Weighted Multi-Parameter Non-Isotropic Flag Triebel-Lizorkin and Besov Spaces

Fanghui Liao*
Department of Mathematics
China University of Mining and Technology(Beijing)
Beijing 100083, P. R. China
Zong ${ }^{\text {andang } \text { Liu }^{\dagger}}$
Department of Mathematics
China University of Mining and Technology(Beijing)
Beijing 100083, P. R. China

(Communicated by Palle Jorgensen)

Abstract

In this paper, the authors use the discrete Littlewood-Paley-Stein theory to introduce weighted multi-parameter Triebel-Lizorkin and Besov spaces associated with nonisotropic flag singular integrals under a rather weak weight condition ($w \in A_{\infty}$). They also obtain the boundedness of flag singular integrals on these spaces.

AMS Subject Classification: 42B20, 42B35
Keywords: flag singular integral, Calderón's identity, almost orthogonal estimate, weighted Triebel-Lizorkin and Besov spaces, non-isotropic

1 Introduction and Statement of Main Results

The flag singular integral theory was studied extensively over the past decades. Müller, Ricci and Stein in [8] first introduced flag singular integrals when they studied the Marcinkiewicz multiplier on the Heisenberg group. Nagel, Ricci and Stein in [9] dealt with a class of product singular integrals with the flag kernel and proved the L^{p} boundedness of flag singular integrals. See [3] and [4] for more details.

More recently, Han and Lu in [5], [6] developed multi-parameter Hardy spaces H_{F}^{p} associated with flag singular integrals. Ruan in [11] constructed multi-parameter Hardy spaces associated with non-isotropic flag singular integrals via the discrete Littlewood-Paley-Stein

[^0]theory and the discrete Calderón's identity, and obtained the boundedness of flag singular integrals from H_{F}^{p} to H_{F}^{p} and from H_{F}^{p} to L^{p}.

Ding, Lu and Ma in [2] introduced Triebel-Lizorkin and Besov spaces associated with flag singular integrals and proved the boundedness of flag singular integrals on these spaces. Wu and Liu in [13] gave characterizations of multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals. The weighted multi-parameter Triebel-Lizorkin and Besov spaces in the pure product setting were first constructed by Lu and Zhu in [7]. More weighted results in multi-parameter setting can be found in [1], [10].

The main purpose of this paper is to extend the results in [11] on multi-parameter Hardy spaces to weighted multi-parameter Triebel-Lizorkin and Besov spaces. To be more precise, the authors introduce weighted multi-parameter Triebel-Lizorkin and Besov spaces related to non-isotropic flag singualr integrals. As a consequence, the boundedness of non-isotropic flag singular integrals on these spaces is presented.

Firstly, we recall the definition of product weights. For $1<p<\infty$, we say that a nonnegative locally integrable function $w \in A_{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ if there exists a constant $C>0$ such that

$$
\begin{equation*}
\left(\frac{1}{|R|} \int_{R} w(x) d x\right)\left(\frac{1}{|R|} \int_{R} w(x)^{-1 /(p-1)} d x\right)^{p-1} \leq C \tag{1.1}
\end{equation*}
$$

for all dyadic rectangles $R=I \times J$, where I and J are cubes in \mathbb{R}^{n} and \mathbb{R}^{m}, respectively. We say that $w \in A_{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ if there exists a constant $C>0$ such that

$$
M_{s} w(x) \leq C w(x)
$$

for almost every $x \in \mathbb{R}^{n+m}$, where M_{s} is the strong maximal operator defined by

$$
M_{s} f(x)=\sup _{R \ni x} \frac{1}{|R|} \int_{R}|f(y)| d y
$$

where the supreme is taken over all dyadic rectangles $R=I \times J$ be as in (1.1). We define the class $w \in A_{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ by

$$
A_{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)=\bigcup_{1 \leq p<\infty} A_{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)
$$

If $w \in A_{q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ for some $q \geq 1$, then we use $q_{w}=\inf \left\{q: w \in A_{q}\right\}$ to denote the critical index of w. Notice that $w \in A_{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ implies that $q_{w}<\infty$.

