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Abstract

The aim of this paper is to prove new quantitative uncertainty principles for the Fourier
transform connected with the spherical mean operator. The first of these results is an
extension of the Donoho and Stark’s uncertainty principle. The second result extends
the Heisenberg-Pauli-Weyl uncertainty principle. From these two results we deduce a
continuous-time principle for the Lp theory, when 1 < p ≤ 2.
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1 Introduction

Uncertainty principles are mathematical results that give limitations on the simultaneous
concentration of a function and its Fourier transform. There are many ways to get the state-
ment about concentration precise. The most famous of them is the so called Heisenberg
uncertainty Principle [16] where concentration is measured by dispersion and the Hardy
uncertainty Principle [14] where concentration is measured in terms of fast decay. A con-
siderable attention has been devoted recently to discovering new formulations and new
contexts for the uncertainty principle. Indeed, Morgan [23], Cowling and Price [8], Beurl-
ing [3], Miyachi [22] for example interpreted the smallness as sharp pointwise estimates
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or integrable decay of functions and gave qualitative uncertainty principles for the Fourier
transforms. Landau and Pollak [20], Slepian and Pollak [30], Benedicks [2] and Donoho
and Stark [10] paid attention to the supports of functions and gave quantitative uncertainty
principles for the Fourier transforms. (see the surveys [5, 12] and the book [15] for other
forms of the uncertainty principle).

The spherical mean operator play an important role and have many applications, for
example; in the image processing of so-called synthetic aperture radar (SAR) data [17, 18],
or in the linearized inverse scattering problem in acoustics [11]. These operators have been
studied by many authors from many points of view [1, 11, 25, 28].

Many uncertainty principles have already been proved for the generalized Fourier trans-
form associated with the spherical mean operator, for examples (cf. [6, 7, 21, 24, 27]).

Our aim here is to prove new uncertainty principles for the generalized Fourier trans-
form associated with the spherical mean operator. The uncertainty principles proved in this
paper and in [21], (we recall some of these results in the Appendix), have many applica-
tions, for example for the generalized wavelet transform associated with the spherical mean
operator, and for the generalized heat and Schrödinger equations. In a forthcoming paper
we study these applications.

The remaining part of the paper is organized as follows. In §2, we recall the main
results about the spherical mean operator. §3 is devoted to study the generalized versions
of Donoho-Stark’s uncertainty principle. In the last section we study many variants of
Heisenberg’s inequalities for F .

Throughout this paper, the letter C indicates a positive constant not necessarily the same
in each occurrence.

2 Spherical mean operator

In this section, we define and recall some properties of the spherical mean operator. For
more details see ([25] ).
We denote by

• C∗(Rd+1) the space of continuous functions on Rd+1 = R×Rd, even with respect to
the first variable.

• C∗,c(Rd+1) the subspace of C∗(Rd+1) formed by functions with compact support.

• E∗(Rd+1) the space of infinitely differentiable functions on Rd+1, even with respect to
the first variable.

• S∗(Rd+1) the Schwartz space of rapidly decreasing functions on Rd+1, even with re-
spect to the last variable.

• S d the unit sphere in Rd+1,

S d =
{
(η,ξ) ∈ Rd+1 : η2+ ‖ξ‖2 = 1

}
,

where for ξ = (ξ1, ..., ξd), we have ‖ξ‖2 = ξ21 + ...+ ξ
2
d.
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• dσd the normalized surface measure on S d.

• Rd+1
+ =

{
(r, x) ∈ Rd+1 : r > 0

}
.

Definition 2.1. The spherical mean operator is defined on C∗(Rd+1) by

∀(r, x) ∈ Rd+1
+ , R f (r, x) =

∫
S d

f (rη, x+ rξ)dσd(η,ξ).

The spherical mean kernel is the function ϕµ,λ, (µ,λ) ∈ Cd+1 = C×Cd, defined by

∀(r, x) ∈ Rd+1
+ , ϕµ,λ(r, x) = R(cos(µ.)e−i<λ,.>)(r, x).

We have

ϕµ,λ(r, x) = j d−1
2

(r
√
µ2+λ2)e−i〈λ,x〉,

where

• λ2 = λ2
1+ ...+λ

2
d, if λ = (λ1, ...,λd) ∈ Cd

• 〈λ, x〉 = λ1x1+ ...+λd xd, if x = (x1, ..., xd) ∈ Rd and λ = (λ1, ...,λd) ∈ Cd

• j d−1
2

is the normalized Bessel function defined by

j(d−1)/2(x) = Γ((d+1)/2)
∞∑

k=0

(−1)k

k!Γ((2k+1+d)/2)
(z/2)2k.

Remark 2.2. For all ν ∈ Nd+1, (r, x) ∈ Rd+1 and z = (µ,λ) ∈ Cd+1,

|Dνzϕµ,λ(r, x)| ≤ ||(r, x)|||ν| exp(2||(r, x)|| ||Imz||), (2.1)

where

Dνz =
∂|ν|

∂zν11 · · ·∂z
νd+1
d+1

and |ν| = ν1+ · · ·+ νd+1.

