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Abstract
We present a survey of recent developments on a parabolic version of uniform rectifi-
ability and parabolic singular integrals. In particular we describe some ideas to prove
the equivalence between the parabolic uniform rectifiability of a set E and the L2(E)
boundedness of a class of Calderón-Zygmund integrals of parabolic type. We also de-
scribe a result on compactness of certain parabolic singular integrals, as well as some
related open problems and conjectures.
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Keywords: Parabolic uniform rectifiability, parabolic singular integrals, big pieces of para-
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The topics contained in this survey article may be viewed as extensions to more general
settings of Calderón-Zygmund’s theory of singular integrals. In the first part we briefly
describe some basic facts on singular integral operators and uniform rectifiability. We refer
the reader to [6] and to the introductory remarks in [16, 17] for more details. A recent
enlightening introduction to the topic is in the unpublished manuscript [13]. The second
part contains adaptations of definitions and the description of some recent results in the
parabolic setting.

Needless to say, this work does not aim to be an exhaustive account of the theory, but
rather a description that allows one to get to the definitions and results in the parabolic
setting, including some of its motivations.

In particular, we do not include the discussion of the Cauchy integral over a 1-dimensional
set, in which there is some special features and a better understanding of certain aspects (see
e.g. [47]).
∗E-mail address: rnoriega@uaem.mx
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Part I

Brief review of the standard case
The topics in this introductory part are rather old, and we apologize in advance for reviewing
what it could be a well known set of ideas and topics for some readers. The point of
presenting them in this section is for purposes of motivating the parabolic analogues of
definitions and ideas. We also mention a couple of recent fundamental results and pose a
couple of important conjectures in the area.

1 Basic definitions and results

1.1 Singular Integrals.

As is well known, the basic example of a singular integral operator is the Hilbert transform
defined by the principal value integral:

H f (x) =
1
π

pv
∫

f (y)
x− y

dy =
1
π

lim
ϵ→0

∫
|x−y|>ϵ

f (y)
x− y

dy. (1.1)

To obtain n-dimensional extension of this operator one considers Riesz transforms

R j f (x) = lim
ϵ→0

∫
|x−y|>ϵ

x j− y j

|x− y|n+1 f (y)dy, 1 ≤ j ≤ n.

Both operators may be viewed as convolution principal value type operators of the form

T f (x) = pv
∫

K(x− y) f (y)dy (1.2)

with an odd kernel K. Moreover, the kernel satisfies the following estimates

|K(x)| ≤ C
|x|n (1.3)

|K(x)−K(y)| ≤ C |x− y|α
|x|n+α for |x| > 2|x− y|. (1.4)

In order to pose the Main Topic of this note, we would like to consider a generalization
of previously defined objects, defined this time on the graph of a Lipschitz function.

Let Γ = {(x,A(x)) : x ∈ R} be the graph of a function A : R→ R satisfying a Lipschitz
condition of the form |A(x)−A(y)| ≤ M|x− y|, for a uniform constant M > 0. Consider the
Cauchy integral over Γ

C f (z) =
∫
Γ

f (w)
z−w

dw for z ∈ Γ. (1.5)

Using graph coordinates we have z = x+ iA(x), w = y+ iA(y), dw = (1+ iA′(y))dy, hence

CA f̃ (x) =
∫
R

1
x− y+ i(A(x)−A(y))

f̃ (y)dy



Parabolic Singular Integrals on Ahlfors Regular Sets 313

where f̃ (y) = f (y+ iA(y))(1+ iA′(y)).
Notice that this operator is not of convolution type, yet the resemblance of (1.5) with

(1.2) and the fact that (1.5) seems to be an appropriate generalization of the Hilbert trans-
form (1.1) make us want to consider operators such as (1.5).

In fact, a problem originally posed by A. P. Calderón, motivated by a variety of ques-
tions related to partial differential equations (see [2]), was to decide whether Cauchy integral
(1.5) is Lp(Γ) bounded, 1 < p <∞. After a partial answer was provided by Calderón him-
self [2], this problem was settled with more generality in [7] (see also [3, 39] and references
therein).

From this, and given the well known connection between Lipschitz functions and the so
called rectifibility of a set, (see e.g. [46]), the problem of extending these results to a class
of rectifiable sets seemed the natural next step in this theory. This is the idea pursued and
then reported mainly in the fundamental works [16, 17]. And our aim is to describe some
variations and recent developments in the parabolic setting.

In a short phrase one can make a rough description of the motivation of this type of
problems as follows:

To find sets E ⊂ Rn of integer dimension d < n on which one can define Cauchy
integral and its generalizations, and where the L2 boundedness of these oper-
ators hold.

In the rest of this section we will quickly describe some details of this statement.

1.2 Ahlfors-David regular sets

Let us start recalling the definition of Hausdorff measure and dimension. More detailed
accounts can be found for instance in [46]. Given a set E ⊂ Rn, n > 2, ϵ > 0 and s > 0 define

Hs
ϵ (E) = inf

∑
A∈A

[diam A]s

where the infimum is taken over countable covers of E with sets of diameter < ϵ. The
s-dimensional Hausdorff measure of E is given by

Hs(E) = lim
ϵ→0

Hs
ϵ (E).

Fixing E ⊂ Rn there exists a unique s0 ∈ [0,∞] satisfying

Hs(E) =∞ if s < s0, Hs(E) = 0 if s > s0.

Hausdorff dimension is then defined as this critical value. This value coincides with our
intuition when s is a positive integer. Moreover, a basic result is that in Rn the Lebesgue
measure and the n dimensional Hausdorff measure coincide. Intuitively, s-dimensional
Hausdorff measure “recongnizes” and measures correctly every s-dimensional set; it takes
an infinite value on sets of dimension less than s and it vanishes on sets of dimension greater
to s.

Consider now a closed set E ⊂ Rn with Hausdorff dimension d ∈ Z, 0 < d ≤ n, and
suppose that d dimensional Hausdorffmeasure Hd is locally finite when restricted to E. We
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also adopt the notation dy when integrating with respect to dHd |E , the restriction of Hd to
E. Also, for a set A ⊆ Rn we write |A| to denote Hd(A).

Define singular integral operators described as a principal value integral of the form

T f (x) = pv
∫

E
K(x− y) f (y)dy (1.6)

where K ∈C∞(Rn \ {0⃗}) is odd and it satisfies

|∇ jK(x)| ≤ C( j)
|x|d+ j j = 0,1,2, . . . .

Call Kd(Rn) the family of all such kernels. Note that the kernels given by

K j f (x) =
x j

|x|d+1 j = 1,2, . . . ,n. (1.7)

are all in Kd(Rn). And if d = n−1, which means we have the codimension 1 case, then all
of the kernels associated to the Riesz transforms are in Kd(Rn).

Fundamental Question. Find geometric and analytic conditions on E so that the following
estimate holds

sup
ϵ>0

∫
E

∣∣∣∣∣∣
∫

E∩{|x−y|>ϵ}
K(x− y) f (y)dy

∣∣∣∣∣∣2 dx ≤C(K)
∫

E
| f |2dx for every f ∈ L2(E). (1.8)

The estimate (1.8) provides a way to obtain L2(E) boundedness of the operator T with-
out proving the existence of the limit defining the principal value integral in (1.6). To be
more precise, consider the truncated operators

Tϵ f (x) =
∫

E∩{|x−y|>ϵ}
K(x− y) f (y)dy for ϵ > 0, (1.9)

deifined, say, for f ∈ C(E). In (1.8) it is implicitly required that Tϵ f can be uniformly
bounded on ϵ > 0 so as to be extended to L2(E).

