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Abstract

In this paper, we introduce the anisotropic Herz spaces with two variable exponents
and establish their block decomposition. Using this decomposition, we obtain some
boundedness on the anisotropic Herz spaces with two variable exponents for a class of
sublinear operators.
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1 Introduction

In recent years, the theory of function spaces with variable exponents has developed since
the paper [8] of Kovacik and Rékosnik appeared in 1991. Lebesgue and Sobolev spaces
with integrability exponent have been extensively investigated, see [5] and the references
therein. In 2012, Almeida and Drihem [1] introduced the Herz spaces with two variable
exponents and proved the boundedness of some operators on these spaces. Meanwhile,
extending classic function spaces arising in harmonic analysis of Euclidean spaces to other
domains and non-isotropic settings is an important topic. In 2003, Bownik [2] introduced
the anisotropic Hardy spaces associated with very general discrete groups of dilations. The
above spaces include the classical isotropic Hardy space theory of Fefferman and Stein [6]
and parabolic Hardy space theory of Calderén and Torchinsky [3, 4]. In 2006, Lan [9]
defined the anisotropic Herz spaces and gave some properties and applications.

Inspired by [9, 10], we introduce the anisotropic Herz spaces with two variable expo-
nents which is a generalization of the anisotropic Herz spaces and the Herz spaces with two
variable exponents, and establish their block decomposition. Using this decomposition, we
obtain the boundedness of some sublinear operators on the anisotropic Herz spaces with
two variable exponents.

*E-mail address: hbwang_2006@ 163.com
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To be precise, we first briefly recall some standard notations in the remainder of this
section. In Section 2, we will define the anisotropic Herz spaces with two variable expo-
nents I'(f;((f))’p (A;R™") and KZ((A'))”’ (A;R™), and give their block decomposition. In Section 3, we
will give the boundedness of some sublinear operators on K(‘;((.'))’p (A;R™) and K:;((.'))’p (A;R™).

Now, we first recall some notations in variable function spaces. Given an open set
Q cR", and a measurable function p(-) : Q — [1, 00), LPO(Q) denotes the set of measurable
functions f on Q such that for some A > 0,

£\
fs; (T) dx < 0

This set becomes a Banach function space when equipped with the Luxemburg-Nakano

norm .
plx
WA llro@) = inf{/l >0: f (If;x)l) dx < 1}.
o

These spaces are referred to as variable Lebesgue spaces or, more simply, as variable LP
spaces, since they generalized the standard L” spaces: if p(x) = p is constant, then LP")(Q)
is isometrically isomorphic to L”(€2). The L? spaces with variable exponent are a special
case of Musielak-Orlicz spaces.

For all compact subsets E C Q, the space Lﬁ)(c')(Q) is defined by Lﬁ)(c')(Q) ={f:f¢€
LPO(E)}. Define P(Q) to be set of p(-) : Q —> [1,00) such that

p~ =essinf{p(x): x€Q}>1, p" =esssup{p(x): x€Q} < co.

Denote p’(x) = p(x)/(p(x) —1). Let B(Q) be the set of p(-) € P(Q) such that the Hardy-
Littlewood maximal operator M is bounded on LP"(Q).
In variable L? spaces there are some important lemmas as follows.

Lemma 1.1. (/8]) Let p(-) e PR™). If f € LPO(R") and g € LP' O(R"), then fg is integrable
on R" and
f lfgOldx < rpll fllrollgllzro,
Rn
where
rp=1+1/p~—1/p*.
This inequality is named the generalized Holder inequality with respect to the variable

L? spaces.

Lemma 1.2. ([7]) Suppose p(-) € B(R"). Then there exists a constant C > 0 such that for
all balls B in R",

ﬁ||XB||Lp<»)(Rn)|D(B||Lp’<-)(Rn) <C.

Lemma 1.3. ([7]) Let p(-) € B(R"). Then for all balls B in R" and all measurable subsets
S CB,

“XB”LI’(-)(Rn) < |B|
”XS“LP(-)(RH) - | |’
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”)(S“LP(-)(Rn) < (|S|)6l Ils ||Lp’(-)(Rn) < (|S|)62
|BI “\Bl) -

”XB”L/»(-)(Rn) - ’ |lXB||Lp’(-)(Rn)

where 0 < 81,02 < 1 are constants.

Throughout this paper ¢, is the same as in Lemma 1.3, and the notation f < g means
that there exists a constant C > 0 such that f < Cg. If f < gand g < f, then f ~ g.
We can obtain the following two definitions in [1].