Let $\mathcal{S}\left(\mathbb{R}^{n}\right)$ denote Schwartz functions on \mathbb{R}^{n}. In order to construct a test function defined on $\mathbb{R}^{n} \times \mathbb{R}^{m}$, we give the definition of the non-standard convolution $*_{2}$ which depends only on the second variable.

Definition 1.1.[11] We define a non-standard convolution $*_{2}$ by

$$
\psi(x, y)=\psi^{(1)} *_{2} \psi^{(2)}(x, y)=\int_{\mathbb{R}^{m}} \psi^{(1)}(x, y-z) \psi^{(2)}(z) d z
$$

where $\psi^{(1)} \in \mathcal{S}\left(\mathbb{R}^{n+m}\right)$, $\psi^{(2)} \in \mathcal{S}\left(\mathbb{R}^{m}\right)$ satisfying

$$
\left.\sum_{j \in \mathbb{Z}} \widehat{\mid \psi^{(1)}}\left(2^{-j} x, 2^{-2 j} y\right)\right|^{2}=1
$$

for all $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \backslash\{(0,0)\}$, and

$$
\sum_{k \in \mathbb{Z}}\left|\widehat{\psi^{(2)}}\left(2^{-k} z\right)\right|^{2}=1
$$

for all $z \in \mathbb{R}^{m} \backslash\{0\}$, and the cancellation conditions

$$
\int_{\mathbb{R}^{n+m}} x^{\alpha} y^{\beta} \psi^{(1)}(x, y) d x d y=\int_{\mathbb{R}^{m}} z^{\gamma} \psi^{(2)}(z) d z=0
$$

for all nonnegative integers α, β and γ.
We now define the non-isotropic Littlewood-Paley-Stein square function.
Definition 1.2. [11] Let $f \in L^{p}, 1<p<\infty$. The Littlewood-Paley-Stein square function f is defined by

$$
\begin{equation*}
g(f)(x, y)=\left\{\sum_{j, k}\left|\psi_{j, k} * f(x, y)\right|^{2}\right\}^{1 / 2}, \tag{1.2}
\end{equation*}
$$

where

$$
\begin{gathered}
\psi_{j, k}(x, y)=\psi_{j}^{(1)} *_{2} \psi_{k}^{(2)}(x, y), \\
\psi_{j}^{(1)}(x, y)=2^{(n+2 m) j} \psi^{(1)}\left(2^{j} x, 2^{2 j} y\right), \psi_{k}^{(2)}(z)=2^{m k} \psi^{(2)}\left(2^{k} z\right) .
\end{gathered}
$$

From the Fourier transform, it is easy to see that the following continuous Calderón's identity holds on $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$,

$$
f(x, y)=\sum_{j, k} \psi_{j, k} * \psi_{j, k} * f(x, y) .
$$

We formulate the definitions of product kernel and flag kernel associated with the nonisotropic dilations as follows.

Definition 1.3. [9] A distribution K^{\sharp} on $\mathbb{R}^{n+m} \times \mathbb{R}^{m}$ is said to be a product kernel on $\mathbb{R}^{n+m} \times \mathbb{R}^{m}$ if K^{\sharp} is a C^{∞} function away from the coordinate subspaces $\{(0,0, z):(0,0) \in$ $\left.\mathbb{R}^{n+m}, z \in \mathbb{R}^{m}\right\}$ and $\left\{(x, y, 0):(x, y) \in \mathbb{R}^{n+m}, 0 \in \mathbb{R}^{m}\right\}$, and for all $(x, y, z) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}^{m}$ with $|x|+|y| \neq 0$ and $z \neq 0$ satisfies
(1) (Differential Inequalities) For any multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{m}\right), \gamma=$ $\left(\gamma_{1}, \cdots, \gamma_{m}\right)$,

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} K^{\sharp}(x, y, z)\right| \leq C_{\alpha, \beta, \gamma}|(x, y)|^{-(n+2 m+|\alpha|+2|\beta|)}|z|^{-m-|\gamma|} .
$$

