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Abstract

We investigate the relation between Besov spaces generated by the Dirichlet Lapla-

cian and the Neumann Laplacian in one space dimension from the view point of the

boundary value of functions. Derivatives on spaces with such boundary conditions

are defined, and it is proved that the derivative operator is isomorphic from one to the

other.
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1 Introduction

There are several methods to define function spaces on general domains such as Sobolev

spaces, Besov spaces, etc. If the boundary of the domain is bounded and smooth, the ba-

sic notion is available; the restriction method of the function on Rd to the domain, the

zero extension to the outside of the domain, and certain intrinsic characterization (see

[6–8, 10–15]). In the book by Triebel [10], it is indicated that function spaces becomes

different depending on the boundary value of functions by comparing the space defined by

the restriction of functions on Rd with the completion of the set of smooth functions with

compact support. Recently, the study of function spaces generated by the operators are also

known, and we refer the papers by Bui-Duong-Yan [1], Kerkyacharian-Petrushev [5] (see

also [4]) and references therein, there, one can understand that function spaces would be

different from each space depending on operators. In this paper, we focus on the Besov

∗E-mail address: t-iwabuchi@m.tohoku.ac.jp



2 Tsukasa Iwabuchi

spaces generated by the Dirichlet Laplacian and the Neumann Laplacian in one space di-

mension to make the relation of the spaces clear by showing that the derivative operators

define isomorphic mappings from one to the other. This is an aspect of functions approx-

imated under the Dirichlet and the Neumann boundary conditions. The motivation comes

from the application to the nonlinear partial differential equations with the Dirichlet and

Neumann boundary conditions.

Let AD, AN be the Dirichlet Laplacian −∂2
x|D, the Neumann Laplacian −∂2

x|N , respec-

tively. We note that AD,AN are operators on L2(R) initially, while they are regarded as ones

on Besov spaces, some spaces of distributions based on the uniform boundedness of scaled

multipliers ϕ(θAD), ϕ(θAN) in L1(Ω). (see e.g. [4]).

Let us recall the deinition of Besov spaces along the paper [4] (see also [9]). Let φ0(·) ∈
C∞

0
(R) be a non-negative function on R such that

suppφ0 ⊂ {λ ∈ R |2−1 ≤ λ ≤ 2 },
∑

j∈Z
φ0(2− jλ) = 1 for λ > 0,

and {φ j} j∈Z is defined by

φ j(λ) = φ0(2− jλ) for λ ∈ R.

The following is the definition of the test function spaces and their duals generated by the

opeartors A = AD,AN .

Definition (Test function spaces and distributions).

(i) (Linear topological spacesX(Ω,A) andX′(Ω,A)). A linear topological spaceXV(Ω,A)

is defined by

X(Ω,A) :=
{

f ∈ L1(Ω)∩D(A)
∣

∣

∣AM f ∈ L1(Ω)∩D(A) for all M ∈N}

equipped with the family of semi-norms {pA,M(·)}∞
M=1

given by

pA,M( f ) := ‖ f ‖L1(Ω)+ sup
j∈N

2M j‖φ j(
√

A) f ‖L1(Ω).

X′(Ω,A) denotes the topological dual of X(Ω,A).

(ii) (Linear topological spacesZ(Ω,A) andZ′(Ω,A)). A linear topological spaceZ(Ω,A)

is defined by

Z(Ω,A) :=
{

f ∈ X(Ω,A)
∣

∣

∣

∣

sup
j≤0

2M| j|∥∥
∥φ j

(

√
A
)

f
∥

∥

∥

L1(Ω)
<∞ for all M ∈N

}

equipped with the family of semi-norms {qA,M(·)}∞
M=1

given by

qA,M( f ) := ‖ f ‖L1(Ω) + sup
j∈Z

2M| j|‖φ j(
√

A) f ‖L1(Ω).