The set E ⊂ Rn is Ahlfors-David regular if it is closed and it satisfies

1
C

Rd ≤ |E∩BR(x)| ≤CRd (1.10)

for every x ∈ E, R > 0, and with a constant C independent of x and R.
As a preliminary definition, we say that E is uniformly rectifiable if it is Ahlfors-David

regular and (1.8) holds for every K ∈ Kd(Rn).
The next conjecture is one of the main questions in this area. It has been solved only if

E has codimension 1 by F. Nazarov, X. Tolsa and A. Volberg [48]. The general case remains
an open question.

Conjecture 1. An Ahlfors-David regular set E is uniformly rectifiable if and only if the
estimate (1.8) hods for all of the kernels (1.7).
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Now we carry on with the description of some features of Ahlfors-David sets. First
we recall (see [12, Part III Proposition 1.4]) that the right hand side of (1.10) is actually a
consequence of the fact that (1.8) holds for the kernels in (1.7).

The left hand side of (1.10) is not only a non-degeneracy condition, but it also implies
the doubling property of Hd on E. Recall that a measure µ defined on Borel sets of E is a
doubling measure on E if it is finite on compact sets relative to E, and there exists K1 > 0
such that for x ∈ E and every r > 0 one has µ(B2r(x)) ≤ K1µ(Br(x)).

This way, Ahlfors-David regular sets equipped with Hausdorff measure Hd and eu-
clidean distance form a space of homogeneous type in the sense of [8]. As is well known,
(see e.g. [56]) Calderón-Zygmund theory for singular integrals is applicable on this gener-
ality.

In the rest of the section we will describe some conditions which turn out to be equiva-
lent to the uniform rectifiability.

1.3 Big pieces of Lipschitz graphs and images

We say that G ⊂ Rn is a graph if there exists a d dimensional hyperplane P, an (n− d)-
dimensional hyperplane P⊥, which is orthogonal to P, and a function A : P→ P⊥ such that
G = {p+A(p) : p ∈ P}. In this case we write G = G(A).

An Ahlfors-David regular set E contains big pieces of Lipschitz graphs, and we will
write E ∈ BPLG, if there exist constants C1 > 1 and θ > 0 such that for every x ∈ E and
every 0 < r < R there exists a graph G(A), with ∥∇A∥∞ ≤C1, such that

|E∩Br(x)∩G| ≥ θrd. (1.11)

Sometimes the notation E ∈ BPLG(C1, θ) is adopted to show explicitly the dependance on
the constants involved.

The notion of Big Pieces of Lipschitz Graphs was a first attempt to provide an answer
to the Fundamental Question posed above, and in fact if E ∈ BPLG then E is uniformly
rectifiable [11, Part III Section 3]. A particular example of a set E with property BPLG
is addressed in [14]. On the other hand, according to [17, p. 16], there is an example of
a set which is uniformly rectifiable but it does not satisfy the BPLG property. This is an
unpublished result that appears as an exercise in [13].

Despite this negative result, there is a recent characterization of uniform rectifiability
using a variant of the “big pieces of Lipschitz graphs” property that we now describe.

An Ahlfors-David regular set E ⊂Rn is in the class (BP)2LG, and we say that E contains
big pieces of big pieces of Lipschitz graphs, if there exist constants C1 > 0, θ > 0 and α > 0
such that for any ball B centered on E, there exists an Ahlfors-David regular set F ⊂ Rn

such that

(a) |E∩F ∩B| ≥ α|E∩B|,

(b) F is an Ahlfors-David regular set with constant less than or equal to C1,

(c) F ∈ BPLG(C1, θ).

Having recalled this definition, we note that in [1] it has been recently established that an
Ahlfors-David regular set E is uniformly rectifiable if and only if E is in the class (BP)2LG.
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In the search of more general conditions that may be equivalent to uniform rectifiability,
the following definition was introduced. This is often adopted as the condition that defines
uniform rectifiability for its geometric appearance.

A set E ⊂Rn is in the class BPBI if E is Ahlfors-David regular and there exist constants
C1 > 1 and θ > 0 such that for every ball centered on any point in E one can find a compact
set A ⊂ Rd and a bilipschitz function ψ : A→ Rn, i.e.

C−1
1 |x− y| ≤ |ψ(x)−ψ(y)| ≤C1|x− y|, es decir que ψ es bilipschitz; (1.12)

and such that |E ∩ ψ(A)∩ B| ≥ θ|E ∩ B|. In this case one says that E has big pieces of
bilipschitz images (thus the acronym BPBI).

1.4 Two more equivalent conditions

We now recall yet another geometric condition that is equivalent to uniform rectifiability.
First recall that a measure µ defined on Borel sets of E × (0,∞) is a Carleson measure if
µ(T (B′)) ≤C|B′|, where B′ = B∩E is a surface ball with center on E and T (B′) denotes the
Carleson region associated to B′, defined as T (B′) = B′× (0, rad B′) (here rad B′ denotes the
radius of B′).

Let E be a d-dimensional Ahlfors-David regular set, and let 1 ≤ q <∞, x ∈ E and t > 0
be given. Define

βq(x, t) = inf
P

{
1
td

∫
E∩{|x−y|<t}

[
d(y,P)

t

]q

dy
}1/q

where the infimum is taken over d-dimensional planes P in Rn. Define also

β∞(x, t) = inf
P

[
sup

{
d(y,P)

t
: y ∈ E, |x− y| < t

}]
where the same kind of infimum is taken. The idea of using functionals as βq, 1 ≤ q ≤∞, in
connection with rectifiability appears in [38].

Theorem 1.1. [16] Let E be an Ahlfors-David regular set. Then E is uniformly rectifiable
if and only if |β2(x, t)|2dxdt/t defines a Carleson measure on E× (0,∞).

For the next definitions, recall that E ⊂ Rn is an Ahlfors-David regular set with Haus-
dorff dimension d ∈ Z, 0 < d ≤ n. It is possible (cf. [12, Appendix 1]) to construct a family
of partitions ∆ j of E, for each j ∈ Z, that will make the job of a dyadic decomposition of E,
in the sense that the following conditions hold:

(CD1) If j ≤ k, Q ∈ ∆ j, Q′ ∈ ∆k, then Q∩Q′ = ∅, or else Q ⊆ Q′;

(CD2) If Q ∈ ∆ j then there exists a constant C > 1 such that C−12 j ≤ diam Q ≤ C2 j and
C−12 jd ≤ |Q| ≤C2 jd.

Denote by ∆ =
∪

j
∆ j the union of all the partitions, and call the elements of ∆ dyadic

cubes of E. This way, if Q is a dyadic cube and λ > 1 we can define λQ = {x ∈ E : d(x,Q) ≤
(λ−1)diam Q}.
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Given Q ∈∆, say Q ∈∆ j, the descendants of Q are the cubes Q′ ∈∆ j−1 such that Q′ ⊂Q.
Assuming that Q ⊂ Q̃ for certain Q̃ ∈ ∆ j−1, the siblings of Q are all the descendants of Q̃.
The family of all the siblings of Q is denoted by ς(Q).