(2) (Cancellation Conditions)For any multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{m}\right)$, every normalized bump function ϕ_{1} on \mathbb{R}^{m} and every $\delta>0$,

$$
\left|\int_{\mathbb{R}^{m}} \partial_{x}^{\alpha} \partial_{y}^{\beta} K^{\sharp}(x, y, z) \phi_{1}(\delta z) d z\right| \leq C_{\alpha, \beta}|(x, y)|^{-(n+2 m+|\alpha|+2|\beta|)} ;
$$

for any multi-indices $\gamma=\left(\gamma_{1}, \cdots, \gamma_{m}\right)$, every normalized bump function ϕ_{2} on \mathbb{R}^{n+m} and every $\delta>0$,

$$
\left|\int_{\mathbb{R}^{n+m}} \partial_{z}^{\gamma} K^{\sharp}(x, y, z) \phi_{2}\left(\delta x, \delta^{2} y\right) d x d y\right| \leq C_{\gamma}|z|^{-m-|\gamma|}
$$

for every normalized bump function ϕ_{3} on \mathbb{R}^{n+m+m} and every $\delta_{1}, \delta_{2}>0$,

$$
\left|\int_{\mathbb{R}^{n+m+m}} K^{\sharp}(x, y, z) \phi_{3}\left(\delta_{1} x, \delta_{1}^{2} y, \delta_{2} z\right) d x d y d z\right| \leq C .
$$

Definition 1.4. [9] A distribution K on \mathbb{R}^{n+m} is said to be a flag kernel on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ if K is a C^{∞} function away from the coordinate subspaces $\left\{(0, y): 0 \in \mathbb{R}^{n}, y \in \mathbb{R}^{m}\right\}$, and for all $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ with $|x| \neq 0$ satisfies
(1) (Differential Inequalities) For any multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right), \beta=\left(\beta_{1}, \cdots, \beta_{m}\right)$,

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} K(x, y)\right| \leq C_{\alpha, \beta}|x|^{-n-|\alpha|}|(x, y)|^{-2 m-2|\beta|}
$$

(2) (Cancellation Conditions)For any multi-indices $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, every normalized bump function ϕ_{1} on \mathbb{R}^{m} and every $\delta>0$,

$$
\left|\int_{\mathbb{R}^{m}} \partial_{x}^{\alpha} K(x, y) \phi_{1}(\delta y) d y\right| \leq C_{\alpha}|x|^{-n-|\alpha|}
$$

for any multi-indices $\beta=\left(\beta_{1}, \cdots, \beta_{m}\right)$, every normalized bump function ϕ_{2} on \mathbb{R}^{n} and every $\delta>0$,

$$
\left|\int_{\mathbb{R}^{n}} \partial_{y}^{\beta} K(x, y) \phi_{2}(\delta x) d x\right| \leq C_{\beta}|y|^{-m-|\beta|}
$$

every normalized bump function ϕ_{3} on \mathbb{R}^{n+m} and every $\delta_{1}, \delta_{2}>0$,

$$
\left|\int_{\mathbb{R}^{n+m}} K(x, y) \phi_{3}\left(\delta_{1} x, \delta_{2} y\right) d x d y\right| \leq C
$$

We now recall the test functions of order $M, \mathcal{S}_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)$, where M is a positive integer.

Definition 1.5. [11] We say $f(x, y, z) \in \mathcal{S}_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)$ if f is a Schwartz test function and satisfies the following conditions:
(i) For $|\alpha|,|\beta|,|\gamma| \leq M-1$,

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} f(x, y, z)\right| \leq C \frac{1}{(1+|(x, y)|)^{n+2 m+3 M+|\alpha|+2|\beta|}} \frac{1}{(1+|z|)^{m+M+|\gamma|}}
$$

(ii) For $\left|x-x^{\prime}\right| \leq \frac{1}{2}(1+|x|)$ and $\left|y-y^{\prime}\right| \leq \frac{1}{2}(1+|y|),|\alpha|=|\beta|=M$ and $|\gamma| \leq M-1$,

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} f(x, y, z)-\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} f\left(x^{\prime}, y^{\prime}, z\right)\right| \leq C \frac{\left|\left(x-x^{\prime}, y-y^{\prime}\right)\right|}{(1+|(x, y)|)^{n+2 m+6 M}} \frac{1}{(1+|z|)^{m+M+|\gamma|}}
$$