Definition 1.4. ([1]) Let a function g(-) : R* — R.
(1) g(-) is locally log-Hélder continuous, if there exists a constant C > 0 such that

lg(x) — g £ T——7——
S80S oo 1D

for all x,y e R" and |x—y| < 1/2.

(2) g(*) is locally log-Holder continuous at the origin (or has a log decay at the origin), if
there exists a constant C > 0 such that

C
-0 —M
lg(x) —g(0)] < Toge+ 1/1x)
for all x e R"™.
(3) g(+) is locally log-Holder continuous at infinity (or has a log decay at infinity), if there
exist some g« € R” and C > 0 such that

19(0) = gool € ———
S TE= Tog(e + Ix)

for all x e R".

By Po(R") and P (R") we denote the class of all exponents p € P(R") which are locally
log-Holder continuous at the origin and at infinity, respectively.

Next we will introduce some basic definitions and properties of non-isotropic spaces
associated with general expansive dilations. A n X n real matrix A is called an expansive
matrix, sometimes called a dilation, if all eigenvalues A of A satisfy [1] > 1. We suppose
A,..., A, are eigenvalues of A (taken according to the multiplicity) so that 1 < |4;| < ... < |4,].
A set A C R”" is said to be an ellipsoid if A = {x € R" : |Px| < 1}, for some nondegenerate
n X n matrix P, where |-| denotes the Euclidean norm in R”. For a dilation A, there exists an
ellipsoid A and r > 1 such that A € rA c AA, where |A|, the Lebesgue measure of A, equals
1. Let By = AXA for k € Z, then we have By, C rBy C Bi+1, and |By| = b¥, where b = |detA| > 1.
Let w be the smallest integer so that 2By ¢ A¥By = B,,. A quasi-norm associated with an
expansive matrix A is a measurable mapping p4 : R" — [0, 00) satisfying

palx)>0 for x #0,

p4(Ax) = |detAlo(x) for x e R",

pa(x+y) < C(pa(x)+pa(y)) forx,yeR",
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where C > 1 is a constant. One can show that all quasi-norms associated to a fixed dilation
A are equivalent, see [2, Lemma 2.4]. Define the step homogeneous quasi-norm p on R”
induced by dilation A as

_ bj ifxEBj+1\Bj,
P = { 0, ifx=0.

For any x,y € R", we have

p(x+y) < b"(p(x) +p(y). (1.1)

2 The decomposition for the anisotropic Herz spaces with two
variable exponents

In this section, we first introduce the definition of anisotropic Herz spaces with two variable
exponents. Let Cy = By \ Bx_; for k € Z. Denote Z, and N as the sets of all positive and
non-negative integers, xx = xc, for k € Z, yx = xx if k € Z, and %o = xp,, where yc, is the
characteristic function of Cy.

Definition 2.1. Let a(-) : R” — R with a(-) € L°(R"), 0 < p < co0 and ¢(-) € P(R"). The
homogeneous anisotropic Herz space K “( ) P(A;R™) associated with the dilation A is defined
by

where

1/p
||f||Ka()[J - { Z ”bka( )f)(k”Lq()(Rn } .

The non-homogeneous anisotropic Herz space K;;((_'))’p (A;R™) associated with the dilation A
is defined by

Z(())p(A RY = {fe L;IO(C)(R”) : ||f||KZ(()>p < oo},

l/p
fllgetor = {an’“’( FRD } :

Here the usual modifications are made when p = co.

where

Next we will consider the decomposition of K“( P (A;R™). We begin with the notation
of central block.

Definition 2.2. Let g(-) € PR"),a(-) € L(R") NPy(R") NP (R™) and 0 < a; < co. Denote
a;=a(0),l<0;a; = @, > 0.
(i) A measurable function a(x) is said to be a central (a(-), g(-))-block if
(1) suppa C B;.
(2) llall o ny < 670,
(i1) A measurable function a(x) is said to be a central (a(-), g(-))-block of restricted type
if
(1) supp a c B; for some [ > 0.
(2) ||a||Lq(-)(Rn) < blaw,
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The following decomposition theorem shows that the central blocks are the “building
block” of the anisotropic Herz spaces with two variable exponents.