A family F of elements of ∆ is coherent if every S ∈ F has a maximal element Q(S ) ∈∆
that contains every element of S and it satisfies:

• Q′ ∈ S provided that Q ⊂ Q′ ⊂ Q(S ) and Q ∈ S ;

• if Q ∈ S then, either all of their children of are in S , or neither of them is.

A family of dyadic cubes A ⊂ ∆ satisfies a Carleson packing condition if there exists
C > 0 such that for every Q ∈ ∆ ∑

Q′∈A
Q′⊂Q

|Q′| ≤C|Q|. (1.13)

Let E be an Ahlfors-David regular set. We say that E admits a Corona type decomposi-
tion if for every η > 0 there exists C =C(η) > 0 such that one can partition ∆ in two families
of sets G and B with the following properties:

(Cor1) B satisfies a Carleson packing condition with constant C;

(Cor2) G can be partitioned in a family F of subsets of S of elements in G, in such a way
that F is a coherent family;

(Cor3) The maximal cubes denoted by Q(S ), for S ∈F , satisfy a Carleson packing condition;

(Cor4) Given S ∈ F there exists a d-dimensional Lipschitz graph Γ with constant less than
η, and such that for Q ∈ S one has

d(x,Γ) ≤ ηdiam Q for x ∈ E satisfying d(x,Q) ≤ diam Q

Following [16] we refer to the S ∈ F as the stopping-time regions, since they are usu-
ally constructed through algorithms using stopping time arguments. The triple (B,G,F )
satisfying (Cor1)-(Cor4) is called a coronization of E (see [17, p.55]).

Theorem 1.2. [16] Let E be an Ahlfors-David regular set. Then E is uniformly rectifiable
if and only if E admits a Corona type decomposition.

Part II

The parabolic case
The problems of parabolic type that motivate the development of the following results arise
from questions related to Dirichlet type problems associated to the heat equation. This kind
of questions go back at least to work of E. Fabes and collaborators, where layer potentials
and parabolic singular integrals were considered (see e.g. [19, 24, 23, 27, 25, 22, 26]), and
subsequent developments using caloric measure (see e.g. [30, 20, 21, 28, 53, 29, 54]).
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The first idea is to equip the Euclidean space Rn+1 with a parabolic homogeneity, in
which the parabolic dimension is n+ 2. (A more thorough explanation is in [4, 5]). This
non-isotropic homogeneity of Rn+1 is reflected in the fact that any parabolic cylinder of
radius r > 0 should be defined as Br × (0,r2), where Br is a Euclidean n-dimensional ball
of radius r > 0. This in particular implies that the measure of a parabolic cylinder of radius
r > 0 is of the order of rn+2.

On the other hand, the basic theory described in the first part considers d-dimensional
sets, with 1 ≤ d < n, embedded into Rn. For our Euclidean space Rn+1 endowed with the
parabolic homogeneity we have only considered surfaces in Rn+1 of codimension 1. An-
other component of this parabolic theory is that the surfaces separate Rn+1 in exactly two
components, and this restriction is never mentioned in the standard theory described in the
first part.

The notion of parabolic uniformly rectifiable sets have been introduced in [35, 36] in
order to generalize results from [41]. However, in those works the parabolic version of the
Fundamental Question of Part 1 was never addressed. We will emphasize the fact that the
appropriate substitute for Lipschitz functions have a particular regularity that allows one to
have the result on boundedness of parabolic singular integrals from [44, 31, 32, 33, 34].

The main result described in this second part (see Theorem 2.1) appeared in [51], and it
establishes the equivalence of the uniform rectifiability in the parabolic sense with the L2-
boundedness of certain parabolic singular integrals over parabolic Ahlfors-David regular
sets. A result of compactness of parabolic singular integrals (Theorem 5.1, see [52]) is
briefly described in the last section.

2 Basic definitions

2.1 Uniformly rectifiable sets in the parabolic sense

For (X, t) ∈Rn×Rwe denote by Cr(X, t) the cylinder of radius r > 0 centered at (X, t) defined
by Cr(X, t) = {(Y, s) ∈ Rn+1 : |X −Y | < r, |t− s| < r2}. In some instances we denote points in
Rn+1 as (x0, x, t) ∈ R×Rn−1×R, to stress that the variable x0 is dependent of (x, t).

The parabolic distance between points (X, t) and (Y, s) ∈ Rn+1 is defined as d(X, t;Y, s) ≡
∥X−Y, t− s∥ = |X−Y |+ |t− s|1/2. The parabolic norm in Rn+1 is given by ∥X, t∥ = d(X, t; 0⃗).
We can also talk about parabolic distance between sets E and F through

d(E,F) = inf{d(X, t;Y, s) : (X, t) ∈ E, (Y, s) ∈ F}.

In this case E and F are either both in Rn+1 or both in Rn, and in either case they contain
the variable t.

The symmetric parabolic distance between sets K1,K2 ⊂ Rn+1 as described before is
given by

D(K1; K2) = sup
(Y,s)∈K1

d(Y, s; K2)+ sup
(Y,s)∈K2

d(Y, s; K1). (2.1)

Given a Borel set F ⊂ Rn+1, define the surface measure of F through the product mea-
sure σ(F) =

∫
F dσtdt, where dt denotes 1-dimensional Lebesgue measure and σt is the

(n−1)-dimensional Hausdorff measure of the time slice Ft ≡ F ∩ (Rn×{t}).
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Let us start with the description of the parabolic version of uniform rectifiability. We
say that a closed set E ⊂ Rn+1 satisfies an (M,R) Ahlfors condition, for certain constants
M ≥ 1 and R > 0, if for every 0 < ρ ≤ R and (X, t) ∈ E the following holds:

ρn+1M−1 ≤ σ(Cρ(X, t)∩E)) ≤ Mρn+1. (2.2)

If E ⊂ Rn+1 satisfies an (M,R) Ahlfors condition, we denote by ∆r(X, t) the surface cube
Cr(X, t)∩ E. To shorten notations we say that E ⊂ Rn+1 is a parabolic hypersurface if it
satisfies an (M,R) Ahlfors condition and Rn+1 \E consists of exactly two connected com-
ponents. These components will be denoted by Ω1 ≡Ω1(E) and Ω2 ≡Ω2(E).

Fixing E ⊂ Rn+1, let d(X, t) = d(X, t; E). We call the n-dimensional planes containing a
line parallel to the t axis the t-planes. Define

γ(Z, τ;r) = inf
P

 1
rn+3

∫
E∩Cr(Z,τ)

d((Y, s),P)2dσ(Y, s)

 , (2.3)

where the infimum is taken over all t-planes P. Also define the measure

dν(Z, τ;r) = γ(Z, τ;r)dσ(Z, τ)
dr
r
. (2.4)

We say that E ⊂ Rn+1 is uniformly rectifiable in the parabolic sense (URPS), if E satisfies
an (M,R) Ahlfors condiition, and for every (X, t) ∈ E and Cρ(X, t) ⊂ CR(X, t) the following
Carleson measure condition holds:

ν([Cρ(X, t)∩E]× (0,ρ)) ≤Cρn+1 (2.5)

for certain uniform constant C > 0. The smallest constant for which (2.5) holds is denoted
by ∥ν∥+, and is referred to as the Carleson norm of ν.

