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Abstract. I t is shown that a translationally invariant algebra 91 of local obser-
vables (see [1]) admits a representation in a Hubert space having a vacuum state.
Furthermore an algebraic criterion is given which is necessary and sufficient for the
existence of at least one representation of 21 in which the usual spectral condition
for the energy-momentum operators holds.

I. Introduction

A local ring system [1] is defined by giving a i?*- algebra* on which

a space-time translation x operates as a *-automorphism

A-+AX) 4 £81, (1)

and by assigning to each space-time domain Θ a Banach *-subalgebra

31(0) of 31 such that

31 (0J commutes with 31 (02) if Φ1 is spacelike to Θ2, (2 a)

[21(0)]* = 31(0 + a ) , (2b)

if w Φn = Θ, \j 31 (0n) generates 31 (0) u 21 (0) = 31. (2 c)

The important work of BOUCHERS, HAAG and SOHROER [2] showed

that if there exists a Hubert space representation of a local ring system

in which the transformations (1) are induced by a unitary representation

of the translation group

Ax = U(x)AU(x)-\ (3)

then there also exists such a representation with a vacuum state:

U(x)Ψ0=Ψ0. (3')

This representation satisfies the spectrum condition

P 2 > 0, P o > 0 (where exp [ίPμx
μ] = ϋ(x)) (4)

if the initial one did [3].

* Terminology of C. E. RICKART, General Theory of Banach Algebras, NAIMARK
[4] uses the term "completely regular Banach ring".
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A priori, it could happen that no representation has property (3).
In the following we show that this is not the case, and give an algebraic
condition for the existence of a representation with property (4).

II. Existence of the vacuum

We will not make full use of the structure (2); all of what follows
holds for any B* algebra 21 having a locally compact Abelian group of
automorphisms © the role of the future light cone in (4) is more generally
assumed by an arbitrary closed subset of the character group ©. For
simplicity of language, however, we shall continue to refer only to the
translation group.

Proposition I. 21 possesses an invariant state f (positive linear functional

of norm 1): f(A) = f(Ax) for all A,x. (5)

By the Gelfand-Segal construction* this functional gives rise to a

representation or .^ or to

with a cyclic vector Ψp which satisfies

Equation (5) implies in a standard way that 21W and ΨQ^ satisfy eq.
(3) and (3').

Proof: Proposition I is a straightforward consequence of the Markov -
Kakutani theorem**: Let X be a locally convex topological vector space,
and K a compact convex subset of X if a commuting set of linear con-
tinuous transformations of X into itself leave K invariant, they have a
common invariant element in K.

The state space ζβ (21) of 21 is a convex compact subset of the locally
convex linear topological space 9£, the dual of the real Banach space 2l#
of the Hermitian elements in 21, furnished with the weak topology. A
neighbourhood basis for this topology is defined as follows: given

Al9 ...,An£%ε>0, / o ζ 9 e ,

U(fQ; Al9...,An,ε) = {f:fζ 9ί, | / ( ^ ) - / o μ , ) l < ε, i = 1, . . . , * } .

The linear transformations of 9ί given by

are obviously weakly continuous, leave φ(2l) invariant, and commute

with one another. Under these conditions, the Markov-Kakutani theorem

says that there exists in φ (21) an invariant element:

/ ζ φ ( 9 t ) , TJ = f for ail x.

Thus there is always a vacuum representation.

* Ref. [4], § 17, n. 3.
** Ref. [5], Part I, V. 10.6.
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III, Spectral conditions

Let us consider functions z (x) which are summable and whose Fourier
transforms have their support outside of the future light cone:

suppz A Ψ+ = 0 , z c se1 (d*x) . (6)

Such functions exist in any locally compact Abelian group, and can be
chosen to have a Fourier transform vanishing outside of a given open
set (in the character group) and equal to 1 on a given compact set con-
tained in it*.

