).
But as a consequence of the support of f(x) in x-space f(p) can be written
as the difference of two functions f+(p) and f~{p) with /+ holomorphic
in the forward tube and /~ holomorphic in the backward tube.

If now ^ is a proper subcone of i^+, it follows from the double-cone
theorem [12] that f(p) vanishes identically. This contradicts our as-
sumptions and hence Lemma 9 holds.

We collect the results of this section in
Theorem 10. In the vacuum theory defined by the functional ω

of Corollary 2 there exists a unitary representation of the translation
group which fulfils the spectrum condition.

We have shown in the special case where 9ΐ(^#) is a factor that the
functional ω{A) defined in Corollary 2 fulfils the spectrum condition.
What about the general case ? In order to handle this, we need first some
notations. The mapLfrom 9i(Jl) into the center is a linear positive map.
The left kernel of %{Jί) is the set of all A ξ 3ί(~#) such that L(A*A) = 0.
Since L is a positive map and is continuous in the norm topology,
the left kernel is a norm-closed left ideal. We define now :

Definition 11. A positive, linear, invariant map L of Qί(~£) into (£(~#)
is said to fulfil the spectrum condition, if for every A ζ Ql(*J/) and every
test-function f(x) ζ S? with support J(p) contained in the complement
of i^'+, the operator

^ ff{x)ϋ(x)AU'1{x)dίx
is in the left kernel of L.

Theorem 12. The map L defined in Theorem 1 fulfils the spectrum
condition.

Proof. When we make a direct-integral decomposition of the Hubert
space and the algebra with respect to the center, then the algebras
2lλ(^#) fulfil ^-almost everywhere the conditions of Theorem 10 (since
the center is pointwise invariant). Hence f f(x) Uλ(x) AλU^1(x) d^x
is for support f(p) outside the closed forward light-cone μ- almost
everywhere in the left kernel of Lλ. This implies / dμ (λ) f / (x) Uλ (x) x
x AxU^ix) d*x = / f(x) U(x) A Ό-χ(x) d*x is in the left kernel of L.
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VI. Extension of the mapping to the local v. Neumann algebras

We consider again the linear positive map L(B) from 2l(<>#) into
the center of 9ί(^). We want to prove the following

Theorem 13. Let Ψ* be any open region (not necessarily bounded)
such that there exists a bounded open region Θ which is spacelike with
respect to 'f. Define 21 (Ψ*) as the smallest norm closed algebra which
contains all 21 (0X) with Θ±C 1r. Let L be the map from 2lpf) to S(uί')
defined in Theorem 1. Then L restricted to 21 (i^) is continuous in the
strong operator topology.

The proof of this theorem is essentially based on the "B, T-Lemma"
([13], Lemma 9.1.1-9.2.1; [8], Chap. Ill, § 1, Lemma 2) and proceeds
in several steps.

Lemma 14. Let Ψ be a vector which is analytic for the energy and
separating for the center £(~#). Then this vector is cyclic for the ring
generated by 9t(0) and 91 (uT)' = 9ί{9ί(0), 9ΐpί)'}. Let {ΦΛ}~=1 be a
sequence such that Σ \\Φn\\2 < °°' Then there exists a vector χζξ)
and a sequence {Tn}™= i ζ 9l{9l(0), 2ί MΎ} such that

1) T«χ = Φn ,
2) ll^ll ^ M .
Proof. Consider the Hilbertspace § = l2 x § and the ring

9t=© x

where © denotes the ring of all diagonal matrices in l2 (with respect
to the natural basis). Since Ψ is a cyclic vector for 9ΐ{9ΐ(0), 9ί(^#);}? the

vector Ψ = j — ϊ 7 ! is cyclic for §1 in §. Now {Φn} = Φ is a vector in §.

Since ΪP" is cyclic for 91 we can find operators J f̂c = {̂ 4f} in 31 such that

μ s # - Φ\\ < ±
Now the set of vectors χ ζ $) for which

Σ
2k

n

2
< oo

n,k

is not empty. In particular Ψ is in this set. From a well known theorem
([8], Chap. Ill, § 1, Lemma 2) follows the existence of an operator

with Ψ in the range of J5, || J5|| g 1, and

I 1.

This implies ~^A%B converges to Tn with ||Tn | | ^ M.