2.2 Parabolic Lipschitz graphs

Consider a function ψ :Rn −→R. We say that ψ is a Lip(1,1/2) function with constant A1 > 0
if for every (x, t), (y, s) ∈ Rn it holds |ψ(x, t)−ψ(y, s)| ≤ A1∥x− y, t− s∥. The function ψ is a
parabolic Lipschitz function with constant A > 0 if the following conditions holds:

• ψ satisfies a Lipschitz condition in the variable x

|ψ(x, t)−ψ(y, t)| ≤ A|x− y| (2.6)

uniformly in t ∈ R.

• For every interval I ⊆ R and every x ∈ Rn

1
|I|

∫
I

∫
I

|ψ(x, t)−ψ(x, s)|2
|s− t|2 dtds ≤ A <∞. (2.7)
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The regularity condition addressed in (2.7) can be recalled as a BMO-Sobolev scale in the
t-variable, by results in [57]. It roughly states that a half order derivative of ψ(x, t) with
respect to t variable is in BMO. See more details in [33].

On the other hand, it is well known (see e.g. [31]) that every parabolic Lipschitz func-
tion is a Lip(1,1/2) function.

The use of this type of graphs goes back to works of J. L. Lewis and collaborators
[44, 45]. The main motivation of exploring this type of regularity is to adapt to solutions
of the heat equation on time-varying domains the results about solvability of Lp Dirichlet
problems for Laplace equation on Lipschitz domains (see e.g. [9, 10, 59]).

More precisely, according to J. L. Lewis (see [33, p. 349]), R. Hunt posed the problem
of finding (optimal) conditions on the variable t, that guarantee the solvability of Dirichlet-
type problems associated to the heat equation on domains whose boundary is given locally
by graphs of functions ψ(x, t) satisfying a Lipschitz condition as in (2.6).

After examples of [40] it was known that the Lip(1,1/2) condition did not suffice to
answer Hunt’s question, and so the regularity in the t variable remained as an open problem.

Later seminal work of S. Hofmann, along with collaborations with J. L. Lewis [31,
32, 33, 34], settled Hunt’s question from the viewpoint of parabolic singular integrals as
well as L2 solvability for heat equation on non-cylindrical domains. In those fundamental
works it is also matured the notion of appropriate parabolic singular integrals over parabolic
Lipschitz graphs.

As in the standard case, we need a geometric condition for sets with big pieces of
parabolic Lipschitz graphs. First we say that a basic parabolic Lipschitz domain with func-
tion ψ is a domain of the form

Ω(ψ) = {(x0, x, t) ∈ R×Rn−1×R : x0 > ψ(x, t)},

where ψ is a parabolic Lipschitz function.
We say that an (M,R) Ahlfors regular set E contains big pieces of parabolic Lipschitz

graphs, or that E has BPPLG, if there exists a constant B1 with the following property:
Given (Y, s) ∈ E and 0 < r0 < R there exists, after a possible rotation in space variables, a
basic parabolic Lipschitz domain D = Ω(ψ), with parabolic Lipschitz function ψ, such that

σ(E∩Cr0(Y, s)∩∂D) ≥ B1rn+1
0 (2.8)

For shortness sake we write E ∈ BPPLG(B1).

2.3 Parabolic Singular Integrals and statement of the Main Theorem

As in the standard case we want to consider integral operators of the form

T f (X) =
∫

E
K(X−Y) f (Y)dσ(Y), (2.9)

where X= (X, t), Y= (Y, s), and where the kernel K(X, t) is an odd function in the X variable,
and satisfies the following properties:

• |K(X, t)| ≤C1/∥X, t∥n+1;
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• |∇XK(X, t)| ≤C2/∥X, t∥n+2;

• |∇2
XK(X, t)|, |∂tK(X, t)| ≤C2/∥X, t∥n+3.

Here |∇2
XK| denotes the Euclidian magnitude of the vector whose entries are the second

order derivatives of K with respect to X. If all of these conditions hold we say that K is a
good parabolic kernel.

Incidentally, we will use the notation X = (X, t) for points in Rn+1 whenever the time
variable is not essential in the argumentation. This will become handy when describing
some ideas for the proof of the main theorem.

The choice of T guarantees its L2 boundedness over parabolic Lipschitz graphs, by well
known techniques following [32] (see [50, Theorem 2.1]).

From the experience on the standard case, when dealing with a singular integral operator
over an (M,R)-Ahlfors regular set E, we say that T is bounded over L2(E,dσ) if the maximal
operator associated to T

T ∗ f (X) = sup
ϵ>0

∫
E∩{∥X−Y,t−s∥>ϵ}

K(X−Y) f (Y)dσ(Y), (2.10)

originally defined for C0(E) functions, can be extended as an L2(E,dσ) bounded operator.
We are now ready to state the main theorem of this survey note.

Theorem 2.1. Suppose that E ⊂ Rn+1 is a parabolic hypersurface. Then E is URPS if
and only if any operator T as in (2.9), associated to a good parabolic kernel is L2(E,dσ)
bounded.

3 Some ideas of the proof of Theorem 2.1: Construction of para-
bolic Corona-type decompositions

Before starting the proof, we make a notational remark. In several of the estimates in the
bulk of the next sections we may use a generic constant that may change from line to line,
and still is denoted with the same letter.

Thus, we adopt the nowadays standard notation A . B to mean that there is a constant
k that may depend on the geometric features of the set introduced in previous sections, or
the dimension n, such that A ≤ kB. In any case, the dependance on other parameters does
not interfere the essence of the estimates. Likewise, A ≈ B means A . B and B . A hold
simultaneously.

As in the standard case (see [16]), the proof uses Corona type decompositions. We
describe what this means in the parabolic setting. Notice first that the definition of dyadic
decompositions are directly adaptable, bearing in mind the change of homogeneity and
dimension described in the previous section. In particular if E ⊂ Rn+1 satisfies an (M,R)
Ahlfors condition then the Hausdorff dimension of E is actually d = n+ 1. Also, in (CD2)
of the definition of dyadic cubes the diameter of a surface cube ∆ ≡ ∆r(Q, s) = Cr(Q, s)∩E
is defined to be diam∆ = r, and |∆| must be replaced by σ(∆).

On the other hand, if E coincides with a t-plane, then we can choose dyadic cubes
which, after a translation and rotation if necessary, take the form

Q2 j(X, t) = {(Z, τ) : |Z−X| < 2 j, |τ− t| < 22 j}, for certain (X, t) ∈ Rn+1.
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We will use the notation Qr(p) for any cube contained on a t-plane, centered at p with radius
r > 0.

Now in order to define the parabolic Corona type decomposition we use the same prop-
erties (Cor1), (Cor2) and (Cor3) previously introduced, and the only property that must be
changed is (Cor4). Keeping the notations introduced before, (Cor4) must be replaced by

(Cor4P) For each S ∈ F there exists a parabolic Lipschitz graph Γ with constant η such that
for every Q ∈ S the estimate d(X;Γ) ≤ ηdiam(Q) holds provided that X ∈ E satisfies
d(X,Q) ≤ diam(Q).

For a parabolic Corona decomposition we will still refer to the properties defining it as
(Cor1), (Cor2), (Cor3) and (Cor4P).

The main theorem in [49] can now be stated as follows:

Theorem 3.1. Suppose that E ⊂ Rn+1 is a parabolic hypersurface and consider the follow-
ing conditions:

(a) E es URPS.

(b) Any singular integral operator T as in (2.9), associated to a good parabolic kernel is
L2(E,dσ) bounded.