(iii) For $\left|z-z^{\prime}\right| \leq \frac{1}{2}(1+|z|),|\gamma|=M$ and $|\alpha|,|\beta| \leq M-1$,

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} f(x, y, z)-\partial_{x}^{\alpha} \partial_{y}^{\beta} \partial_{z}^{\gamma} f\left(x, y, z^{\prime}\right)\right| \leq C \frac{1}{(1+|(x, y)|)^{n+2 m+3 M+|\alpha|+2|\beta|}} \frac{\left|z-z^{\prime}\right|}{(1+|z|)^{m+2 M}},
$$

(iv) For $\left|x-x^{\prime}\right| \leq \frac{1}{2}(1+|x|),\left|y-y^{\prime}\right| \leq \frac{1}{2}(1+|y|),\left|z-z^{\prime}\right| \leq \frac{1}{2}(1+|z|)$, and $|v|=M$,

$$
\begin{aligned}
& \left|\partial_{x}^{v} \partial_{y}^{v} v_{z}^{v} f(x, y, z)-\partial_{x}^{v} \partial_{y}^{v} \partial_{z}^{v} f\left(x^{\prime}, y^{\prime}, z\right)-\partial_{x}^{v} \partial_{y}^{v} \partial_{z}^{v} f\left(x, y, z^{\prime}\right)+\partial_{x}^{v} \partial_{y}^{v} \partial_{z}^{v} f\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right| \\
\leq & C \frac{\left|\left(x-x^{\prime}, y-y^{\prime}\right)\right|}{(1+|(x, y)|)^{n+2 m+6 M}} \frac{\left|z-z^{\prime}\right|}{(1+|z|)^{m+2 M}},
\end{aligned}
$$

(v) For $|\alpha|,|\beta|,|\gamma| \leq M-1$,

$$
\int_{\mathbb{R}^{n+m}} f(x, y, z) x^{\alpha} y^{\beta} d x d y=\int_{\mathbb{R}^{m}} f(x, y, z) z^{\gamma} d z=0 .
$$

If $f(x, y, z) \in \mathcal{S}_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)$, the norm of f in $S_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)$ is defined by

$$
\|f\|_{S_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)}=\inf \{C:(i)-(i v) \text { hold }\} .
$$

The following is the test function space $\mathcal{S}_{F, M}$ on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ associated with the flag structure.

Definition 1.6. [11] A function $f(x, y)$ defined on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ is said to be a test function in $\mathcal{S}_{F, M}$ if there exists a function $f^{\sharp} \in \mathcal{S}_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)$ such that

$$
\begin{equation*}
f(x, y)=\int_{\mathbb{R}^{m}} f^{\sharp}(x, y-z, z) d z . \tag{1.3}
\end{equation*}
$$

The norm of f in $\mathcal{S}_{F, M}$ on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ is defined by

$$
\|f\|_{\mathcal{S}_{F, M}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)}=\inf \left\{\left\|f^{\sharp}\right\|_{S_{M}\left(\mathbb{R}^{n+m} \times \mathbb{R}^{m}\right)}: \text { for all representations of } f \text { in }(1.3)\right\} \text {. }
$$

The dual space of $\mathcal{S}_{F, M}$ is denoted by $\left(\mathcal{S}_{F, M}\right)^{\prime}$.
Since the functions $\psi_{j, k}$ constructed above belong to $\mathcal{S}_{F, M}$, the Littlewood-Paley-Stein square function $g(f)$ can be defined for all distributions in $\left(\mathcal{S}_{F, M}\right)^{\prime}$. Thus the author in [11] defined the multi-parameter Hardy space associated with non-isotropic flag singular integral as follows.

Definition 1.7. [11] Let $0<p<\infty$. The multi-parameter Hardy space associated with non-isotropic flag singular integrals is defined as $H_{F}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)=\left\{f \in\left(\mathcal{S}_{F, M}\right)^{\prime}: g(f) \in L^{p}\left(\mathbb{R}^{n} \times\right.\right.$ $\left.\left.\mathbb{R}^{m}\right)\right\}$. If $f \in H_{F}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, the norm of f is defined by $\|f\|_{H_{F}^{p}}=\|g(f)\|_{p}$.