Theorem 2.3. Let 0 < p < 00,g(-) e P(R™),a(-) € L°(RM)NPH(RMN NP (R") and 0 < a; < co.
The following two statements are equivalent:

(i) f € KT (ARY),

(ii) f can be represented by

FO= D" Abe(), @.1)

k=—o00

where each by is a central (a(+),q(-))-block with support contained in By and Z [A]P < oo.

k=—00

Proof. We first prove (i) implies (ii). For every f € K;I((f))’p (A;R™), write

D Foox

fo =
k=—00
N : Jxi(x)
= ”bka( )f/\/k”L ) (R"
k;oo e )”bka(')ka”Lq(»(Rn)

I
&
=
S
~
—
=
~—

SOxr(x)

where Ay = ||bk“(')ka||Lq<->(Rn) and b(x) = 0 Frl o,

It is obvious that supp by C By and [|bk|| a0 @y = |Bi|~®/". Thus, each by is a central
(a(-),g(-))-block with the support By and

ka(-
DA = B el o = ||f||;’.<(,((.))_p <co,
k=— k=— qt

Now we prove (ii) implies (i). Let f(x) = Z Agbr(x) be a decomposition of f which
k=—0c0

satisfies the hypothesis (i) of Theorem 2.3. For each j € Z, by the Minkowski inequality,
we have

X Mzaoren < O 1Allbell oo e, 2.2)
k=j

Now we consider two cases for the index p.
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If 0 < p < 1. From (2.2) it follows that

117 a.r

lI()

Z 1O Larl?

k=—00

-1

k(0 o
I 1A +Zb X

k=—00

Z b [Z 1B 1 ]+ 2, [Z WA NP e ]

= I+II.

A

For I, by 0 < @(0), @ < o0, we have

-1
I = Z bka(O)p [Z |/l |p“b ”Lq()(Rn +ZM |P||b ||Lq()(Rﬂ)]

k=—00 Jj=k

< bka(O)p |/l 1Pb~ Jja(0)p blm(o)p |/l b j@oop
: kZoo Z +kZ;x, Z
-1 -1
< |/1 |Pb(k De(O)p I/l 1Pb™ jasp
< Z Z 1A;Pp% /)a(O)p_,_ZM l
—00 k=—00
= Z e Y
jE=eo J=0
<

i ;7.
J—

For 11, by 0 < @ < o0, we have

- Zbkamp[zm 1PIlb ||U,()(R,,]
=k

J

bkaoop [Z |/lj|pb_ja°°p]
k 0

J=k

A

3 ptkisr

A AN
DM I 1
= §
< =

k)
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If 1 < p < oo, we have

0 )
AL s Z D OPI MYy +Zw PR g

q() j=—00

IHI1+1V.

For 111, by (2.2), 0 < a(0), @e < oo and the Holder inequality, we have

p
11 < Z pi*Op [Z [lllBrll oo ey +Z|ﬁklllbklqu(>(Rn ]

jE—eo k=j
S |/1 |b(] k)(I(O) + [ |/l |b—k(tw+]a(0)}
j=—eo\k=j J=—0o\k=0
1 (-1 -1 rlv'
< Z [Z | ﬂk|17b(j—k)a(0)p/2][z b(j—k)a(o)p’/2]
Jj=—o\k=j k=j
plp’
" Z pleO)p [Z 1 |pb—kaoop/2] [Zb kaeop’ /2]
]——00
z[z >
< |/lk|pb(j KaOp/2 | |k |Pb—kdoop/2
j:—oo k J k 0
< Z Z |/1k|pb(/ k)a(o)p/2+2|/lk|l7

k=—00 j=—00

Z Ael? + Z l?

k=—0c0

A

[ee)

Dl

k=—o00

A

For IV, by (2.2), 0 < @ < oo and the Holder inequality, we have

- p
IV < Z pIa=p Z Mkl”bk”Lq(‘)(R")]
- =

- p
Z |/lk|b_kaoo]

k=j

. - plp’
Z |/lk|pb—k(lwp/2][z b—kaw,,//z}
k=j k=j

- plp’

| APbY- k)amp/Z] [Z b(j—k)amp’/Z]

k=j

N
™M
<

IS

:

N N
[z Il
— S
e
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o k

< ZMHPZIJ(J—HGWP/Z
=0 =0

< Dl
k=0

This leads to that f € I'(Z(FS)’p (A;R™) and then completes the proof of Theorem 2.3. O

Remark 2.4. From the proof of Theorem 2.3, it is easy to see that if f € KZ((_'))’p (A;R™) and

fx) = Z Abr(x) be a central (a(-),g(-))-block decomposition, then

k=—c0

o0 1/p
1fl petrr = [Pl .
Pl | 2.

k=—c0

By an argument similar to the proof of Theorem 2.3, we can obtain the decomposi-
tion characterizations of the non-homogeneous anisotropic Herz spaces with two variable
exponents as follows.