On the other hand let χ be the vector such that Bχ — Ψ; then we

have
;= lim — ̂ 4| J5y = lim A% — Ψ = Φn , q.e.d.
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Lemma 15. Let Φ(z) be a holomorphic function with values in the

Hubert space § for \z\ < 1. Assume μ(θ) is a positive measure on the

unit circle such that d μ(θ) ^ dθ. Assume moreover that lim f\\Φ(re* θ ) | | 2

dμ(θ)<oo. f " > 1

Then in 9ΐ{9t(0), 9ΐ(~#)'} there exists an operator-valued function
T(z) holomorphic in \z\ < 1 and a vector χζ ξ> such that

T(z) χ = Φ(z)
and

lim || fT*(z) T(z)dμ{θ)\\ < <χ> .

Proof. Since Φ(z) is an analytic function for \z\ < 1 we can write

Φ(z) = ΣΦn*.
Now we have

Σ ||Φ«||2 = lim / \\Φ(zψ dθ^ϊimf \\Φ(zψ dμ(θ) < oo .
r—>1 r—>±

Hence we have by Lemma 11 χx ξ § and Γn ζ 9ί{9ί(0), 9l(^f)'{ with
||Tn | | ^ 1 such that

TnXl = Φn, i.e. ΣTnz-Xl

Since ||TW|| ^ 1 we have

^'(^) = Σ TnZn is holomorphic for \z\ < 1 .

Consider now in § the subset § 0 of vectors such that

lim / \\T{z) Ψψdμψ) + \\Ψf < oo . (•)

Clearly Xl ζ § 0 .
The expression (*) makes $ 0 a Hubert space.
Since $)0 is invariant under all unitary operators in 9ΐ{9ί (0), 9t(«^#)'}'',

we can find a bounded operator i? £ 9t{9ΐ(0), 91 (^)'} whose range is
exactly § 0 (for proof see [13], Lemma 9.1.3, 9.1.4).

Define now T(z) = T'(z)-B. Then T(z) is again holomorphic in
|z| < 1. Moreover we have for all χ ξ §

and hence
B/Γ ^ϊ ' ίzJd/i ί f l ) !^ M, q.e.d.

Lemma 16. Let Ψ be a vector analytic for the energy and a a space-
like vector. This implies U(λa) Ψ is holomorphic in λ in some strip
|Imλ| < b. Then there exists in 9l{9ί(0), ^(Jί)'} and operator-valued
function T(λ) holomorphic in |ImA| <b1<b and bounded for real λ.
Moreover there exists a vector χ ζ ί) such that

T{λ)χ = U(λa)Ψ for |Imλ| < bx .

Proof. Since U(λa) is unitary for real λ we have \\U(λa)Ψ\\ < M
for |Imλ| ^ b1<b. Let us now make a conformal mapping such that
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the image of |Imλ| < bx is \z\ < 1 and the image of Imλ = 0 is Imz = 0.
Then Φ(z) = U(λa)Ψ is bounded in \z\ ^ 1. Thus Φ(z) fulfils the con-
dition of Lemma 14 for the measure dμ(θ) = dθ(l + δ(θ) + δ(θ — π)).
This implies the existence of T(z) ζ 9l{9t(0), 91 (u?)'} and χ ζ | j with

ΓWz = Φ(2)
and

Urn ||/ T*(z) T(z) dθ + Γ*(r) !Γ(r) + T*{-r) T(-r)\\ < M .
T—>\

Since 5P(z) is bounded for \z\ < 1 it follows that ||T(a;)|| g Jf^ |aj| < 1.
Transforming back to the variable λ we the desired result.

Proof of Theorem 13. Assume we have chosen for Ψ in Lemma 16
a vector which is analytic for the energy and separating for the center,
and for Φ a region which is spacelike to Ψ*. Then the operators T(λn)
of Lemma 16 commute with 21 ( Ή Let now An £ 21 ( Ή with | |4Λ | | ^ 1
and assume the An converge to zero in the strong operator topology.
Let L(An) be the image of An under the map described in Theorem 1.
Then we have

\{Φ,L{An)Ψ)\ g H

Since ||3Γ(λί)|| is bounded we have

Km L(An)Ψ=Q
n—>oo

and since Ψ is separating for the center and

it follows ([8], Chap. I, §4, subsection 6, Prop. 4) that the operators
L(An) converge to zero in the strong operator topology, q.e.d.

Theorem 17. The map L from 91 ( Ή into £(uT) is normal ([8],
Chap. I, § 4, subsection 3, Def. 2).

Proof. Since Ψ is separating for the center it is sufficient to show
that the linear functional

(Ψ, L(A)Ψ) is normal on 91 (rT) .