Now let Γ be the set

Γ = Rd+1∪
{
(it, x); (t, x) ∈ Rd+1, |t| ≤ ‖x‖

}
.

Γ+ the subset of Γ, given by

Γ+ = R
d+1∪

{
(it, x); (t, x) ∈ Rd+1,0 ≤ t ≤ ‖x‖

}
.

We have for all (µ,λ) ∈ Γ,

sup
(r,x)∈Rd+1

|ϕµ,λ(r, x)| = 1.

In the following, we denote by
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• dν(r, x) the measure defined on Rd+1
+ by

dν(r, x) = kdrddr⊗dx,

with
kd =

1
2(d−1)/2Γ((d+1)/2)(2π)d/2 .

• Lp(dν),1 ≤ p ≤∞, the space of measurable functions on Rd+1
+ , satisfying

‖ f ‖Lp(dν) =

(∫
Rd+1
+

| f (r, x)|pdν(r, x)
)1/p

<∞, 1 ≤ p <∞,

‖ f ‖L∞(dν) = ess sup
(r,x)∈Rd+1

+

| f (r, x)| <∞, p =∞.

• BΓ+ the σ-algebra defined on Γ+ by

BΓ+ = {θ
−1(B) : B ∈ BBor(Rd+1

+ )},

where θ defined on the set Γ+ by θ(λ,µ) = (
√
µ2+ ||λ||2,λ).

• dγ the measure defined on BΓ+ by

∀A ⊂ BΓ+ , γ(A) = ν(θ(A)).

• Lp(dγ),1 ≤ p ≤∞, the space of measurable functions on Γ+, satisfying

‖ f ‖Lp(dγ) =

(∫
Γ+

| f (µ,λ)|pdγ(µ,λ)
)1/p

<∞, 1 ≤ p <∞,

‖ f ‖L∞(dγ) = ess sup
(µ,λ)∈Γ+

| f (µ,λ)| <∞, p =∞.

We have the following properties.

Proposition 2.3. i) For every nonnegative measurable function g on Γ+, we have∫
Γ+

f (µ,λ)dγ(µ,λ) = kd
[∫
Rd+1
+

f (µ,λ)(µ2+ ‖λ‖2)(d−1)/2µdµdλ

+

∫
Rd

∫ ‖λ‖

0
f (iµ,λ)(‖λ‖2−µ2)(d−1)/2µdµdλ

]
.

ii) For every nonnegative measurable function f on Rd+1
+ (resp. integrable on Rd+1

+ with re-
spect to the measure dν), f ◦θ is a measurable nonnegative function on Γ+, (resp. integrable
on Γ+ with respect to the measure dγ) and we have∫

Γ+

f ◦ θ(µ,λ)dγ(µ,λ) =
∫
Rd+1
+

f (r, x)dν(r, x). (2.2)

In the following we recall some results on the dual of the spherical mean operator R.
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Definition 2.4. The dual tR of the spherical mean operator R is defined by : ∀ (s,y) ∈ Rd+1,

tR( f )(s,y) =
Γ( d+1

2 )

π
d+1

2

∫
Rd

f (
√

s2+ ||y− z||2,z)dz, f ∈C∗,c(Rd+1). (2.3)

Example 2.5. Let p ∈ [1,∞). For all a > 0, β > 0 we have

∀ (s,y) ∈ Rd+1, tR(Ep
a,β)(s,y) =C(a,β, p)Ep

aβ
1+β ,1+β

(s,y), (2.4)

with Ea,β is the Gauss kernel associated with the spherical mean operator R defined by

∀ (r, x) ∈ Cd+1, Ea,β(r, x) = k(a,β)e−a(βr2+||(r,x)||2), (2.5)

where

k(a,β) =
2
√
πad+ 1

2

Γ( d+1
2 )

(
β

π
)

d+1
2 , and C(a,β, p) =

Γ( d+1
2 )
√
π

[ (1+β)p−1

aβp p

] d
2 .

Proposition 2.6. The function tR( f ) defined almost everywhere on Rd+1
+ by

tR( f )(s,y) =
Γ( d+1

2 )

π
d+1

2

∫
Rd

f (
√

s2+ ||y− x||2, x)dx

is Lebesgue integrable on Rd+1
+ . Moreover for all bounded function g ∈ C∗(Rd+1), we have

the formula ∫
Rd+1
+

tR( f )(s,y)g(s,y)dsdy =
∫
Rd+1
+

R(g)(r, x) f (r, x)rddrdx. (2.6)

Remark 2.7. Let f be in L1(dν). By taking g ≡ 1 in the relation (2.6) we deduce that∫
Rd+1
+

tR( f )(s,y)dsdy =C(d)
∫
Rd+1
+

f (r, x)rddrdx, (2.7)

where
C(d) :=

∫
S d

dσd(η,ξ).

We consider the generalized Fourier transform F associated with the spherical mean
operator R and we recall its main properties.