If z satisfies (6) and A ζ 21 we define

Az = f Axz(x) d*x ,

which is again an element of 21 since z is summable and \AX\ = ||-4||**.
Let us define

95 = {Az: A £ 21, z satisfies (6)} . (7)

The minimal left ideal containing 95, i.e. the linear span of 2195 will be
denoted by 3^

Proposition II. 21 possesses a representation 2l->2ί (/), with f
and f = fx, such that the representation of the translation group

satisfies the spectrum condition (4), i.e.

if and only ΐ/ 3 { Φ 2(.
If 21 has the local ring structure (2), / can be chosen such that 2l(/>

is irreducible and ψjf* is the only vacuum state in the representation
space § ^ .

Proof: Suppose that there exists a state / with the desired properties;
then, if B = Az ζ 95, we have

- / z(x)

- fz(x)

all the steps being allowed since every representation of a Banach algebra
21 -> 2((/) is continuous:

* Ref. [4], § 31, n. 5.
** Because a*-isomorphism of a i?*-ring into a J5*-ring is isometric: see ref. [4],

§ 24, Th. 3.
*** Ref. [4], § 17, Th. 1.
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Thus we get
= Q ( 8 )

The same argument says that equation (8) holds for B ξ 3^ and by con-
tinuity for B in the closure 3 .̂ Thus (δι is contained in the left kernel of /
and therefore, by Schwartz's inequality f(B) = 0 for B ζ 3j. Since /
is a state, i.e. a non-zero functional by hypothesis, 3j 4= 21, or, what
amounts to the same thing*, cr + g\

Conversely, suppose that 3j 4= 21; then* 3j 4= 21; the set

φ.(3t) = {/:/ζ«p(Sί),/(ilM) = 0 if 4ξS, }

is nonvoid it is evidently convex and closed in the weak topology, since
in this topology

/ -> fQ means f(A)-> fo(A) for each A .

Thus it is a compact subset of 9£. Now 3^ (and thus 3J is invariant under

translations, 4 ζS,=»4, ξS, ,

so that φ s (21) is invariant under the transformations Tx:

The same trivial application of the Markov-Kakutani theorem used in
the proof of Proposition I guarantees that φs(2ί) has an invariant ele-
m e n t / : Taf = f for all x.

The construction used above then shows:

EW (z) = 0 for all z satisfying (6) , (9)

i.e. TJW(x) satisfies the spectrum condition (4).
If 21 possesses a local ring structure (2), theorems of RBEH and

SCHLIEDER [6] and BOUCHERS [7] (which can be simply translated into
local ring language [8]) allow us to decompose /

/ f'(A)dμ(f)

in such a way that each /' satisfies the spectrum condition (9) and, in
the representation space ξ)^\ ΨQ * is the only vacuum state vector, and
21̂ ^ is irreducible.

Proposition III. If 21 is simple and has the local ring structure (2),
and if S, Φ 21, then ^ A <y (&) = { Q } ( 1 0 )

for each bounded region Θ.

Proof: According to Proposition II there exists a representation
2(00 in which the spectrum condition holds and in which there is a cyclic
vacuum. In this representation the Reeh-Schlieder theorem is valid, and

* Kef. [4], § 8, IV, n. 3.
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so the vacuum is a separating sector for 21 (Φ) if Θ is any bounded region.
As shown before B ζ%ι implies B<nψ}p = 0. Thus B £ 3 z

implies BW = 0. If 21 is simple this means B = 0.

IV. Remarks

This work is incomplete in two respects. First, it deserves further in-
vestigation to see whether the "spectral condition"

3*+ 21
is automatically satisfied in the local ring case. For instance, it could
happen that equation (9) follows from the axioms (2).

This would be desirable since it would throw a bridge between locality
and the spectrum condition, principles which are strictly related in
classical physics.

Second, nothing is said in this approach about the separability of the
Hubert spaces underlying the representations in question.

Finally, if 21 is not simple, it might happen that some representation
obtained by Proposition II is trivial; for instance, this occurs if 33

is a two-sided ideal in 21. In this case each element A ζ 2l/3{ has its
spectrum in i^+, whereas the spectrum of ^4* is also contained in ir+;
hence the spectrum of A is contained in i^+ r\ ir~ = {0}. Thus each
element in 2t/3j is invariant, and by local commutativity 2l/3j is Abelian*.

To avoid this one should require:

3j is not contained in any proper two-sided ideal, i.e.

linear span 210321 = 2t.
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