For every A ζ 9t(y) the sequence

and the Hmit is linear in A.
Since the sequence (T*(—λn) U(—λna)Ψ) is bounded, there exists

a vector Φ in 9t(^)χ with

Φ = weak Urn E(T*(-λn>) U(-λn>a)Ψ)
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with Eξ> = ^(rT) χ. This implies

(Ψ9 L{A)Ψ) = (Φ, Aχ) is normal, q.e.d.

YII. On physical equivalence and local unitary equivalence

For the representation induced by a positive linear functional,
the maximal two-sided ideal contained in the null space of this func-
tional is of special interest. If this ideal contains only zero, then the
representation will be faithful.

Theorem 18. The null space of the map L(A) from 91 OH into <l(Jί)
contains no two-sided ideal. The null space of L as a map from 2l(-#)
into € (*/#) contains also no two-sided ideal.

Proof. Let Ψ be again the separating vector for the center used in the
last section. Then for any A ζ 9ί+ OH (9l+ = positive elements of 9ί)
we have

L(A) = 0 if and only if (Ψ, L(A)Ψ) = 0 .

(Ψ,L(A)Ψ) is a positive linear functional on the algebra 21 pf). We
look now at the standard representation of 21 (^#) given by this func-
tional. If we call the representation space U, then this representation
can be considered as a homomorphism φ of 21 {Ji) into i^(&), the space
of bounded linear operators in &:

We look at the kernel of the homomorphism φ, Ker φ, which is a two-
sided ideal in 21 (Jί). Since L(l) = 1 it follows that φ is not the null
homomorphism, i.e. that Kerφ is a proper two-sided ideal in 2l(-#).

Let Ψ* now be any open region described in Theorem 13 and φv

the restriction of φ to 21 (O )̂. In this case we know from Theorem 13
that φv is continuous in the strong operator topology and extends
therefore to <3i(ir). Now Kerg^ is a two-sided ideal in (3i(ir) closed in
the strong operator topology.

From this it follows ([8], Chap. I, §4, subsection 4, Cor. 3) that
there exists a projection Ev in the center of 9ΐ(^) such that

KeTφ^xi-r) EV, Evζ<ε(-r).

Let ψ*' be a region such that Ψ*' + % C ̂  for x from a certain neigh-
bourhood of the origin. Then we get

This implies 91(^0 Ev = 91^') Ev> and thus, since 1 is in
we have

^ = E '
Using Theorem 8 we get
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Comparing now all possible open regions we find: there exists a pro-
jection E in (£(^#) such that

31(0) r\ Kevφ = 91 (uT) E r\ 21(0) for all 0 .

Let us now choose a vector Ψ such that E Ψ = Ψ. Then we have by
Theorem 1

(Ψ L(A),Ψ)= Urn (Ό{-λna)Ψ,Aϋ{-λna)Ψ).

Putting A = E we find L(E) = 0 only if $ = 0. This implies

Since 99 is norm-continuous and 2l(^#) is generated by all 21(0) we find

This proves the theorem*.
If we now make more restrictive assumptions we get:
Corollary 19. If 91 pf) is a factor, then by Corollary 2 L(A) = 1 ω{A)

where ω(A) is a positive functional. The canonical representation φ
of ω(A) is a faithful representation of the norm closed ring 21 {J£).
For every open region Y* as in Theorem 13 φ extends to 9? OH and
φ(3i(Y)) is a von Neumann algebra.

Proof. From Theorem 18 it follows that φ(Qί(^)) is faithful. Since
by virtue of Theorem 17 L(A) is a normal map of 9t('>H into £(^#),
ω{A) is a normal, linear positive functional. But this implies ([8], Chap.
I, § 4, subsection 3, Prop. 1) that φ is normal and therefore φ(3l(Y)) is
a v. Neumann algebra ([8] Chap. I, §4, subsection 3, Cor. 2), q.e.d.

Corollary 20. If 9ί(^#) = «£?(§), the ring of all bounded operators,
then the map

91 (Ή-> y (91 OH)

is unitarily implementable for every open region Ψ* described in
Theorem 13.

Proof. Since 9?(^) = JSf (§) contains every vector which is analytic
for the energy, there exists a cyclic and separating vector for 9Ϊ0H
(Lemma 5). Since φ(2l(^#)) is a cyclic representation and Ω £ & is an
invariant vector, we have that 9?(2l(^#)) Ω is dense in Ŝ 5 and hence i3
is cyclic and separating for g9(9ί('JH). Since now 9?(9tOH) ̂ s a v o n Neu-
mann algebra we have that g?(9?0H) ^s unitarily implementable ([8],
Chap. Ill, § 1, subsection 4, Th. 3), q.e.d.