Z′(Ω,A) denotes the topological dual ofZ(Ω,A).
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Now, we define the homogeneous Besov spaces as follows.

Definition. For s ∈ R and 1 ≤ p,q ≤∞, Ḃs
p,q(A) is defined by

Ḃs
p,q(A) := { f ∈ Z′(Ω,A) | ‖ f ‖Ḃs

p,q(A) <∞},

where

‖ f ‖Ḃs
p,q(A) :=

∥

∥

∥

{

2s j‖φ j(
√

A) f ‖Lp(Ω)

}

j∈Z
∥

∥

∥

`q(Z)
.

Here we note that the fundamental properties of spaces X(Ω,A), Z(Ω,A), their duals

and Besov spaces are established in the paper [4], such as completeness, duality, embed-

ding, lifting properties as well as the case when Ω= Rd.

We will prove that the derivative operator ∂x maps from test function spacesZ(Ω,AD),

Z(Ω,AN ) to Z(Ω,AN ), Z(Ω,AD), respectively. So we define ∂x on spaces of distributions

as follows.

Definition (Derivatives in the sense of distributions).

(i) For any f ∈ Z′(Ω,AD), we define ∂x f as an element ofZ′(Ω,AN ) by

Z′(Ω,AN )〈∂x f ,g〉Z(Ω,AN ) := −Z′(Ω,AD)〈 f ,∂xg〉Z(Ω,AD) for any g ∈ Z(Ω,AN). (1.1)

(ii) For any f ∈ Z′(Ω,AN ), we define ∂x f as an element of Z′(Ω,AD) by

Z′(Ω,AD)〈∂x f ,g〉Z(Ω,AD) := −Z′(Ω,AN )〈 f ,∂xg〉Z(Ω,AN ) for any g ∈ Z(Ω,AD). (1.2)

Based on the above definition, the derivatives of higher order are also introduced.

Namely, for f ∈ Z′(Ω,AD) and odd numbers α = 1,3, · · · , ∂αx f is defined by

Z′(Ω,AN )〈∂αx f ,g〉Z(Ω,AN) := (−1)αZ′(Ω,AD)〈 f ,∂αx g〉Z(Ω,AD) for any g ∈ Z(Ω,AN ).

For even numvers α = 2,4, · · · , it is

Z′(Ω,AD)〈∂αx f ,g〉Z(Ω,AD) := (−1)αZ′(Ω,AD)〈 f ,∂αx g〉Z(Ω,AD) for any g ∈ Z(Ω,AD).

Similar definition of derivatives for f ∈ Z′(Ω,AN ) is also introduced by replacing the role

of AD and AN with each other.

The following is the main result of this paper.

Theorem 1.1. Let Ω = (0,1) or (0,∞). Then the following hold.

(i) The operator ∂x is a continuous linear operator fromZ(Ω,AD) toZ(Ω,AN) and from

Z′(Ω,AD) toZ′(Ω,AN) defined by (1.1).

(ii) For any s ∈ R and 1 ≤ p,q ≤∞, the operator ∂x defines a continuous linear operator

from Ḃs
p,q(AD) to Ḃs−1

p,q (AN) and

C−1‖ f ‖Ḃs
p,q(AD) ≤ ‖∂x f ‖Ḃs−1

p,q (AN ) ≤C‖ f ‖Ḃs
p,q (AD) for any f ∈ Ḃs

p,q(AD).



4 Tsukasa Iwabuchi

(iii) The above assertions (i) and (ii) also hold by replacing AD and AN with each other.