Definition 2.8. The Fourier transform associated with the spherical mean operator is de-
fined on L1(dν) by

∀ (µ,λ) ∈ Γ,F ( f )(µ,λ) =
∫
Rd+1
+

f (r, x)ϕµ,λ(r, x)dν(r, x). (2.8)

Example 2.9. Let a > 0, β > 0. The Fourier transform of Gauss kernel associated with
spherical mean operator is given by

∀ (µ,λ) ∈ Γ, F (Ea,β)(µ,λ) =C(a,β,d)E 1+β
4aβ ,

1
1+β

(µ,λ),

where
C(a,β,d) = 22dΓ(

d+1
2

)(aβ)d+ 1
2 (
π

1+β
)

d
2 .
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Proposition 2.10. For all f in L1(dν), we have the relation

∀ (µ,λ) ∈ Γ,F ( f )(µ,λ) = F0 ◦
tR( f )(µ,λ), (2.9)

where F0 is the Fourier-cosine transform on Rd+1 defined for f in S∗(Rd+1) by

∀ (µ,λ) ∈ Rd+1, F0( f )(µ,λ) =
∫
Rd+1
+

f (r, x)e−i〈λ,x〉 cos(rµ)drdx.

In the follow we recall some properties on the Fourier transform F .
For all f ∈ L1(dν),

||F ( f )||L∞(dγ) ≤ || f ||L1(dν). (2.10)

For f ∈ L1(dν) such that F f ∈ L1(dγ), we have the inversion formula for F : for almost
every (r, x) ∈ Rd+1

+ ,

f (r, x) =
∫
Γ+

F ( f )(µ,λ)ϕµ,λ(r, x)dγ(µ,λ). (2.11)

Theorem 2.11. (Plancherel formula). For every f in S∗(Rd+1), we have∫
Γ

|F ( f )(λ,µ)|2dγ(λ,µ) =
∫
Rd+1
+

| f (r, x)|2dν(r, x). (2.12)

In particular, the Fourier transform F can be extended to an isometric isomorphism from
L2(dν) onto L2(dγ).

Proposition 2.12. Let f be in Lp(dν), p ∈ [1,2]. Then F ( f ) belongs to Lp′(dγ), with
1
p +

1
p′ = 1, and we have

‖F ( f )‖Lp′ (dγ) 6 ‖ f ‖Lp(dν) .

For (r, x) ∈ Rd+1, s > 0, we note Ns(r, x), by

Ns(r, x) := e−s(r2+||x||2). (2.13)

We have
F (Ns(r, x)) (t,y) =C(s)e−

(t2+2‖y‖2)
4s .

We define the following functions W s
l , W̃ s

l , l ∈ Nd+1, s > 0 by

∀ (r, x) ∈ Rd+1, W s
l (r, x) = r2kxme−s(r2+‖x‖2), l = (k,m), (2.14)

and

∀ (r, x) ∈ Rd+1, W̃ s
l (r, x) = F −1(λ2kµme−s(λ2+‖µ‖2))(r, x), l = (k,m), (2.15)

Notation. We denote by Pm(Rd+1) the set of homogeneous polynomials of degree m.

Proposition 2.13. ([7]). Let l ∈ Nd+1. For all s > 0, there exists a homogeneous
Q ∈ Pl(Rd+1) such that

∀ (r, x) ∈ Rd+1, F (W s
l )(r, x) = Q(r, x)e−

1
4s (r2+2‖x‖2). (2.16)



Lp Quantitative Uncertainty Principles 89

3 Donoho-Stark’s uncertainty principle

We shall investigate the case where f and F ( f ) are close to zero outside measurable
sets. Here the notion of ”close to zero” is formulated as follows. If f ∈ Lp(dν), 1 ≤ p ≤ 2,
is ε-concentrated on a measurable set E ⊂ Rd+1

+ if there is a measurable function g vanish-
ing outside E such that || f − g||Lp(dν) ≤ ε‖ f ‖Lp(dν). Therefore, if we introduce a projection
operator PE as

PE f (r, x) =

 f (r, x) if (r, x) ∈ E
0 if (r, x) < E,

then f is ε-concentrated on E if and only if || f −PE f ||Lp(dν) ≤ ε‖ f ‖Lp(dν).
We define a projection operator QW as

QW f (r, x) = F −1
(
PW(F ( f ))

)
(r, x). (3.1)

Similarly, we say that F ( f ) is εW-concentrated to W in Lp′(dγ) if and only if

‖F ( f )−F (QW f )‖Lp′ (dγ) ≤ εW‖F ( f )‖Lp′ (dγ). (3.2)

If E and W are sets of finite measure, we define mesν(E) and mesγ(W) as follow

mesν(E) :=
∫

E
dν(r, x), mesγ(W) :=

∫
W

dγ(µ,λ).

Lemma 3.1. Let W a measurable set of Rd+1
+ such that mesγ(W) <∞. Let f ∈ Lp(dν) with

p ∈ [1,2]. We have

QW f (x) =
∫

W
ϕµ,λ(r, x)F ( f )(µ,λ)dγ(µ,λ).