* φ restricted to Qi(Φ) is an isomorphism and φ and φ~x are continuous. Hence
φ extends to the norm-closure of W 31(0) and φ" 1 extends to the norm-closure of
\J φ(Ql(Φ)). This implies φ is an isomorphism
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VIII. On the uniqueness of the vacuum theory

We consider the following set of funetionals on 21 (~#): ω is an element
of 93 if it has the following properties:

1) ω is a positive linear functional on 21 (~#).
2) ω is translation-invariant.
3) ω fulfils the spectrum condition.
We want to prove the following
Theorem 21. Let ω1 and ω 2 be elements from 33. Denote by <px and φ2

the canonical representations of ωx and α>2. Assume that for Θ an open
bounded region 9^ (21(0)) and <^2(2l(0)) are equally faithful representa-
tions of 21 (0). Assume, moreover, that the rings generated by {φx(21(0)),
£ i M 0 } and by {<p2(2l(0)), &*(*#)} (SiMO r e s P S^MO a r e t n e centers
of the global v. Neumann algebras) are unitarily equivalent. In this
case φ1 (21 (y%)) and <p2(2l(~#)) are unitarily equivalent. Moreover, if
ω i(£Ί) — ^2(^2) ^ o r e y e r y element form the center, then ωx = ω2.

The proof of this theorem will be made in several steps. We start
with the notation.

Let us denote by § x and $)2 the representation space of ψ1 and φ2.
Let U^x) and U2(x) be the representations of the translation group
in § x and £j2, and let Ωx and Ω2 be the cyclic vacuum states in ί)x and ξ)2.
We set § = the direct sum of ξ)± and § 2 ,

\0 φt(A)J '

&{<!>) = {A\A ξ9ί(Φ)},

and 9^(ί?) = the strong closure of &(Φ).
Let us denote by Po the projections onto all states in § which are

invariant under the action of U(x).

Lemma 22. Let B be from 91(0)'; then there exists an element J50

with the properties

2) ϋ(x) Boϋ-1(x) = BQ for all a?.
3) P0BP0-P0B0P0 = 0.
Proof. Let 0X C 0 such that 0X + x C 0 for a suitable neighbourhood ^Γ

of the origin.
We define an operator Bo by the relation

i foraU A &

By Lemma 5 we have that Po§) is a cyclic subspace for 9ί (6^). This means
2?0 is densely defined. J5 0 is clearly linear. We have to show that Bo

is single-valued.
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Assume
ΣΛtP0Ψt = 0, Ai^β1.

Then we have for x ζ J^

Σ U(x) AiΌ~1{x) BP0Ψi = 0 , and hence Σ AiTJ~1 (x) BPo^i = 0 .

The last expression, however, is, by the spectrum condition, the boundary
value of an analytic function. So we get by analytic continuation

ΣAiU(-x+ iy)BP0Ψi = 0 for all y

Taking now the limit y° -> oo, we get

Bo commutes with all operators of Θx because

ABvΣAiPoΨ; = AΣ AtPoBPoΨt = B0AΣ Λ

Assume now B is positive; then P0BPQ is positive. Hence

= (Σ At(P0BP0)T ψt, Σ At(P0BP0)* Ψt) S 0.

At this point we have used the fact that B commutes with
Using large translations we find that P0BP0 commutes with

This implies if B ^ 0, then BQ ̂  0, or equivalently, if B is self-
adjoint, then Bo is also, and the upper and lower bounds of BQ are majo-
rized by the upper and lower bounds of B. Thus || I?o|| < || B\\.

Finally, since Bo maps the vacuum space into itself, we have for
x ζ Jf and Ai ξ 01

= Σ A<BoPoΨ<= B0Σ A<PoΦ<.

This implies Bo commutes with the translation group and hence

5 0 ( 9 ? μ ) ' , q.e.d.