Clearly, it follows that $H_{F}^{p}\left(\mathbb{R}^{3}\right)=L^{p}\left(\mathbb{R}^{3}\right)$ for $1<p<\infty$.
It is proved in [11] that the definition is independent of the choice of functions $\psi_{j, k}$ and the following boundedness result of convolution type flag singular integrals on $\mathbb{R}^{n} \times \mathbb{R}^{m}$ was established.

Theorem 1.8. [11] Let T be the flag singular integral. Then for any $0<p \leq 1$, there exists a constant $C=C(p)$ such that

$$
\|T(f)\|_{H_{F}^{p}} \leq C\|f\|_{H_{F}^{p}} .
$$

In this paper, we will use the method in [11] to develop a theory of weighted multiparameter Triebel-Lizorkin and Besov spaces with non-isotropic flag singular integrals. We first give the

Definition 1.9. Let $0<p, q<\infty, s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}, w \in A_{\infty}$. Let M be the integer which satisfying the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1, q\right\}$, then weighted Triebel-Lizorkin space $\dot{F}_{p, w}^{s, q}$ associated with non-isotropic flag singular integrals is defined by

$$
\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)=\left\{f \in\left(\mathcal{S}_{F, M}\right)^{\prime}:\|f\|_{\dot{F}_{p, w}^{s, q}}<\infty\right\}
$$

where

$$
\|f\|_{\dot{F}_{p, w}^{s, q}}=\left\|\left\{\sum_{j, k \in \mathbb{Z}}\left(2^{j s_{1}} 2^{k s_{2}}\left|\psi_{j, k} * f\right|\right)^{q}\right\}^{1 / q}\right\|_{L^{p}(w)} .
$$

And let M be the integer which satisfying the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1\right\}$, then weighted Besov space $\dot{B}_{p, w}^{s, q}$ associated with non-isotropic flag singular integrals is defined by

$$
\dot{B}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)=\left\{f \in\left(\mathcal{S}_{F, M}\right)^{\prime}:\|f\|_{\dot{B}_{p, w}^{s, q}}<\infty\right\},
$$

where

$$
\|f\|_{\dot{B}_{p, w}^{s, q}}=\left\{\sum_{j, k \in \mathbb{Z}}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\psi_{j, k} * f\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} .
$$

We will prove that Definition 1.9 is independent of the choice function $\psi_{j, k}$ by MinMax comparison principle. The main tool to prove the Min-Max comparison principle is the following discrete Calderón's identity.

Theorem 1.10. [11] Suppose that $\psi_{j, k}$ are the same as in Definition 1.1. Then

$$
\begin{equation*}
f(x, y)=\sum_{j, k} \sum_{I, J}|I| J J \mid \widetilde{\psi}_{j, k}\left(x, y, x_{I}, y_{J}\right)\left(\psi_{j, k} * f\right)\left(x_{I}, y_{J}\right), \tag{1.4}
\end{equation*}
$$

where $\widetilde{\psi}_{j, k}\left(x, y, x_{I}, y_{J}\right) \in \mathcal{S}_{F, M}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right), I \subset \mathbb{R}^{n}, J \subset \mathbb{R}^{m}$ are dyadic cubes with side-length $l(I)=2^{-j-N}, l(J)=2^{-k-N}+2^{-2 j-N}$ for a fixed large integer N, x_{I}, y_{J} are any fixed points in I, J, respectively. The above series converges in the norm of $\mathcal{S}_{F, M}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ and in the dual space $\left(\mathcal{S}_{F, M}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)\right)^{\prime}$.

The above discrete Calderón's identity enables us to derive the following theorems. In what follows, we use the notation $A \approx B$ to denote that two quantities A and B are comparable independent of other substantial quantities involved in the paper. The Min-Max comparison principle on Triebel-Lizorkin spaces as follows.