Let us give two comments. When we consider derivatives in the whole space Rd case,

they are well-defined as maps from the space of tempered distributions to itself, where we

do not have to change the test function space. This also applies to derivatives in the sense of

distribution on general domains, where the test function space consists of smooth functions

with the compact support. On the other hand, if we consider to analize in function spaces

with several boundary conditions such as Dirichlet or Neumann types, we need to choose

suitable boundary condition for derivatives from Theorem 1.1, which would be the main

novelty of this paper due to the definition of derivatives above. In higher dimensional case,

there seems to appear a difficulty to extend the above theorem. In fact, let us consider the

half space Rd
+ := {x ∈ Rd | xd > 0} for instance. The derivative ∂xd

plays the same roll as the

derivative ∂x in 1D from the view point of boundary conditions of the Dirichlet Laplacian

and the Neumann Laplacian, but ∂xd
concerns with only the smoothness in the xn direction

only. Hence one can not consider ∂xn
from Ḃs

p,q to Ḃs−1
p,q similarly to (ii) in Theorem 1.1,

while only the corresponding second inequality would be proved.

This paper is organized as follows. In section 2, we prove that the derivative ∂x is

considered as maps from one test function space to the other. In section 3, we prove Theo-

rem 1.1.

2 Preliminary

Let GD(t, x,y) and GN (t, x,y) be the kernels of the Dirichlet Laplacian and the Neumann

Laplacian on the half line (0,∞), respectively, namely,

GD(t, x,y) := (4πt)−
1
2

e−
(x−y)2

4t − e−
(x+y)2

4t

2
, t > 0, x ∈ (0,∞),

GN (t, x,y) := (4πt)−
1
2

e−
(x−y)2

4t + e−
(x+y)2

4t

2
, t > 0, x ∈ (0,∞).

Since GD(t, x,y) and GN (t, x,y) satisfy the Gaussian upper bounds and the gradient estimates

in L∞(Rd), we can apply the argument in [2,3] (see also [9]) to veryfy the spectral multiplier

theorem together with gradient estimates. As for the case when Ω = (0,1), we also see that

the kernels in the case when Ω = (0,1) satisfy the Gaussian upper bounds and the gradient

estimates thanks to the series given by sine or cosine functions. It should be noted here that

the kernel for the Neumann Laplacian does not satisfy the Gaussian upper bounds for large

t, but it is satisfied if we consider functions without the spectrum at zero. So we can utilize

the Gaussian upper bounds also for the heat kernel for the Neumann Laplacian, since we

consider the homogeneous spaces.



Derivatives on Function Spaces 5

Lemma 2.1. Let Ω = (0,1) or (0,∞), 1 ≤ p ≤∞. Then

sup
j∈Z
‖φ j(
√

AD)‖Lp→Lp <∞, sup
j∈Z
‖φ j(
√

AN)‖Lp→Lp <∞, (2.1)

sup
j∈Z

2− j‖∂xφ j(
√

AD)‖Lp→Lp <∞, sup
j∈Z

2− j‖∂xφ j(
√

AN)‖Lp→Lp <∞, (2.2)

sup
j∈Z

2− j‖φ j(
√

AD)∂x‖Lp→Lp <∞, sup
j∈Z

2− j‖φ j(
√

AN)∂x‖Lp→Lp <∞. (2.3)

The following lemma is essential in this paper, which is on the derivativite operator as

a mapping on spaces of test functions.

Lemma 2.2. Let Ω = (0,1) or (0,∞). The operator ∂x is a continuous linear operator

from Z(Ω,AD) to Z(Ω,AN ). Also, ∂x is a continuous linear operator from Z(Ω,AN ) to

Z(Ω,AD).

Proof. If Ω = (0,1), it is easy to prove, since any f ∈ Z(Ω,AD) satisfies

f (x) =

∞
∑

n=1

an sin(nπx) and ∂x f (x) =

∞
∑

n=1

nan cos(nπx) ∈ Z(Ω,AN ),

with an = 2
∫ 1

0
f (y)sin(nπy)dy, and any f ∈ Z(Ω,AD) satisfies

f (x) =

∞
∑

n=1

an cos(nπx) and ∂x f (x) =

∞
∑

n=1

(−nan)sin(nπx) ∈ Z(Ω,AD),

with an = 2
∫ 1

0
f (y)cos(nπy)dy, which are assured by supn∈N |n|M|an| < ∞ for any M ∈ N

thanks to f ∈ Z(Ω,AD),Z(Ω,AD), respectively.