Theorem 2.5. Let 0 < p < 00,q(-) € PR"),a(-) € LR NPy(R) NP (R") and 0 < @ <
oo, The following two statements are equivalent:

(i) f € Ky (AR,

(ii) f can be represented by

F) =D Abi(), 2.3)
k=0

where each by, is a central (a(-),q(-))-block of restricted type with support contained in By,

(o]
and Z I]P < co.
k=0

00 1/p

Moreover, the norms ||f|| KO and inf [Z |AlP ] are equivalent, where the infimum is

q()
k=0

taken all over all decompositions of f as in (2.3).

3 Boundedness of some sublinear operators

As applications of the decomposition theorems, let us come to investigate the boundedness
on the anisotropic Herz spaces with two variable exponents for some sublinear operators.

Theorem 3.1. Let 0 < p < 00,g(-) € BR™),a(:) € L°(RM)NPH(R) NP (R?) and 0 < a(0), ¢ <
02. If a sublinear operator T satisfies

TFl < f YO 4y g suppr, 3.1
re P(X =)

for any f € L1O(R") with a compact support and T is bounded on L1IOR"), then T is
bounded on K;(.'))’p (A;R™) and KZS”’ (A;R™), respectively.
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Proof. 1t suffices to prove that T is bounded on Ka( P (A;R™). The non-homogeneous case

can be proved in the similar way. Suppose f € K“()p (A;R"). By Theorem 2.3, f(x) =

Z A;bj(x), where each b is a central (a(-),¢(-))-block with support contained in B; and
j=—00

0o 1/p
(), = /l P .
fllgacrs [ 2, Wl ]
j=—0
Therefore, we get

ITAP 0 = ZIIb"“”(wakllmo(Rn

q() k=—00

A

Z D OPIT PNy * Zb'“’””“(Tf Wil

k=—o00

k—w—

P
Z PO bl
K j=—

A

-1 ©
p
N Z bka(O)P( Z |/1j|||(Tbj))(k||Lq<‘>(R”))

k=—00 J=k=w
k-w—1 p

p
+Zb/m@p( Z |/lj|||(Tbj)Xk”L‘i(‘)(R"))
k=0 j=k-w

= Lh+bh+15+14.
Let us first estimate /. If j<k—w—1,x€ Cyand y € B}, by (1.1) we have

px=y) = b™"p(x) = p(y) = b™p(x) = b~ p(x) = b™"(1 = 1/b)p(x).

Therefore by (3.1) and the generalized Holder inequality, we get

1T ()|

IA

o) fB Ty

CH™ 1Bl >y 8, | o ey

So by Lemma 1.2 and Lemma 1.3, we have

IA

A

||(Tbj))(k||Lq(->(Rn) = _k”b '||Lq(-)(Rn)”XB ||Lq’()(Rn)“XBk”Lq(-)(Rn)

S k”b ||L‘1()(Rn)(|Bk|”/YBk||Lq ()(Rﬂ))”XBj”Lq/(')(R")
HXBj”Lq’(-)(Rn)
< ”bj”Ltl(A)(Rn)m
k I(R?
< béz(j_k) | |bj”Lq(>)(Rn) . (3.2)
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Therefore, when 0 < p < 1, by 0 < a(0) < 65, we get

-1 k—w-1

P
ho= o 3O Y ATl
k=—00 j=—0
-1 k—w—1 . )
< ) bka(O)P( M Ajlpb[52(</—k)—1“(0)]P)
k=—00 j=—0
-w=2 -1 _
< Y S puheeon
Jj=— k=j+w+1
-w=2
S DL WP SIAL ,e (3.3)
j=—c0 q()

When 1 < p < oo, take 1/p+1/p’ = 1. Since 0 < a(0) < §7, by (3.2) and the Holder inequal-

ity, we have
L <
<
<
<
<

k—w-1

Z bka/(O)p( Z P /a(O))p

-1 k-

1 k—w-1

Ny ’
Z ( 2. |/lj|pb(j_k)[62_a(0)]p/2)( > bU—k)[éz—w(O)]p'/z)p »

-0 j=—00 j=—0

-1 k-w-1

D ( M /lj|pb(j—k)[6z—a<0>]p/2)

k=—

0o j=—o00

—-w=2 -1

Mo S g2

j=—o0 k=jtw+1

-w—2

D P SIAIL e (3.4)

j=—c0 q()

Let us now estimate /. Similarly, we consider two cases for p. When 0 < p <1, by
L10(R") boundedness of T, we have

L

A

N

A

-1

oo 4
S 2 0n( S b el

k=—00 j=k—-w
-1 00
ka (0
> B0 D I )
k=—00 Jj=k—w
-1 00
Z bka(O)p( | Aj|pb—ja(0)p+2| /1j|pb—jaoop)
k=—00 Jj=k-w j=0