Then, assuming any of these conditions, E admits a parabolic Corona type decomposition.

The proof of this theorem requires some adaptations of some of the original arguments
of [16, Chapters 3-9 and 12-14].

Before discussing ideas of the aforementioned adaptations notice that the proof of The-
orem 2.1 is now reduced to prove reciprocals of both parts (a) and (b) of Theorem 3.1. This
is actually the essential contents of [51].

3.1 Ideas to prove Theorem 3.1

In this subsection we only describe the adaptations from the standard case in [16] to our
parabolic setting, as implemented in [49]. The details of the following argumentation can
be checked in [49].

3.1.1 Description of the proof of (a)

In order to obtain a parabolic Corona decomposition from the parabolic uniform rectifiabil-
ity of E we follow several steps and the lines of [16].

Step 1. Construction of F , B and the stopping-time regions.

Let 0 < ε < δ be two small positive numbers so that ε/δ is also small. Let k be a large
constant to be determined. Denote by G ≡ G(ε) the set of cubes Q ∈ ∆ for which there is a
t-plane PQ such that d(X,PQ) ≤ εdiam Q for all X ∈ kQ. Define now B = ∆ \G so that we
already have a decomposition ∆ = B∪G.

Now define

γ∞(Z, τ;r) = inf
P

sup
{

d(Y, s; P)
r

: (Y, s) ∈ ∆r(Z, τ)
}
, (3.1)
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where the infimum is taken over all t-planes P, and recall that in [35, p. 359] it is proved
that

γ∞(Z, τ;r)n+3 ≤C(n)γ(Z, τ;2r) (3.2)

Then it can be verified that (2.5) in the definition of parabolic uniform rectifiability implies∑
γ∞(Q)>ϵ

Q⊆R

σ(Q) ≤C(ϵ)σ(R), (3.3)

where R is any surface cube of E. Here in analogy with (3.1), for a dyadic cube Q we define

γ∞(Q) = inf
P

sup
{

d(Y, s; P)
diam Q

: (Y, s) ∈ 2Q
}
.

Estimate (3.3) can be proved with a well known technique of associating dyadic cubes
on E with certain rectangles in E × (0,∞). In turn, (3.3) implies the Carleson packing
condition for B in (Cor1) above.

Now we organize the sets in G and define the family F of regions S . The construction
of these regions in [49] is different from the original one in [16], so we provide some details.

For the next construction we localize our work in a fixed surface cube R0 ⊂ E. Let
∆(R0) =

∪
∆ j⊂R0

∆ j and denote by G(R0) the family of subcubes of R0 in G. Let Q0 be a

maximal cube in G(R0) and let π0 denote the projection of points in Rn+1 on P0, the t-
plane that is associated to Q0 according to the definition of G. Define for Q ⊂ Q0 the
set P0(Q) = π−1

0 (π0(Q)), which is a cylindrical region perpendicular to P0 and with level
surfaces given by π0(Q).

Now we construct a family K(Q0) of cubes as follows:

• Q0 ∈ K(Q0)

• R ∈ ∆(R0) is added to K(Q0) if all of the following holds:

– R is a descendant of Q, for certain Q ∈ K(Q0);

– every sibiling of R, including R itself, is an element of G(R0);

– d(P0(R)∩PR; P0(kR)∩P0) ≤ δdiamR.

This last inequality refers indirectly to the angle between P0 and PQ, as originally con-
sidered in [16]. However we will not use especifically the angle between these planes, but
rather we measure how close the portions of planes P0(R)∩ PR and P0(kR)∩ P0 are from
each other.

Now define

S (Q0) =

 ∪
Q∈K(Q0)

Q

∪


∪
R∈ς(Q)

Q∈K(Q0)

R


and repeat the procedure inductively, choosing at each stage a maximal cube in G(R0) not
contained in any of the previously constructed S (Q). Let F denote the collection of all the
regions so obtained, and let us introduce the notation Q0 = Q(S ) if and only if S = S (Q0).
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Observe that if S ∈ F then the only options for X ∈ S is that either X belongs to a
minimal cube, or there exists an infinite sequence of elements in S such that X belongs to
all of the terms of the sequence.

Step 2. Construction of the approximating graphs and verification of its properties.

According to (Cor4P), we must associate to each S ∈ F the graph of a parabolic Lips-
chitz function, and so in the next construction we fix S ∈ F and let P= PQ(S ). Let P⊥ denote
the normal vector to P pointing towards the regionΩ1 and let π and π⊥ denote the canonical
projections from Rn+1 onto P and P⊥, respectively. Note that π⊥ might be negative by the
chosen orientation of P⊥.

The proof of the next lemma provides the essential construction for this step. After
stating it we will only sketch ideas for the construction.

Lemma 3.2. There exists a parabolic Lipschitz function ψ : P −→ P⊥ with character of the
order of δ, and such that for every X ∈ Q(S ) one has

d (X; (π(X),ψ(π(X)))) . εd(X). (3.4)

Given X ∈ Rn+1 define

d(X) = inf
Q∈S

[d(X,Q)+diam Q] (3.5)

The beginning of the construction of the function ψ is overZ = {Z ∈ E : d(Z) = 0}. For
Z ∈ Z define

ψ(π(Z)) = π⊥(Z).

This function turns out to be of Lip(1,1/2) type.
The issue is now twofold: to define ψ outside of π(Z) and to prove that ψ is actually a

parabolic Lipschitz function.
For the extension of ψ off of π(Z), one can use use a Whitney-type extension adapted for

the parabolic setting. To prove the regularity that parabolic Lipschitz functions require, one
first observe that {P+ψ(P) : P ∈ π(Z)} ⊂ E, and since E is URPS then one can take advantage
of the Carleson measure estimate (2.5) as in [35, 36] to conclude that this extension yields
a parabolic Lipschitz function. The technical details are in [49].

Step 3. Carleson packing condition for the stopping-time regions.

We only describe the ideas that differ from the ones in [16], and in particular, since the
construction of our stopping time regions S is slightly different, the subsequent argumenta-
tion is changed accordingly.

The property (Cor3) in the definition of the parabolic Corona decomposition is proved
through the following lemma.

Lemma 3.3. For every R ∈ ∆ ∑
S∈F

Q(S )⊆R

σ(Q(S )) ≤Cσ(R). (3.6)



Parabolic Singular Integrals on Ahlfors Regular Sets 325

Fixing S = S (Q0), let m(S ) denote the set of minimal cubes of S and let U denote the
union of all the cubes in m(S ). We separate m(S ) into two families, according to the options
that any minimal cube R has: either R ∈ K(S ) and at least one descendant of R is in B(R0);
or R ∈ S \K(S ).

Let m1(S ) denote the set of minimal cubes with at least one descendant in B(R0), and
let m2(S ) denote the set of minimal cubes R ∈ S \K(S ) with d(PR∩P0(R); PQ0 ∩P0(kR)) >
δdiamR (recall definitions in page 323). Also we set

Ui =Ui(S ) ≡
∪

Q∈mi(S )

Q, i = 1,2.

Accordingly we have three types of regions:

I = {S ∈ F : σ(Q(S ) \U) ≥ θσ(Q(S ))}, II ={S ∈ F : σ(U1) ≥ θσ(Q(S ))}
and III = {S ∈ F : σ(U2) ≥ θσ(Q(S ))}.