Theorem 1.11. Suppose that $0<p, q<\infty$, $s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}, w \in A_{\infty}$ and $\phi^{(1)}, \psi^{(1)} \in \mathcal{S}\left(\mathbb{R}^{n+m}\right)$, $\phi^{(2)}, \psi^{(2)} \in \mathcal{S}\left(\mathbb{R}^{m}\right)$,

$$
\phi(x, y)=\phi^{(1)} *_{2} \phi^{(2)}(x, y), \quad \psi(x, y)=\psi^{(1)} *_{2} \psi^{(2)}(x, y)
$$

and $\phi_{j, k}, \psi_{j, k}$ satisfy the same conditions as in Definition 1.2, $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1, q\right\}$, where M depends on p and q. Then for $f \in\left(\mathcal{S}_{F, M}\right)^{\prime}$, we have

$$
\begin{aligned}
& \left\|\left\{\sum_{j, k \in \mathbb{Z}}\left(2^{j s_{1}} 2^{k s_{2}} \sum_{I, J} \sup _{u \in I, v \in J}\left|\psi_{j, k} * f(u, v)\right|\right)^{q} \chi_{I} \chi_{J}\right\}^{1 / q}\right\|_{L^{p}(w)} \\
& \approx\left\|\left\{\sum_{j, k \in \mathbb{Z}}\left(2^{j s_{1}} 2^{k s_{2}} \sum_{I, J} \inf _{u \in I, v \in J}\left|\phi_{j, k} * f(u, v)\right|\right)^{q} \chi_{I} \chi_{J}\right\}^{1 / q}\right\|_{L^{p}(w)} .
\end{aligned}
$$

$I \subset \mathbb{R}^{n}, J \subset \mathbb{R}^{m}$ are dyadic cubes with side-length $l(I)=2^{-j-N}, l(J)=2^{-2 j-N}+2^{-k-N}$ for a fixed large integer N, x_{I}, y_{J} are any fixed points in I, J, respectively.

Similarly, we have the Min-Max comparison principle on Besov spaces.
Theorem 1.12. Suppose that $0<p, q<\infty, s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}, w \in A_{\infty}$ and $\phi^{(1)}, \psi^{(1)} \in \mathcal{S}\left(\mathbb{R}^{n+m}\right)$, $\phi^{(2)}, \psi^{(2)} \in \mathcal{S}\left(\mathbb{R}^{m}\right)$,

$$
\phi(x, y)=\phi^{(1)} *_{2} \phi^{(2)}(x, y), \quad \psi(x, y)=\psi^{(1)} *_{2} \psi^{(2)}(x, y),
$$

and $\phi_{j, k}, \psi_{j, k}$ satisfy the same conditions as in Definition 1.2, $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1\right\}$, where M depends on p and q. Then for $f \in\left(\mathcal{S}_{F, M}\right)^{\prime}$, we have

$$
\begin{aligned}
& \left\{\sum_{j, k \in \mathbb{Z}}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\sum_{I, J} \sup _{u \in I, v \in J}\left|\psi_{j, k} * f(u, v)\right| \chi_{I} \chi_{J}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} \\
& \approx\left\{\sum_{j, k \in \mathbb{Z}}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\sum_{I, J} \inf _{u \in I, v \in J}\left|\phi_{j, k} * f(u, v)\right| \chi_{I} \chi_{J}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q}
\end{aligned}
$$

$I \subset \mathbb{R}^{n}, J \subset \mathbb{R}^{m}$ are dyadic cubes with side-length $l(I)=2^{-j-N}, l(J)=2^{-2 j-N}+2^{-k-N}$ for a fixed large integer N, x_{I}, y_{J} are any fixed points in I, J, respectively.

Using discrete Calderón's identity and almost orthogonal estimates, we can prove the following theorems:

Theorem 1.13. Let T be the flag singular integral. For any $0<p, q<\infty, s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$, $w \in A_{\infty}, \max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1, q\right\}$, there exists a constant $C=C(p)$ such that

$$
\|T(f)\|_{\dot{F}_{p, w}^{s, q}}^{s,} \leq C\|f\|_{\dot{F}_{p, w}^{s, q}}^{s,}
$$

Theorem 1.14. Let T be the flag singular integral. For any $0<p, q<\infty, s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}$, $w \in A_{\infty}, \max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1\right\}$, there exists a constant $C=C(p)$ such that

$$
\|T(f)\|_{\dot{B}_{p, w}^{s, q}} \leq C\|f\|_{\dot{B}_{p, w}^{s, q}}^{s,}
$$

2 The Min-Max Comparison Principle on Weighted Multiparameter Triebel-Lizorkin and Besov Spaces

In this section, we establish the Min-Max comparison principle on weighted multi-parameter Triebel-Lizorkin and Besov spaces associated with non-isotropic flag singular integrals.