Proof. Let f ∈ Lp(dν) with p ∈ [1,2]. By Hölder’s inequality and Proposition 2.12

||PW(F ( f ))||L1(dγ) =

∫
W
|F ( f )(µ,λ)|dγ(µ,λ)

≤
(
mesγ(W)

) 1
p
‖F ( f )‖Lp′ (dγ)

≤
(
mesγ(W)

) 1
p
‖ f ‖Lp(dν).

and
||PW(F ( f ))||L2(dγ) =

∫
W
|F ( f )(µ,λ)|2dγ(µ,λ)

≤
(
mesγ(W)

) p′−2
p′
‖F ( f )‖Lp′ (dγ)

≤
(
mesν(W)

) p′−2
p′
‖ f ‖Lp(dν).

Hence PW(F ( f )) ∈ L1(dγ)
⋂

L2(dγ). This combined with (3.1) gives the result. �

Let BLp(dν)(T ), 1 ≤ p ≤ 2, the subspace of all g ∈ Lp(dν) such that QT g = g. We say that
f is ε-bandlimited to T if there is a g ∈ BLp(dν)(T ) with || f − g||Lp(dν) < ε‖ f ||Lp(dν). Here we
denote by ‖PE‖p the operator norm of PE on Lp(dν) and by ‖PE‖p,T the operator norm of
PE : BLp(dν)(T )→ Lp(dν).
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Lemma 3.2. Let E and T be measurable sets of Rd+1
+ . For p ∈ [1,2], we have

‖PE‖p,T ≤
(
mesν(E)mesγ(T )

) 1
p .

Proof. If at least one of mesν(E) and mesγ(T ) is infinity, then the inequality is clear. There-
fore, it is enough to consider the case where both E and T have finite positive measures.

For f ∈ BLp(dν)(T ) we see that

f (r, x) =
∫

T
ϕµ,λ(r, x)F ( f )(µ,λ)dγ(µ,λ).

By (2.1), Hölder’s inequality and Proposition 2.12

| f (r, x)| ≤
(
mesγ(T )

) 1
p
‖F ( f )‖Lp′ (dγ)

≤
(
mesγ(T )

) 1
p
‖ f ‖Lp(dν).

Therefore

||PE f ||Lp(dν) =
(∫

E
| f (r, x)|pdν(r, x)

) 1
p
≤

(
mesν(E)mesγ(T )

) 1
p
|| f ||Lp(dν).

Then, it follows that for f ∈ BLp(dν)(W),

||PE f ||Lp(dν)

|| f ||Lp(dν)
≤

(
mesν(E)mesγ(T )

) 1
p ,

which implies the desired inequality. �

Proposition 3.3. Let f ∈ Lp(dν). If f is εE-concentrated to E and εT -bandlimited to T ,
then (

mesν(E)mesγ(T )
) 1

p
≥

1−εE −εT

1+εT
.

Proof. Without loss of generality, we may suppose that ‖ f ‖Lp(dν) = 1. Since f is εE-
concentrated to E, it follows that ‖PE f ‖Lp(dν) ≥ ‖ f ‖Lp(dν) −‖ f −PE f ‖Lp(dν) ≥ 1− εE . More-
over, since f is εT -bandlimited, there is a g ∈ BLp(dν)(T ) with ||g− f ||Lp(dν) ≤ εT . Therefore,
it follows that

||PEg||Lp(dν) ≥ ||PE f ||Lp(dν)− ||PE(g− f )||Lp(dν) ≥ ||PE f ||Lp(dν)−εT ≥ 1−εE −εT

and ||g||Lp(dν) ≤ || f ||Lp(dν)+εT = 1+εT . Then, we see that

||PEg||Lp(dν)

||g||Lp(dν)
≥

1−εE −εT

1+εT
.

Hence ‖PE‖p,T ≥
1−εE−εT

1+εT
and Lemma 3.2 yields the desired inequality. �

Proposition 3.4. Let E and T be measurable subsets of Rd+1
+ , and f ∈ Lp(dν) for p ∈ (1,2].

If f is εE-concentrated to E in Lp(dν)-norm and F ( f ) is εT -concentrated to T in Lp′(dγ)-
norm, then

(mesν(E)mesγ(T ))
1
p′ ≥

(1−εE)‖F ( f )‖Lp′ (dγ)−εT || f ||Lp(dν)

|| f ||Lp(dν)
.
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Proof. Let f ∈ Lp(dν) for p ∈ (1,2]. As above

||F ( f )−F (QT PE f )||Lp′ (dγ) ≤ ||F ( f )−F (QT f )||Lp′ (dγ)

+ ||F (QT f )−F (QT PE f )||Lp′ (dγ)

≤ εT ||F ( f )||Lp′ (dγ)+ || f −PE f ||Lp(dν)

≤ εT ||F ( f )||Lp′ (dγ)+εE || f ||Lp(dν)

and thus,

||F (QT PE f )||Lp′ (dγ) ≥ ||F ( f )||Lp′ (dγ)− ||F ( f )−F (QT PE f )||Lp′ (dγ)
≥ (1−εT )||F ( f )||Lp′ (dγ)−εE || f ||Lp(dν).