Condition (3.6) for the class I is essentially due to the disjointneess of the different S in
F . For the class II one can use the Carleson packing condition for B(R0) to obtain (3.6).
Indeed, ∑

S∈II
Q(S )⊆R

σ(Q(S )) ≤ 1
θ

∑
S∈II

Q(S )⊆R

∑
Q∈m1(S )

σ(Q) ≤ 1
θ

∑
S∈II

Q(S )⊆R

∑
Q∈m1(S )

σ(BQ) . σ(R),

where BQ denotes one of the descendants of Q in the class B(R0), and in the last inequality
we use (CD1).

In order to prove (3.6) for class III we use the approximating graphs. Again, the
details can be found in [49].

3.1.2 Description of the proof of (b)

Let ψ(X, t) be a smooth function on (X, t) ∈ Rn×R which is odd in the X variable, and with
compact support. In order to define a kernel to which we can apply the hypotesis, consider
the set Ω of sequences ω = {ω j}, with w j ∈ {−1,1}, endowed with the product topology.
The measure Π on Ω assigns equal probability to the values ±1. Consider projections
ϵ j :Ω −→ {−1,1} given by ϵ j(ω) = ω j. Recall that it is well known that

m∑
j=−m

∣∣∣∣∣∫
E
ψ j(X−Y, t− s) f (Y, s)dσ(Y, s)

∣∣∣∣∣2 =
=

∫
Ω

∣∣∣∣∣∣∣∣
m∑

j=−m

∫
E
ϵ j(ω)ψ j(X−Y, t− s) f (Y, s)dσ(Y, s)

∣∣∣∣∣∣∣∣
2

dΠ(ω),

where ψ j(X, t) = 2− j(n+1)ψ(2− jX,2−2 jt). Define

Km(X, t;ω) =
m∑

j=−m

ϵ j(ω)ψ j(X, t).
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Observe that this kernel is still odd in the X variable and it satisfies the other assumptions
for good kernels. By our assumptions∫

E

∣∣∣∣∣∫
E

Km(X−Y, t− s;ω) f (Y, s)dσ(Y, s)
∣∣∣∣∣2dσ(X, t) ≤C(m,ω)

∫
E
| f (X, t)|2dσ(Y, s)

with a constant C(m,ω) that depends on m and ω. After the “completeness argument” of
[16, p.22] one gets

m∑
j=−m

∣∣∣∣∣∫
E
ψ j(X−Y, t− s) f (Y, s)dσ(Y, s)

∣∣∣∣∣2 ≤C
∫

E
| f (X, t)|2dσ(Y, s), (3.7)

this time with a constant independent of m and ω. Applying (3.7) to characteristic functions
of balls one can prove that ∞∑

j=−∞

∣∣∣∣∣∫
E
ψ j(X−Y, t− s)dσ(Y, s)

∣∣∣∣∣2
dσ(X, t)dδ2k (u)

is a Carleson measure over E× (0,∞).
Using this we now construct a collection of cubes satisfying a Carleson measure type

property. For τ > 0 small let R(τ) denote the set of cubes Q ∈ ∆ with the property that there
exist X,Y ∈ 2Q such that d(2X−Y; E) ≥ τdiam Q.

Claim 3.1. With the definitions and notations above one has∑
Q∈R(τ)

Q⊂R

σ(Q) ≤C(τ)σ(R).

The proof of this claim can be easily adapted from [16, p. 24].
Let ε > 0 be given and define G(ε) as the family of cubes Q ∈ ∆ for which there is a

plane PQ satisfying the following properties:

d(X; PQ) ≤ εdiam Q for all X ∈ 2Q; (3.8)

if Y ∈ PQ and d(Y; Q), then d(Y; E) ≤ εdiam Q. (3.9)

Claim 3.2. Set B(ε) = ∆ \G(ε). Then∑
Q∈B(ε)

Q⊂R

σ(Q) ≤C(ε)σ(R) (3.10)

for all R ∈ ∆ and all ε > 0.

The proof can be adapted this time from [16, p. 28-32]. The point is now that the esti-
mates in the two claims above will lead us to a parabolic generalized Corona decomposition,
defined in the following

Proposition 3.4. Suppose that E admits a generalized parabolic Corona decomposition, in
which (Cor4) above is substituted by:
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(GCor4) For each S ∈ F there exists a set ES ∈ BPPLG(C(η)) such that for every Q ∈ S the
estimate d(X; ES ) ≤ ηdiam(Q) holds whenever X ∈ E and d(X,Q) ≤ diam(Q).

Then E admits a parabolic Corona decomposition. The constant C(η) > 0 may depend on η
but not on S .

To establish this result, we use fundamental results of [17, I Chapter 3] on coronizations
of Ahlfors-David regular sets. The proposition is actually an adaptation of [17, Theorem
I.3.42]. At this point of the proof we follow ideas in [17, II Chapter 2] and [18].

4 Some ideas to prove Theorem 2.1: Consequences of a parabolic
Corona-type decomposition

We start describing a reciprocal to part (b) of Theorem 3.1. Since E satisfies (M,R) Ahlfors
condition, then it is a space of homogeneous type in the sense of Coifman-Weiss. In par-
ticular, arguments related to the so called T1 theorem can be applied, bearing in mind the
parabolic homogeneity and dimension (see e.g. [15, 6] and the discussion on parabolic
singular integrals in [32, p. 209]).

Given ∆r(Z) = Cr(Z)∩E a surface cube on E, for certain Z ∈ E. Let Λ(Z,r) denote the
space of functions φ ∈C∞0 (∆r(Z)) for which

• |φ(X)−φ(Y)| ≤ ∥X−Y∥/r

• If ℓ denotes an (n− 1)-dimensional multi-index, say ℓ = (ℓ1, . . . , ℓn−1), we set |ℓ| =
ℓ1+ · · ·+ ℓn−1, and as usual (∂/∂x)ℓ = (∂/∂ℓ1 x1, . . . ,∂/∂

ℓn−1 xn−1). Then, for k ∈ {0,1,2}

sup
0≤|ℓ|+k≤2

r2k+|ℓ|

∥∥∥∥∥∥∥
(
∂

∂x

)ℓ (
∂

∂t

)k

φ

∥∥∥∥∥∥∥∞ ≤ 1.

If any Q ∈ ∆ is such that diam Q = r, we can define Λ(Q) similarly.
Now an argument of Littlewood-Paley type, adapted to parabolic setting implies that in

order to prove L2(E,dσ) boundednes of T , it suffices to prove the restricted boundedness of
T (see [56, p. 294]). This means that for 0 < r < R and for every φ ∈ Λ(Z,r) the following
holds: ∫

∆r(Z)
|Tφ|2dσ ≤Cσ(∆r). (4.1)

An equivalent way to describe this is∫
Q
|Tφ|2dσ ≤Cσ(Q) for every Q ∈ ∆ and every φ ∈ Λ(Q). (4.2)

Moving on, in order to define a parabolic version of Tolsa’s functionals and hence get
the right estimates, we need some more technical definitions.