We turn to prove the case when Ω= (0,∞). Let us prove the former part of the assertion.

For any f ∈ Z(Ω,AD), we have from ∂2M
x f ∈ H1

0
(Ω) (M ∈ N) that

∂x∂
2(M−1)
x f ∈ D(AN), AM

N ∂x f = (−∂2
x)M∂x f = ∂x(−∂2

x)M f = ∂xAM
D f , M = 1,2, · · · .

On each norm of ∂x f in the definition of qAD,M( f ), the above identity and the gradient

estimates (2.2) yield that

‖∂x f ‖L1 ≤
∑

k∈Z
‖∂xφk(

√

AD) f ‖L1 ≤C
∑

k∈Z
2k‖φk(

√

AD) f ‖L1 ≤C
∑

k∈Z
2k2−2|k|qAD,2( f ),

for j ≥ 0

2M j
∥

∥

∥

∥
φ j(
√

AN)∂x

∑

k∈Z
φk(
√

AD) f ‖L1 ≤2M j
∑

k∈Z
‖φ j(
√

AN)A−M
N AM

N ∂xφk(
√

AD) f ‖L1

≤C2M j2−2M j
∑

k∈Z
‖∂xAM

D φk(
√

AD) f ‖L1

≤C
∑

k∈Z
2(1+2M)k‖φk(

√

AD) f ‖L1

≤CqAD,2+2M( f ),

(2.4)
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and for j ≤ 0

2M| j|
∥

∥

∥

∥
φ j(
√

AN)∂x

∑

k∈Z
φk(
√

AD) f

∥

∥

∥

∥

L1
=2M| j|

∑

k∈Z
‖φ j(
√

AN)∂xAM
D A−M

D φk(
√

AD) f ‖L1

=2M| j|
∑

k∈Z
‖φ j(
√

AN)AM
N ∂xA−M

D φk(
√

AD) f ‖L1

≤C2M| j|22M j
∑

k∈Z
‖∂xA−M

D φk(
√

AD) f ‖L1

≤C
∑

k∈Z
2(1−2M)k‖φk(

√

AD) f ‖L1

≤CqAD ,2M( f ).

(2.5)

We deduce from the above three estimates that qAN ,M(∂x f ) ≤ CqAD ,2+2M( f ), which proves

the former part of Lemma 2.2 for Ω = (0,∞).

As for the latter part of Lemma 2.2 forΩ= (0,∞), for any f ∈Z(Ω,AN ), it follows from

∂2M−1
x f ∈ H1

0
(Ω) (M ∈ N) that

∂2M−1
x f ∈ D(AD), AM

D ∂x f = (−∆)M∂x f = ∂x(−∆)M f = ∂xAM
N f , M = 1,2, · · · .

Hence it is possible to apply the previous argument by replacing AD and AN with each other.

We complete the proof of Lemma 2.2. �

3 Proof of Theorem 1.1

We prove Theorem 1.1 in this section. We omit the proof of (iii), since it is proved in the

analogous way to those for (i) and (ii).

Proof of (i) in Theorem 1.1. It is possible to understand that Lemma 2.2 yields that the

definition (1.1) makes sense. We finish the proof. �

Proof of (ii) in Theorem 1.1. Let f ∈ Ḃs
p,q(AD). We first prove that

∂x f ∈ Ḃs−1
p,q (AN) and ‖∂x f ‖Ḃs−1

p,q (AN ) ≤C‖ f ‖Ḃs
p,q (AD). (3.1)

Since f ∈ Z′(Ω,AD) and ∂x f ∈ Z′(Ω,AN), it suffices to prove the above inequality. It

follows from the partition of the identity of f inZ′(Ω,AD) that

‖∂x f ‖Ḃs−1
p,q (AN ) ≤

{
∑

j∈Z

(

2(s−1) j
∑

k∈Z
‖φ j(
√

AN)∂xφk(
√

AD) f ‖Lp

)q} 1
q
.