On the other hand, it is easy to obtain

||F (QT PE f )||Lp′ (dγ)

|| f ||Lp(dν)
≤

(
mesν(E)mesγ(T )

) 1
p′ .

Hence

(mesν(E)mesγ(T ))
1
p′ || f ||Lp(dν) ≥ (1−εE)‖F ( f )‖Lp′ (dγ)−εT || f ||Lp(dν),

which gives the desired result. �

Proposition 3.5. Let f ∈ L1(dν)∩Lp(dν), p ∈ (1,2]. If f is εE-concentrated to E in L1(dν)-
norm and F ( f ) is εT -concentrated to T in Lp′(dγ)-norm, then

(mesν(E)mesγ(T ))
1
p′ ≥ (1−εE)(1−εT )

‖F ( f )‖Lp′ (dγ)

‖ f ‖Lp(dν)
.

Proof. Let f ∈ L1(dν)∩ Lp(dν), p ∈ (1,2]. As F ( f ) is εT -concentrated to T in Lp′
γ -norm, it

follows that

‖F ( f )‖Lp′ (dγ) ≤ εT ‖F ( f )‖Lp′ (dγ)+
(∫

T
|F ( f )(λ,µ)|p

′

dγ(λ,µ)
) 1

p′

≤ εT ‖F ( f )‖Lp′ (dγ)+ (mesγ(T ))
1
p′ ‖F ( f )‖L∞(dγ).

Thus from (2.10),

(1−εT )‖F ( f )‖Lp′ (dγ) ≤ (mesγ(T ))
1
p′ ‖ f ‖L1(dν). (3.3)

Similarly, using f is εE-concentrated to E in L1(dν)-norm, and Hölder inequality, we obtain

(1−εE)‖ f ‖L1(dν) ≤ (mesγ(E))
1
p′ ‖ f ‖Lp(dν). (3.4)

Combining (3.3) and (3.4), we obtain the result. �
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4 Generalizations of Heisenberg inequality

In this subsection we study many versions of the Heisenberg uncertainty principle for the
generalized Fourier transform.

We put
ht(λ,µ) := e−t||θ(λ,µ)||2 , forall (λ,µ) ∈ Rd+1

+ .

Lemma 4.1. Let 1 ≤ q <∞. There exists a positive constant such that

||ht||Lq(dγ) =Ct−
2d+1

2q .

Proof. Let 1 ≤ q <∞. Using the relation (2.2), we obtain the result. �

Lemma 4.2. Let 1 < p ≤ 2 and 0 < a < 2d+1
p′ . Then for all f ∈ Lp(dν) and t > 0,

||e−t||θ(λ,µ)||2F ( f )||Lp′ (dγ) ≤Ct−
a
2 || ||(r, x)|| a f ||Lp(dν). (4.1)

Proof. Inequality (4.1) holds if || ||(r, x)||a f ||Lp(dν) =∞.

Assume that || ||(r, x)||a f ||Lp(dν) <∞. For s > 0 let fs = fχB(0,s) and f s = f − fs.
Using Proposition 2.12, and that | f s(r, x)| ≤ s−a| ||(r, x)||a f (r, x)|, we obtain

||e−t||θ(λ,µ)||2F ( fχBc(0,s))||Lp′ (dγ) ≤ ||e−t||θ(λ,µ)||2 ||L∞(dγ) ||F ( fχBc(0,s))||Lp′ (dγ)
≤ || fχBc(0,s)||Lp(dν)
≤ s−a|| ||(r, x)||a f ||Lp(dν).

On the other hand, by (2.10) and Hölder’s inequality

||e−t||θ(λ,µ)||2F ( fχB(0,s))||Lp′ (dγ) ≤ ||e−t||θ(λ,µ)||2 ||Lp′ (dγ) ||F ( fχB(0,s))||L∞(dγ)

≤ ||e−t||θ(λ,µ)||2 ||Lp′ (dγ) || fχB(0,s)||L1(dν)

≤ ||e−t||θ(λ,µ)||2 ||Lp′ (dγ) || ||(r, x)||−aχB(0,s)||Lp′ (dν)|| ||(r, x)||a f ||Lp(dν).

A simple calculation give that

|| ||(r, x)||−aχB(0,s)||Lp′ (dν) =C(d, s)s
2d+1

p′ −a
.

So

||e−t||θ(λ,µ)||2F ( f )||Lp′ (dγ) ≤ ||e−t||θ(λ,µ)||2F ( fs)||Lp′ (dγ)+ ||e
−t||θ(λ,µ)||2F ( f s)||Lp′ (dγ)

≤ Cs−a(1+ ||e−t||θ(λ,µ)||2 ||Lp′ (dγ)s
2d+1

p′ )||(r, x)||a f ||Lp(dν).