We first recall the almost orthogonal estimates.
Lemma 2.1. [11] For any given positive integers L and K, there exists a constant C depending only on K, L such that if $t \vee t^{\prime} \leq \sqrt{s \vee s^{\prime}}$, then

$$
\left|\psi_{t, s} * \phi_{t^{\prime}, s^{\prime}}(x, y)\right| \leq C\left(\frac{t}{t^{\prime}} \wedge \frac{t^{\prime}}{t}\right)^{L}\left(\frac{s}{s^{\prime}} \wedge \frac{s^{\prime}}{s}\right)^{L} \frac{\left(t \vee t^{\prime}\right)^{K}}{\left(t \vee t^{\prime}+|x|\right)^{n+K}} \frac{\left(s \vee s^{\prime}\right)^{K}}{\left(s \vee s^{\prime}+|y|\right)^{m+K}},
$$

and if $\mathrm{\vee} t^{\prime}>\sqrt{s \vee s^{\prime}}$, then

$$
\left|\psi_{t, s} * \phi_{t^{\prime}, s^{\prime}}(x, y)\right| \leq C\left(\frac{t}{t^{\prime}} \wedge \frac{t^{\prime}}{t}\right)^{L}\left(\frac{s}{s^{\prime}} \wedge \frac{s^{\prime}}{s}\right)^{L} \frac{\left(t \vee t^{\prime}\right)^{K}}{\left(t \vee t^{\prime}+|x|\right)^{n+K}} \frac{\left(t \vee t^{\prime}\right)^{K}}{\left(t \vee t^{\prime}+\sqrt{|y|}\right)^{2 m+K}},
$$

where $\psi_{t, s}, \phi_{t^{\prime}, s^{\prime}} \in \mathcal{S}_{F, M}$ on $\mathbb{R}^{n} \times \mathbb{R}^{m}$.
Next, we give the following lemma which is crucial in dealing with weighted multiparameter Triebel-Lizorkin and Besov spaces.

Lemma 2.2. [11] Given large positive integer N and $j, k, j^{\prime}, k^{\prime} \in \mathbb{Z}$. Let I, I^{\prime} and J, J^{\prime} be dyadic cubes in \mathbb{R}^{n} and \mathbb{R}^{m} respectively, such that $l(I)=2^{-j-N}, l(J)=2^{-2 j-N}+2^{-k-N}, l\left(I^{\prime}\right)=$ $2^{-j^{\prime}-N}, l\left(J^{\prime}\right)=2^{-2 j^{\prime}-N}+2^{-k^{\prime}-N}$. For any $u, u^{*} \in I, v, v^{*} \in J$, then we have when $j \wedge j^{\prime} \geq \frac{k \wedge k^{\prime}}{2}$,

$$
\left.\left.\begin{array}{rl}
& \sum_{I^{\prime}, J^{\prime}} \frac{2^{-\left(j \wedge j^{\prime}\right) K} 2^{-\left(\left(k \wedge k^{\prime}\right) K\right.}\left|I^{\prime}\right|\left|J^{\prime}\right|}{}\left|\phi_{\left.j^{\prime}\right)}+\left|u-x_{I^{\prime}}\right|\right)^{n+K}\left(2^{-\left(k \wedge k^{\prime}\right)}+\left|v-y_{J^{\prime}}\right|\right)^{m+K}
\end{array} \phi_{j^{\prime}, k^{\prime}} * f\left(x_{I^{\prime}}, y_{J^{\prime}}\right) \right\rvert\,\right] .
$$