LetM be the collection of t-flat measures, that is, µ ∈M if µ ≡ cσ|P for certain constant
c > 0 and certain t-plane P. Let ZQ denote the center of the cube Q and define CQ as the
cylinder centered at ZQ with radius 3diam Q, i.e. CQ = C3diam Q(ZQ). Denote by σE the
measure σ restricted to E.
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Given a Borel measure ν over Rn+1 define the parabolic Tolsa functional for Q ∈ ∆ as

αν(Q) =
1

(diam Q)n+2 inf
µ∈M

dist
CQ

(ν,µ) , (4.3)

where the distance on CQ between ν and µ is defined as

dist
CQ

(ν,µ) = sup
{∣∣∣∣∣∫ gdν−

∫
gdµ

∣∣∣∣∣ : |∇g| ≤ 1, suppg ⊂ CQ

}
.

Here |∇g| denotes the magnitude of the (n+ 1)-dimensional vector that consists of all the
first order derivatives of g (including that with respect to t). If ν ≡ σE then we simply write
α(Q) instead of ασE (Q).

A fundamental feature of this functional is the fact that it measures how flat the measure
ν is, by measuring the closeness between ν and the family of t-flat measures. In contrast, γ
identifies whenever σE is supported on a t-plane, even though σE could be far from being
a t-flat measure. In this sense the next result confirms this claim (see [58, 51]).

Proposition 4.1. For every Q ∈ ∆ one has γ(Q) . α(Q).

On the other hand, α(Q) will prove useful to verify both the geometric property of
URPS, and the analytic property of L2 boundedness of operators associated to good parabolic
kernels.

Next we introduce some more definitions. Give a non-negative measurable function
f : E→ R and Q ∈ ∆ define

α f (Q) =
1

(diam Q)n+2 inf
µ∈M

dist
CQ

( f dσ,µ) . (4.4)

The next propositions provide the essential steps to finish the proof of Teorema 2.1.

Proposition 4.2. Let µ a measure which is absolutely continuous with respect to σE , i.e.
µ ≪ σE , with dµ/dσE = f ∈ C∞0 (E) a non-negative function. If E admits a parabolic
Corona-type decomposition, the there exists a constant c2 > 0 such that for any Q ∈ ∆∑

Q′∈∆
Q′⊂Q

[
αµ(Q′)

]2
µ(Q′) ≤ c2µ(Q). (4.5)

Proposition 4.3. If a singular integral operator T as in (2.9) is associated to a good
parabolic kernel K, then for every non-negative function f ∈ C∞0 supported on E the fol-
lowing holds:

∥T ∗ f ∥2 .
∑
Q∈∆

[
α f (Q)

]2
∫

f dσ+
∫

f dσ. (4.6)

The proof in [58, Theorem 1.3] can be adapted to the parabolic setting with few direct
changes. One of the new ingredients is the following Cotlar-type inequality:

∥T ∗ f ∥2 . limsup
m→∞

∥T(m) f ∥2+
∫

f dσ, donde T(m) f =
m∑

j=−m

T j f , (4.7)
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where T j is a localization of T that we now describe.
Let ψ : Rn+1 → R be a non-negative function in C∞(Q1/4(0⃗)) satsifying ψ ≥ 0 over

C1/8(0⃗). Define ψ j(X, t) = ψ(2 jX,4 jt) and φ j = ψ j−ψ j+1. Observe that φ j is a non-negative
function suported on C2− j−2(0⃗) \C2− j−4(0⃗), and that∑

j∈Z
φ j = 1.

For each j ∈ Z define K j(X, t) = φ j(X, t)K(X, t) and

T j f (X, t) =
∫

K j(X−Y, t− s) f (Y, s)dYds.

The inequality (4.7) reduces the proof of (4.6) to proving that

∥T(m) f ∥2 .
∑
Q∈∆

[
α f (Q)

]2
∫

Q
f dσ

which is the core of the argumentation in [58, Sections 5 and 6]. In turn, these arguments
are again adaptable to parabolic setting with few changes.

We point out that the only regularity required for (4.6) to hold is precisely that regularity
required by our good parabolic kernels, as it can be verified by following carefully the
arguments in [58], right after his Lemma 6.1.

Applying (4.5) and (4.6) to φ ∈ Λ(Q) we obtain

∥T ∗φ∥2 . σ(Q)1/2
(∫

Q
|φ|2dσ

)1/2

. σ(Q)1/2,

which as observed in (4.2), it suffices to conclude that T is L2(E,dσ) bounded.
Another important remark is that Propositions 4.1 and 4.2 imply also the reciprocal of

part (a) of Theorem 3.1. This time it is enough to note that teh Carleson measure condition
defining the URPS property can be stated in terms of cubes, as we now recall.

For Q ∈ ∆ define

γ(Q) = inf
P∈P

1
(diam Q)n+3

∫
Q

d(Y, s; P)2dσ(Y, s).

Then condition (2.5) is equivalent to∑
Q′∈∆
Q′⊂Q

γ(Q′)σ(Q′) ≤Cσ(Q). (4.8)

And this estimate can be obtained from Propositions 4.1 and 4.2.

Fundamental Remark. An interesting project is to explore parabolic versions of some (as
many as possible) of the equivalent conditions defining the uniformly rectifiable sets from
the main theorem of [16]. A partial result is related to the so called ω regular surfaces, and
is briefly discussed in [44]. This could be a starting point of these investigations.
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5 Compactness of certain Parabolic Singular Integrals

In this section we describe a result that establishes the compactness on Lp spaces of a class
of Parabolic Singular Integrals, contained in [52].

Partially motivated by one of the results in [36], and the technical developments in [37,
Section 4.5], in [52] we explore the compactness of a class of parabolic singular integrals
including the boundary double layer potentials associated to the heat equation over sets with
appropriate regularity resembling the parabolic chord arc property with vanishing constant.

5.1 Parabolic vanishing chord arc condition

It turns out that adding some extra conditions to a parabolic uniformly rectifiable set E
yields some good analogues of well known results of potential theory. This was established
in [41, 42, 43] for the standard case and in [35, 36] for the parabolic version.

We say that a set E ⊂ Rn+1 separates Rn+1, if there is 0 < δ0 < 1/10 such that the
following is true: for any (Q, s) ∈ E and r > 0 there exists a t-plane P̂ ≡ P̂(Q, s;r) containing
(Q, s), with unit normal n̂ ≡ n̂(Q, s;r), and such that{

(X, t)+ρn̂ ∈Cr(Q, s) : (X, t) ∈ P̂, ρ > δ0r
}
⊂Ω1,{

(X, t)−ρn̂ ∈Cr(Q, s) : (X, t) ∈ P̂, ρ > δ0r
}
⊂Ω2. (5.1)

We also say that E has the δ0 separation property. The constant δ0 may be referred to as
the Reifenberg constant of E.

We now make an important remark on the definition of the δ0 separation property. It
turns out that the δ0 separation property (5.1) implies the existence of a normal vector
pointing towards the exterior on every cross section Ω(s).

This is a consequence of the fact that the δ0 “parabolic” separation property described
in (5.1) implies the corresponding separation property of Ω(s) in the usual sense (as defined
for instance in [37, p. 2688]). And this in turn implies that Ω(s) has locally finite perimeter,
since the topological boundary of Ω coincides with the so called measure theoretic bound-
ary of Ω.

Now, in analogy with the elliptic case, and following [35, p. 357], we say that E is a
parabolic regular set if it has a δ0 separation property and is uniformly rectifiable in the
parabolic sense.