Choosing s = t
1
2 , we obtain (4.1). �

Theorem 4.3. Let 1 < p ≤ 2 and 0 < a < 2d+1
p′ and b > 0. Then for all f ∈ Lp(dν)

||F ( f )||Lp′ (dγ) ≤C|| ||(r, x)||a f ||
b

a+b
Lp(dν)|| ||θ(µ,λ)||

bF ( f )||
a

a+b

Lp′ (dγ)
. (4.2)
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Proof. Let 1 < p ≤ 2 and 0 < a < 2d+1
p′ . Assume that b ≤ 2. From the previous lemma, for

all t > 0

||F ( f )||Lp′ (dγ) ≤ ||e−t||θ(λ,µ)||2F ( f )||Lp′ (dγ)+ ||(1− e−t||θ(λ,µ)||2)F ( f )||Lp′ (dγ)

≤ Ct−
a
2 ||(r, x)||a f ||Lp(dν)+ ||(1− e−t||θ(λ,µ)||2)F ( f )||Lp′ (dγ).

On the other hand,

||(1− e−t||θ(λ,µ)||2)F ( f )||Lp′ (dγ) = t
b
2 ||(t||θ(λ,µ)||2)−

b
2 (1− e−t||θ(λ,µ)||2)||θ(µ,λ)||bF ( f )||Lp′ (dγm,d).

Since (1− e−t)t−
b
2 is bounded for t ≥ 0 if b ≤ 2. Then, we obtain

||F ( f )||Lp′ (dγm,d) ≤C
(
t

a
2 ||(r, x)||a f ||Lp(dνm,d)+ t

b
2 || ||θ(λ,µ)||bF ( f )||Lp′ (dγm,d)

)
,

from which, optimizing in t, we obtain (4.2) for 0 < a < 2d+1
p′ and b ≤ 2.

If b > 2, let b′ ≤ 2. For u ≥ 0 and b′ < b, we have ub′ ≤ 1+ub, which for u = ||θ(λ,µ)||ε gives
the inequality ( ||θ(λ,µ)||ε )b′ < 1+ ( ||θ(λ,µ)||ε )b for all ε > 0.

It follows that

|| ||θ(λ,µ)||b
′

F ( f )||Lp′ (dγ) ≤ ε
b′ ||F ( f )||Lp′ (dγ)+ε

b′−b|| ||θ(λ,µ)||bF ( f )||Lp′ (dγ).

Optimizing in ε, we get the result for b > 2.

|| ||θ(λ,µ)||b
′

F ( f )||Lp′ (dγ) ≤ ||F ( f )||
b−b′

b

Lp′ (dγ)
|| ||θ(λ,µ)||bF ( f )||

b′
b

Lp′ (dγ)
.

Together with (4.2) for b > 2. �

Corollary 4.4. Let a,b > 0. For all f ∈ L2(dν), we have

|| f ||L2(dν) ≤C|| ||(r, x)||a f ||
b

a+b
L2(dν)
|| ||θ(µ,λ)||bF ( f )||

a
a+b
L2(dγ)

. (4.3)

Proof. Using the previous theorem for p = 2, and applying Plancherel formula, we obtain
the result when 0 < a < 2d+1

2 . If a ≥ 2d+1
2 , let a′ < 2d+1

2 . For u ≥ 0, ua′ ≤ 1+ ua which for
u = ||(r,x)||

ε gives the inequality

(
||(r, x)||
ε

)a′ ≤ 1+ (
||(r, x)||
ε

)a, forall ε > 0.

It follows that

|| ||(r, x)||a
′

f ||L2(dν) ≤ ε
a′ || f ||L2(dν)+ε

a′−a|| ||(r, x)||a f ||L2(dν).

Optimizing in ε, we obtain

|| ||(r, x)||a
′

f ||L2(dν) ≤C|| f ||
a−a′

a
L2(dν)
|| ||(r, x)||a f ||

a′
a

L2(dν)
. (4.4)
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Then, by (4.3) for (a′ and b), and (4.4), we deduce that

|| f ||L2(dν) ≤ C|| ||(r, x)||a
′

f ||
b

a′+b
L2(dν)
|| |λ|bF ( f )||

a′
a′+b

L2
ν(R)

≤ C|| f ||
b(a−a′)
a(a′+b)

L2(dν)
|| ||(r, x)||a f ||

a′b
a(a′+b)

L2(dν)
|| ||θ(µ,λ)||bF ( f )||

a′
a′+b
L2(dγ)

.

Thus

|| f ||
a′(a+b)
a(a′+b)

L2(dν)
≤C|| ||(r, x)||a f ||

a′b
a(a′+b)

L2(dν)
|| ||θ(µ,λ)||bF ( f )||

a′
a′+b
L2(dγ)

,

which gives the result for a ≥ 2d+1
2 . �

Let T be a measurable subset of Rd+1
+ . Let b > 0 and let f ∈ Lp(dν), p ∈ [1,2]. We

say that ||θ(µ,λ)||bF ( f ) is εT -concentrated to T in Lp′(dγ)-norm, if there is a function h
vanishing outside T such that

|| ||θ(µ,λ)||bF ( f )−h||Lp′ (dγ) ≤ εT || ||θ(µ,λ)||bF ( f )||Lp′ (dγ).