Proof of Theorem 21. Let V be the unitary operator mapping § x into
§ 2 and having the property

Vφ^A) = φ2(A) V for all A ζ 21(0) . (*)

V is, of course, not uniquely defined by this relation and we can change
F by left-multiplication with any unitary operator from {^2(2l(0)),
£ 2 (^)} ' . Since Ω2 is a cyclic vector for this ring we can choose V such
that

(β2, VΩX) Φ 0 . (**)
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Consider in ί)x ® £j2 the operator

( Ί
v o)

As a consequence of relation (*) we have

ΛΫ=ΫA forall

We consider now the operator Ϋo (see Lemma 19).
Fo commutes with 9t(«^) and (Ω2, ^o^) φ 0 by equation (**).

From the construction of Fo it follows that
. ^ ) F 0 Φ 0 .

This implies the relation

• ô̂ i(-4) = Ψ2(A) F o for all A ζ 21 MO .
Since φ̂  resp. 9̂3 are cyclic representations it follows by a result of
H. ARAKI [4] that the commutant of 9̂  (21 MO) resp. φ2(^i{Jί)) is iden-
tical with the center of 9^ MO resp. R2{<J%). If E is the support of Fo

and F the range of Fo then E resp. P are from the center of 9ίxM0
resp. 9ί 2(^) This implies by the generalized Schur's lemma (e.g. [6],
§21)

i? ̂ ! (21 (-#)) is unitarily equivalent to F φz (21 (-#)) .

We have to show that F can be chosen such that E and JP are the identity.
Let PJ resp. P§ be the projections onto the invariant subspaces in ^
resp. § 2 . P Q § I

 r e s P ^o§2 a r e generated from the cyclic vacua Ω1 resp.
,Q2 by the center $Lx(Jί) resp. SgMO-

From the assumption that F maps not only 992 (21(0)) onto
but also £ 2 (^#) onto €x (^#) it follows that

Hence

Let now P be the minimal projection in £2(-#) with

FPIVΩ1=PIVΩ1.
Then (1 - F)Ω2 is cyclic for the ring (1 - F) {φ(Ql(Φ)), £
(1 — F)S)2- This means we can find an unitary operator W in this ring
such that ((1 - F)Ω2, W VΩX) = 0.

Hence the operator V = (1 — F)W V + FV establishes the unitary
equivalence and

Furthermore the right-hand-side is a proper subspace of the left-hand-
side. This shows that the only upper bound of

is
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Hence we can find a F such that

Constructing with this operator F o we see that the support and range
of F o are the whole Hubert spaces § x resp. S)2. This proves that the two
representations φ1 and φ2 are unitarily equivalent, and that this equi-
valence extends to the unitary representations of the translation group.

It remains to show that the two defining functionals ω1 and ω2 are
identical.

Let Ωx be the cyclic vector in ί)x and Ω'% be the image of the cyclic
vector in § 2 under this unitary map. Ω'2 is also an invariant vector. But
for each element of the center we have assumed

(Ωv GΩX) = (Ω'2, GΩ'2) .

Now P0$)Ί, ^ n e space of invariant vectors, is generated by (£(~#) from
Ω1 resp. Ω'2. This implies the existence of a unitary operator F in P^x

which maps Ω1 onto Ω'2 and which commutes with <&{Jl) restricted to
Po$)! = C(^#)po. But (£(^)po is a maximal Abelian algebra and hence

This implies F = P0WPo with Wζ S(«Λf) and W a unitary operator.
Hence

(Ω2AΩ2) = (WΩXA WΩX) = ( β i ^ β j for all A ζ 91 (u^) , q.e.d.

Theorem 23. Let 21 (^#) = {21(0)} be a local ring system in a Hubert
space ί). 21 norm-closed and 21(0 + x) = ?7(a;) 21(0) U(—x)9 where
Z7(ίu) is a unitary representation of the translation group fulfilling the
spcetrum condition. Let <£(-#) be the center of the v. Neumann algebra
generated by 2l(*χ#). Let £(21) be a linear positive map of 2l(-#) into

with the properties
1) L is defined on the norm-closed ring generated by 21 (~#) and

2) £ is invariant i.e. L(ϋ(x) A ϋ(-x)) = L(A).
3) L fulfils the spectrum condition.
4) For every open region Θ the map L is continuous in the strong

operator topology on the ring generated by 21(0) and S(«^).
5) For A ζ £ p f ) , L(4) = .4.
Then £ is identical with the map L defined in Theorem 1.
Corollary 24. Let Aζ'3l(Θ), where Θ is any open bounded region.

Then Km (Ψ, U(a) AU(-a)Ψ) converges for any spacelike a to the

limit (Ψ, L(A)Ψ). This convergence is uniformin the region \a°\ ^ a\a
with α < 1.