We divide into two cases of k ≤ j and k ≥ j. If k ≤ j, we have from the similar argument to

(2.4) that

2(s−1) j‖φ j(
√

AN)∂xφk(
√

AD) f ‖Lp ≤C2(s−1) j2−2M j‖∂xAM
D φk(

√

AD) f ‖Lp

≤C2(s−1−2M) j2(−s+1+2M)k2sk‖φk(
√

AD) f ‖Lp .
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For any M ∈N with 1+2M > s, the above inequality and the transformation k = j− k′ yield

that

{
∑

j∈Z

(

2(s−1) j
∑

k≤ j

‖φ j(
√

AN)∂xφk(
√

AD) f ‖Lp

)q} 1
q

≤C
{
∑

j∈Z

(
∑

k′≥0

2(s−1−2M) j2(−s+1+2M)( j−k′)2s( j−k′)‖φ j−k′(
√

AD) f ‖Lp

)q} 1
q

=C
{
∑

j∈Z

(
∑

k′≥0

2(s−1−2M)k′2s( j−k′)‖φ j−k′(
√

AD) f ‖Lp

)q} 1
q

≤C
(
∑

k′≥0

2(s−1−2M)k′
)

‖ f ‖Ḃs
p,q
.

If k ≥ j, we also have the similar argument to (2.5) that

2(s−1) j‖φ j(
√

AN)∂xφk(
√

AD) f ‖Lp ≤C2(s−1) j22M j‖∂xA−M
D φk(

√

AD) f ‖Lp

≤C2(s−1+2M) j2(−s+1−2M)k2sk‖φk(
√

AD) f ‖Lp .

For any M ∈N with 2M > 1− s, the above estimate and the transformation k = j+k′ enables

us to get that

{
∑

j∈Z

(

2(s−1) j
∑

k≥ j

‖φ j(
√

AN)∂xφ j(
√

AD) f ‖Lp

)q} 1
q

≤C
{
∑

j∈Z

(
∑

k′≥0

2(s−1+2M) j2(−s+1−2M)( j+k′)2s( j+k′)‖φ j+k′(
√

AD) f ‖Lp

)q} 1
q

=C
{
∑

j∈Z

(
∑

k′≥0

2(−s+1−2M)k′2s( j+k′)‖φ j+k′(
√

AD) f ‖Lp

)q} 1
q

≤C
(
∑

k′≥0

2(−s+1−2M)k′
)

‖ f ‖Ḃs
p,q
.

Therefore, we obtain the inequality in (3.1), which also prove the latter inequality in (ii).

We turn to prove the former inequality in (ii). For this purpose, we use a part of the

assertion (iii) which corresponds to (3.1), namely,

∂xg ∈ Ḃs−2
p,q (AD) and ‖∂xg‖Ḃs−2

p,q (AD) ≤C‖g‖Ḃs−1
p,q (AN ) for any g ∈ Ḃs−1

p,q (AN). (3.2)

By following the proof of (3.1), we get the above assertion (3.2) although we omit the

detail. We already know ∂x f ∈ Ḃs−1
p,q (AN) by (3.1) and it follows from f = A−1

D
AD f , the

lifting property A−1
D

: Ḃs−2
p,q (AD)→ Ḃs

p,q(AD) (see Proposition 3.2 (ii) in [4]) and the above

(3.2) for g = ∂x f that

‖ f ‖Ḃs
p,q(AD) ≤C‖AD f ‖Ḃs−2

p,q (AD) =C‖∂x(∂x f )‖Ḃs−2
p,q (AD) ≤C‖∂x f ‖Ḃs−1

p,q (AN ).

Therefore the former inequality in (ii) is proved, and we complete the proof. �
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