From (3.2), it follows that ||θ(µ,λ)||bFΛ( f ) is εT -concentrated to T in Lp′(dγ)-norm, if and
only if

|| ||θ(µ,λ)||bF ( f )− ||θ(µ,λ)||bF (QT f )||Lp′ (dγ) ≤ εT || ||θ(µ,λ)||bF ( f )||Lp′ (dγ). (4.5)

Corollary 4.5. Let T be a measurable subset of Rd+1
+ , and let 1 < p ≤ 2, f ∈ Lp(dν) and

b > 0. If ||θ(µ,λ)||bF ( f ) is εT -concentrated to T in Lp′(dγ)-norm, then for 0 < a < 2d+1
p′

||F ( f )||Lp′ (dγ) ≤
C

(1−εT )
a

a+b
|| ||(r, x)||a f ||

b
a+b
Lp(dν)|| ||θ(µ,λ)||

bF (QT f )||
a

a+b

Lp′ (dγ)
. (4.6)

Proof. Let f ∈ Lp(dν), 1 < p ≤ 2. Since ||θ(µ,λ)||bF ( f ) is εT -concentrated to T in Lp′(dγ)-
norm, then we have

|| ||θ(µ,λ)||bF ( f )||Lp′ (dγ) ≤ εT || ||θ(µ,λ)||bF ( f )||Lp′ (dγ)+ || ||θ(µ,λ)||
bF (QT f )||Lp′ (dγ).

Thus
|| ||θ(µ,λ)||bF ( f )||

a
a+b

Lp′ (dγ)
≤

1

(1−εT )
a

a+b
|| ||θ(µ,λ)||bFΛ(QT f )||

a
a+b

Lp′ (dγ)
.

Multiply this inequality by C|| ||(r, x)||a f ||
b

a+b
Lp(dν) and applying theorem 4.3 we deduce the

desired result. �

Corollary 4.6. Let T be a measurable subset of Rd+1
+ , and let f ∈ L2(dν) and a,b > 0.

If ||θ(µ,λ)||bF ( f ) is εT -concentrated to T in L2(dγ)-norm, then

|| f ||L2(dν) ≤
C

(1−εT )
a

a+b
|| ||(r, x)||a f ||

b
a+b
L2(dν)
|| ||θ(µ,λ)||bF (QT f )||

a
a+b
L2(dγ)

. (4.7)

Proof. We proceed as the previous corollary and using Corollary 4.4 we obtain the result.
�
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Appendix
In the following we recall the main results proved in [21].

Proposition 4.7. Let s > 0. Then there exists a constant C1(d, s) such that for all
f ∈ L1(dν)

⋂
L2(dν)

|| f ||L2(dν) ≤C1(d, s)|| f ||
2s

2d+1+2s
L1(dν)

|| ||θ(λ,µ)||sF ( f )||
2d+1

2d+1+2s
L2(dγ)

. (4.8)

Proposition 4.8. Let s > 0. Then there exists a constant C2(d, s) such that for all
f ∈ L1(dν)

⋂
L2(dν)

|| f ||L1(dν) ≤C2(d, s)|| f ||
2s

2d+1+2s
L2(dν)

|| ||(r, x)||s f ||
2d+1

2d+1+2s
L1(dν)

. (4.9)

From the previous results we deduce the following variation on Heisenberg’s uncer-
tainty inequality for the generalized Fourier transform.

Theorem 4.9. Let s > 0. Then for all f ∈ L1(dν)
⋂

L2(dν)

|| f ||L2(dν)|| f ||L1(dν) ≤C1(d, s)C2(d, s)|| ||(r, x)||s f ||L1(dν)|| ||θ(λ,µ)||
sF ( f )||L2(dγ). (4.10)

Proposition 4.10. Let s > 0 and let W a measurable subset of Γ with 0 < mesγ(W) < ∞.
Then for all f ∈ L1(dν)

⋂
L2(dν)

||1WF ( f )||L2(dγ) ≤C2(d, s)
√

mesγ(W)|| f ||
2s

2s+2d+1
L2(dν)

|| ||(r, x)||s f ||
2d+1

2s+2d+1
L1(dν)

. (4.11)

We adapt the method of Ghorbal-Jaming [13], we have proved the local uncertainty
principle of F .

Theorem 4.11. Let E,W be a pair of measurable subsets such that

0 < mesν(E),mesγ(W) <∞.