Corollary 25. If there exists in § a representation of the inhomogenous
Lorentz group such that

ϋ(a,A) 21(0) U^i^A) = Qί(AΘ + α) ,
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then the linear map L of 21 (~#) into the center € ( ^ ) is invariant under
the inhomogenous Lorentz group, i.e.

L(U(a,A)AU-1(a9Λ)) = L(A).

Proof of Theorem 23. Let Ψ be a fixed vector separating for the center
and let Lo resp. L± be two maps of 21 {Jί) into & {^) fulfilling the conditions
1)—5) of Theorem 23. Consider now the functionals ωQ resp. ω1 equal to
(Ψ9L0(A)Ψ) resp. (Ψ,L1(A)Ψ). Let D0(A) resp. DX(A) be the cyclic
representations of ω0 resp. ωv Since Ψ was chosen to be separating for the
center we have by virtue of Theorem 18 that the canonical homomorphisms
φ0: A -> D0(A) resp. φ1: A-> D^A) are isomorphisms. This implies
we have an isomorphism φQ1: D0(A) -> D^A). Now Theorem 13 and
Theorem 17 say that φ0 resp. Sx restricted to any bounded open region
Θ are continuous in the strong operator topology and normal. This im-
plies φ01 restricted to Θ is continuous in the strong topology and normal.
Since the representations DQ and Dx are cyclic representations it follows
from the Reeh-Schlieder theorem that Do(9t(0)) and I>i(9t(0)) n a v e a

cyclic and separating vector. Hence φ01 restricted to Θ is unitarily
implementable ([8], Chap. I, § 4, subsection 3, Prop. 1).

We now would like to apply Theorem 21. But it is first necessary
to know the center of the global algebra φχ(A). We will separate the in-
vestigation of this question from the proof of Theorem 23. The answer
to this question is

Theorem 26. Let L be any linear positive map of 21 {Jί) into S ( ^ )
fulfilling the conditions 1)—5) of Theorem 23. Let Ψ be a separating
vector for S ( ^ ) and ω(A) = (Ψ,L(A)Ψ). If φ(A) denotes the canonical
representation induced by ω(A), then the center of the v. Neumann
algebra generated by φ (A) is the image of £ (~#) under the isomorphism φ:

Before we prove this theorem we want to show that Theorem 23 follows
from it. But this is clear because φ01 now fulfils all conditions of
Theorem 21. Hence we have

(Ψ, L0(A)Ψ) = (Ψ, L1(A)Ψ)

for every vector Ψ which is separating for the center. This then implies

L0(A) = LM),
which was to be shown.

Proof of Corollary 24 and 25. Theorem 23 implies that the definition
oiL(A) in Theorem 1 is independent of the special choice of the spacelike
vector a and the sequence {λn}. This, together with the invariance
properties of L(A), gives Corollary 23. Corollary 24 is then an immediate
consequence of Corollary 23.
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Proof of Theorem 26. The positive linear map L is continuous in the
strong operator topology and normal for every bounded open region.
This means we are actually not dealing with 21 (Jΐ) but with a bigger
algebra 211(~#), which is the smallest norm-closed algebra containing

The proof of Theorem 26 is based on a result of B. MISRA [15],
which we need in a slightly generalized form.

Lemma 27. The algebra 2lx is the direct integral of simple algebras.
Let us first assume Lemma 27 and show that Theorem 26 holds.

Since φ(A) extends from $1 [*Jί) to %x{Jί) and φ is faithful for (3i1{t^),
we have that the two-sided ideals of %x{Ji) and φ($lι(^)) are in one-
to-one correspondence. Lemma 27 tells us that we have a one-to-one
correspondence between the two-sided ideals of 21 (y$) and S ( ^ ) resp.
9>(2l(u?)) and δ(9ϊ(?>(9l(uίr)))) = ^(Jί). Hence we have a one-to-one
correspondence between the ideals of (£(«/#) and (ίφ(*J?). Since φ is
defined on <&(Jέ) we have

Proof of Lemma 27. B. MISRA proved a special form of this lemma,
namely he assumed, first, that the ring 91 («Λ )̂ is a factor, and second,
that for all Θ there exists an Θ1^>Θ such that 9t(0i) is a factor. These
arguments are easily generalized to the case in which 9ί(~#) contains a
center and S(^2) coincides with £(<•#). But it is actually not necessary
to make the assumption S ^ ) = £(~#), since we can use our Theorem 8
and the argumentation given in the proof of Theorem 18.
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