The set E is a parabolic chord-arc set with vanishing constant if it is a parabolic regular
set and

lim
r→0

 sup
(X,t)∈E
0<ρ≤r

ν([Cρ(X, t)∩E]× (0,ρ))
ρn+1

 = 0. (5.2)

5.2 The class of Parabolic Singular Integrals

Recall first that the fundamental solution to the heat equation is given by

W(X, t) = cnt−n/2 exp
(
|X|2
4t

)
χ(0,∞)(t) for (X, t) ∈ Rn+1.
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for a suitable absolute constant cn > 0. Recall also that in [44, 33] (see also references
therein) certain Lp-Dirichlet problem is solved over a basic parabolic Lipschitz domain
Ω(ψ).

Recall that basic parabolic Lipschitz domain is a domain of the form

Ω(ψ) = {(x0, x, t) ∈ R×Rn−1×R : x0 > ψ(x, t)}

for some parabolic Lipschitz function ψ.
Given f ∈C(∂Ω), one defines the boundary double layer potential of f as the principal

value type integral

D f (P, t) = pv
∫ t

−∞

∫
Ω(s)
⟨N(Q, s),∇W(P−Q, t− s)⟩dσs(Q)ds, (P, t) ∈ ∂Ω,

where N(Q, s) denotes the outer unit normal vector to Ωs at the point (Q, s). When writing
this operator in graph coordinates one is lead to consider bilinear operators like Calderón
commutators on which certain regularity in the t variable made it a far from trivial object to
study. Details are in [32] an references therein.

Note that the boundary double layer potential can be written as a principal value-type
operator of the form

D f (P, t) = pv
∫ t

−∞

∫
Ω(s)
⟨N(Q, s),P−Q⟩K(P−Q, t− s)dσsds, P ∈ ∂Ω(t), Q ∈ ∂Ω(s),

(5.3)
where K(X, t) = c̃nt−n/2−1 exp

(
|X|2/4t

)
χ(0,∞)(t).

We generalize (5.3) on parabolic hypersurfaces E as follows. Define first the truncation
of the kernel K ∈C∞(Rn+1 \ {0⃗}) by

Kϵ(X, t) =
{
K(X, t) if |X| > ϵ, t > ϵ2

0 otherwise.
. (5.4)

Whenever this is well defined, the corresponding truncated operator is given by

Tϵ f (X, t) =
∫ t

−∞

∫
Es

⟨N(Q, s),X−Q⟩Kϵ(X−Q, t− s)dσ(Q, s), (5.5)

where E is a compact parabolic hypersurface, Es is the cross section E ∩ {(X, s) : X ∈ Rn},
and N(Q, s) denotes the unit exterior normal vector in the sense explained in the previous
section.

Denote by T ∗ the maximal operator associated to T defined by

T ∗ f (X, t) = sup
ϵ>0
|Tϵ f (X, t)| , (X, t) ∈ E. (5.6)

We say that T ∗, originally defined on C0(E), is bounded on Lp(E,dσ), 1 ≤ p <∞, if it can
be extended as a bounded operator on Lp(E,dσ). As usual, we write ∥T ∗∥Lp(E,dσ) to denote
the minimal constant C > 0 for which the inequality ∥T ∗ f ∥Lp(E,dσ) ≤C∥ f ∥Lp(E,dσ) holds.
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Notice that the kernel K(X, t) is even in the X variable, and satisfies

|K(X, t)| ≤ C1

∥X, t∥n+2 , |∇XK(X, t)| ≤ C1

∥X, t∥n+3 , (5.7)

|∇2
XK(X, t)|, |∂tK(X, t)| ≤ C1

∥X, t∥n+3 (5.8)

with an absolute constant C1 > 0.
After all these notions are introduced we are ready to state our main theorem.

Theorem 5.1. Let E be a parabolic chord-arc set with vanishing constant, and let T ∗ be
the maximal singular integral operator as defined in (5.6) over E. Then T ∗ : Lp(E,dσ)→
Lp(E,dσ) is a compact operator for every 1 < p <∞.

Notice that this theorem says nothing about the existence of principal values of Tϵ on
parabolic regular sets. In fact, the existence of this type of principal value operators seems
to be a challenging problem.

The proof of Theorem 5.1 in [52] is given through a couple of reductions that we now
describe.

5.3 A local parabolic Semmes decomposition and a local separation property

We first recall a result essentially established in [35], in which it is obtained a parabolic
version of local Semmes decomposition. This could be viewed as a big pieces of graphs
property in which a more precise quantitative information is provided at certain (small)
scales. The original ideas in the standard case are in [55].

In the following arguments we are given a parabolic hypersurface E that induces two
regions Ω1 and Ω2.

Let 0< r0 < R. Given 0< δ < 1/10 and (X, t) ∈ E, we say that the surface cube ∆r0(X, t)≡
E∩Cr0(X, t) contains very big pieces of parabolic Lipschitz graphs with constant δ, or that
∆r0(X, t) has VBPPLG(δ), if there exists, after a possible rotation in space variables, a basic
parabolic Lipschitz domain D = Ω(ψ), and a constant B2 = B2(M) such that the constant of
ψ is controlled by B2δ and the following holds:

• σ(∆r0(X, t) \∂D)+σ(∂D∩Cr0(X, t) \E) ≤ e−1/(B2δ)rn+1
0 ;

• ∆2r0(X, t) = G∪B, with G ⊂ ∂D and σ(B) ≤ e−1/(B2δ)rn+1
0 ;

• if (Y, s) ≡ (y0,y, s) ∈ B and π : Rn+1 → {0⃗} × Rn denotes the canonical projection
π(x0, x, t) = (x, t), then |y0−ψ(y, s)| ≤ B2δ ·d(π(Y, s);π(G)).

The local decomposition described in this VBPPLG property is also referred to as a local
parabolic Semmes decomposition relative to ∆r0(X, t) with constant δ.

Lemma 5.2. Let E ⊂Rn+1 be a parabolic chord arc set with vanishing constant. Then there
exists a small constant 0 < δ̂ < δ0 such that for any 0 < δ < δ̂ there is 0 < rδ < R such that
E has a local parabolic Semmes decomposition relative to ∆ρ(X0, t0) with constant strictly
smaller than δ, for every 0 < ρ < rδ, and every (X, t) ∈ E.
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Bearing this in mind, it is observed in [35, p. 360] that, if we denote by P̂= P̂(Y, s;ρ) the
plane through (Y, s) and parallel to the t-plane that minimizes γ∞(Y, s;ρ), then the following
local separation property holds: for any (Y, s) ∈ E, 0 < ρ < r

{(Z, τ)+ ŝn ∈ Cρ(Y, s) : (Z, τ) ∈ P̂, s > δ1ρ} ⊂Ω1 (5.9)

{(Z, τ)− ŝn ∈ Cρ(Q, s) : (Z, τ) ∈ P̂, s > δ1ρ} ⊂ Ω2. (5.10)

Here n̂ = n̂(Y, s;r) denotes the unit normal to P̂ pointing towards Ω1, and δ1 ≈ δκ/(n+3) <

δ0/10.
The proof of Theorem 5.1 now proceeds using the local Semmes decomposition in

Lemma 5.2 and the local separation condition in estimates (5.9), (5.10). One of the dif-
ferences of arguments in [52] with respect to those in [37] is that, as observed above, the
parabolic chord arc condition has no apparent condition on the normal unit vector of E, but
rather the smallness of a Carleson measure norm from the parabolic uniform rectifiability
property of E. The arguments are adaptations of the so called good-λ method of G. David
[11] and ideas in [37]. The details are in [52].
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