Then the following uncertainty principles hold.
1) For 0 < s < 2d+1

2 , there exists a constant C3(d, s) such that for all f ∈ L2(dν)

||1WF ( f )||L2(dγ) ≤C3(d, s)(mesγ(W))
s

2d+1 || ||(r, x)||s f ||L2(dν). (4.12)

2) For s > 2d+1
2 , there exists a constant C4(d, s) such that for all f ∈ L2(dν)

||1WF ( f )||L2(dγ) ≤C4(d, s)
√

mesγ(W)|| ||(r, x)||s f ||
2d+1

2s
L2(dν)
|| f ||

1− 2d+1
2s

L2(dν)
. (4.13)

Theorem 4.12. (Cowling-Price’s theorem for the generalized Fourier transform)
Let f be a measurable function on Rd+1

+ such that∫
Rd+1
+

eap||(r,x)||2 | f (r, x)|p

(1+ ||(r, x)||)n dν(r, x) <∞ (4.14)

and ∫
Rd+1
+

e4bq||θ(µ,ξ)||2 |F ( f )(µ,ξ)|q

(1+ ||(µ,ξ)||)s dµdξ <∞, (4.15)
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for some constants a > 0, b > 0, 1 ≤ p,q < ∞, and for any n ∈ (2d + 1,2d + 1+ p] and
s ∈ (d+1,d+1+q]. Then

i) If ab > 1
4 , we have f = 0 almost everywhere.

ii) If ab = 1
4 , we have f =CNb.

iii) If ab < 1
4 , for all δ ∈]b, 1

4a [, the functions of the form f (r, x) = Nδ(r, x), where P ∈ P,
satisfy (4.14) and (4.15).

The following is an immediate consequence of Theorem 4.12.

Corollary 4.13. Let f be a measurable function on Rd+1
+ such that

| f (r, x)| ≤ Me−a||(r,x)||2(1+ ||(r, x)||)m a.e. (4.16)

and for all (µ,ξ) ∈ Rd+1
+ ,

|F ( f )(µ,ξ)| ≤ Me−4b||θ(µ,ξ)||2 (4.17)

for some constants a,b > 0, r ≥ 0 and M > 0.
i) If ab > 1

4 , then f = 0 almost everywhere.
ii) If ab = 1

4 , then f is of the form f (r, x) =CNb(r, x).
iii) If ab < 1

4 , then there are infinity many nonzero f satisfying (4.16) and (4.17).

Beurling’s theorem and Bonami, Demange, and Jaming’s extension are generalized for
the generalized Fourier transform as follows.

Theorem 4.14. (Beurling’s theorem for the generalized Fourier transform )
Let N ∈ N, δ > 0 and f ∈ L2(dν) satisfy∫

Rd+1
+

∫
Rd+1
+

| f (r, x)||F ( f )(t,y)||R(t,y)|δ

(1+ ||(r, x)||+ ||(t,y)||)N e||(r,x)|| ||(t,y)||dν(r, x)dtdy <∞, (4.18)

where R is a polynomial of degree m. If N ≥ mδ+d+3, then

f (r, x) =
∑

|l|< N−mδ−d−1
2

as
l W̃ s

l (r, x) a.e., (4.19)

where s > 0, as
l ∈ C and W̃ s

l is given by (2.15 ). Otherwise, f (r, x) = 0 almost everywhere.

As an application of Theorem 4.14, we deduce the following Gelfand-Shilov type the-
orem for the generalized Fourier transform.

Corollary 4.15. Let N,m ∈ N, δ > 0, a,b > 0 with ab ≥ 1
4 , and 1 < p,q <∞ with 1

p +
1
q = 1.

Let f ∈ L2(dν) satisfy ∫
Rd+1
+

| f (r, x)|e
(2a)p

p ||(r,x)||p

(1+ ‖(r, x)‖)N dν(r, x) <∞ (4.20)

and ∫
Rd+1
+

|F ( f )(t,y)|e
(2b)q

q ||(t,y)||q
|R(t,y)|δ

(1+ ||(t,y)||)N dtdy <∞ (4.21)
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for some R ∈ Pm.
i) If ab > 1

4 or (p,q) , (2,2), then f (r, x) = 0 almost everywhere.
ii) If ab = 1

4 and (p,q) = (2,2), then f is of the form (4.19) whenever N ≥ mδ+d+3
2 and

r = 2b2. Otherwise, f (x) = 0 almost everywhere.

Theorem 4.16. (Miyachi’s theorem for the generalized Fourier transform)
Let f be a measurable function on Rd+1

+ even with respect to the first variable such that

E−1
a,β f ∈ Lp(dν)+Lq(dν) (4.22)

and ∫
Rd+1

log+
E−1

b(1+β)
β ,

1
1+β

(α,ξ)|F ( f )(α,ξ)|

λ
dαdξ <∞, (4.23)

for some constants a > 0, b > 0 λ > 0, 1 ≤ p,q ≤∞. Then
If ab > 1

4 , we have f = 0 almost everywhere.
If ab = 1

4 , we have f =CEb,β with |C| ≤ λ.
If ab < 1

4 , for all δ ∈ (b, 1
4a ), the functions of the form f (x) = CEδ,β, satisfy (4.22) and

(4.23).
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