-1 -1

Z Z AP b*=DeOp Z bka(O)pZM |PJawp

k=—00 j=k-w k=—o00
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]+W

Z 11 Z pk= 1)0(0)17_,_Z|/1 1P

Jj=—00 k=—00

N

12\

Z A S UL (3.5)

j=—00 q()

When 1 < p < o0, take 1/p+1/p’ = 1. By LIY(R") boundedness of T and the Holder
inequality, we have

-1

o0 4
L < Z b’“’(o)”( Z Iﬁjlllbjlquw(Rn))

k=—00 j=k-w
< ( | /1,|b<"‘ﬁ“<0>) + bka(O)p( | /11.|b—mw)
k=—oco = j=k—w k=—0c0 j=0
(3 I
< ( P b /)a<0>p/2)( b(k—/)aw)p'/z)
—o0  j=k—w j=k-w
s . RN )
+( |/1j|Pb—J%op/2)(Z pi¥ep /2)
1=0 Jj=0
J+w
< Z |A; 1P Z pk= ])0(0)p/2+2|/1 1P
j=—00 k=—o00
< P < IAE., (3.6)
]_Z—:oo Lo

For I3, when 0 < p < 1, by 0 < a(0), @ < 92, We get

k—w-1
I = Zb’“"””( > Wbl |
k=0 j=—o00
< Zb’“"””( Z | ﬂﬂpb[éz(j—k)—ja(onp)
Jj=—00
k—w—1
+Zbkamﬁ( Z |4;1Pb [62(j-k)— J%o]P)
< Zbk(aw—éz)P( Z AP b0 a((mp)
j——OO
+ZM |P( Z pU- k)(5z—am)p)
k=j+w+1
= Z A |P+Zu i

]——OO
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Z P < IAP,., (3.7)

j=—00 q()

When 1 < p <o, take 1/p+1/p’ =1. Since 0 < a(0),a < 2, by (3.2) and the Holder
inequality, we have

) k—w—1

i p
Bos 3B 3 Ol
k=0 j:_oo
s Zbk““’p( Z s
j——oo
R k—w—1 ' . »
+Zb'“’“°”( > lprihie)
= Jj=0
. p
< Zbk(am—&)ﬂ( Z | /lj|b/[52—a(0)])
j——oo
oo k—w-1
+Z( Z | 10002 w)
k=0
> 5 &
s ( ;1P B0 a(O)]p/z)( pilo2-aO)1p’ /2)
J=—o j=—co
+ ( I/ljlpb(f"‘><52-%o>l’/2)( b(J—k)(tsz—aoo)p//Z)
k=0 J:O j=0
i o k=w—1
< Z |,1j|ij[6z—a(0)]p/2+Z Z Mjlpb(j—k)(az—aw)p/z
jz_ k=0 j=0
< Z K |P+Z|/1 i Z -G -a)p/2
k=j+w+1
< D P SIA 0, a8

Jj=—o q()

Let us now estimate /4. Similarly, we consider two cases for p. When 0 < p <1, by
L1O(R™) boundedness of T, we have

o0

8

p
I = Zbkamp( > s )XkHLq()(Rn)
k=0 Jj=k—w
kaco
< DB D I )
k=0 j=k—w
IO W
k=0 j=k—w
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j+W

Z 1A |sz(k Dawp

]_—W

N

A

Z < IAP,., (3.9)

]——W [l()

When 1 < p < oo, take 1/p+1/p’ = 1. By LIO(R") boundedness of T and the Holder
inequality, we have

P
I - - T Dl

~.
S

s I
o
|
8
S
M5 10Ms e 10
&3

V4
|Aj|||b,,-||Lq<.)(Rn))

N
8 I
S
5

§
{
(
(

P
< Z bk(ywp |/lj|b_Ja°°)
J=k-w
< Zbkamp |/1j|pb—jaoop/2)( Z piaep /2)
J=k=w j=k—w
< Zbkamp( Z I/lj|pb—jdml7/2)
k=0 j=k—w
Jw
< Z 1, |pr(k ateap/2
-w
< Z A S U, (3.10)

j=w 11()

Combining (3.3)-(3.10), we have
”Tf”j(ﬂ(-)w < “fHKw(‘),p-
q() q()
Thus, the proof of Theorem 3.1 is completed. O

Remark 3.2. From the proof of Theorem 3.1, it is easy to see that the size condition (3.1)
can be replaced by

Wet i o plx=y) 2 b7 (1-1/b)p(x), (3.11)

T
Trml<c p(x)’ yesuppf

for all f € LI(R") with compact support.
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