and when $j \wedge j^{\prime} \leq \frac{k \wedge k^{\prime}}{2}$,

$$
\begin{aligned}
& \sum_{I^{\prime}, J^{\prime}} \frac{2^{-2\left(j \wedge \wedge^{\prime}\right) K}\left|I^{\prime}\right|\left|J^{\prime}\right|}{\left(\left(j \wedge j^{\prime}\right)+\left|u-x_{I^{\prime}}\right|\right)^{n+K}\left(2^{-\left(j \wedge j^{\prime}\right)}+\sqrt{\left|v-y_{J^{\prime}}\right|}\right)^{2 m+K}}\left|\phi_{j^{\prime}, k^{\prime}} * f\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \\
\leq & C\left\{M\left(\sum_{I^{\prime}, J^{\prime}}\left|\phi_{j^{\prime}, k^{\prime}} * f\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right|^{r} \chi_{I^{\prime}} \chi_{J^{\prime}}\right)\right\}^{1 / r}\left(u^{*}, v^{*}\right),
\end{aligned}
$$

where M is the Hardy-Littlewood maximal function on $\mathbb{R}^{n} \times \mathbb{R}^{m}$, and M_{s} is strong maximal function function on $\mathbb{R}^{n} \times \mathbb{R}^{m}$, r satisfying $\max \left\{\frac{n}{n+K}, \frac{m}{m+K}\right\}<r$.

Now we are ready to give the
Proof of Theorems 1.11 and 1.12. Suppose that M satisfies the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}$ $<\min \left\{\frac{p}{q_{w}}, 1, q\right\}$, then we choose $p_{0}>q_{w}$ such that $w \in A_{p_{0}}$ and $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{p_{0}}, 1, q\right\}$.

By Theorem 1.10, we can choose N depending on M, by the discrete Calderón identity, $f \in\left(\mathcal{S}_{F, M}\right)^{\prime}$ can be represented by

$$
f(x, y)=\sum_{j^{\prime}, k^{\prime}} \sum_{I^{\prime}, I^{\prime}}\left|I^{\prime} \| I^{\prime}\right| \widetilde{\phi}_{j^{\prime}, k^{\prime}}\left(x, y, x_{I^{\prime}}, y_{J^{\prime}}\right)\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right),
$$

we write

$$
\left(\psi_{j, k} * f\right)(x, y)=\sum_{j^{\prime}, k^{\prime} I^{\prime}, J^{\prime}}\left|I^{\prime} \| J^{\prime}\right| \psi_{j, k} * \widetilde{\phi}_{j, k}\left(\cdot, \cdot, x_{I^{\prime}}, y_{J^{\prime}}\right)(x, y)\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right) .
$$

By Lemma 2.1 and Lemma 2.2, for any given positive integer L, we get

$$
\begin{aligned}
\left|\left(\psi_{j, k} * f\right)(x, y)\right| & \leq \sum_{j^{\prime}, k^{\prime} I^{\prime}, J^{\prime}}\left|I^{\prime}\left\|J^{\prime}\right\| \psi_{j, k} * \widetilde{\phi}_{j, k}\left(\cdot, \cdot, x_{I^{\prime}}, y_{J^{\prime}}\right) \|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \\
& \leq C \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L 2} 2^{-\left|k-k^{\prime}\right| L L}\left\{M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{r}\right\}^{1 / r}\left(x^{*}, y^{*}\right)
\end{aligned}
$$

for any $x, x^{*} \in I, x_{I^{\prime}} \in I^{\prime}, y, y^{*} \in J$ and $y_{J^{\prime}} \in J^{\prime}$, where M_{s} is the strong maximal function.
Applying Hölder's inequality and summing over j, k, I, J yields

$$
\begin{aligned}
& \left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}} \sum_{I, J} \sup _{x \in I, y \in J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right)^{q}\right\}^{1 / q} \\
\leq & C\left\{\sum_{j^{\prime}, k^{\prime}}\left(2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}}\left(M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{r}\right)^{1 / r}\right)^{q}\right\}^{1 / q},
\end{aligned}
$$

where $\left|s_{1}\right|,\left|s_{2}\right|<L$. Since $x_{I^{\prime}}$ and $y_{J^{\prime}}$ are arbitrary points in I^{\prime} and J^{\prime}, respectively, then we have

$$
\begin{aligned}
&\left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}} \sum_{I, J} \sup _{x \in I, y \in J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right)^{q}\right\}^{1 / q} \\
& \leq C\left\{\sum _ { j ^ { \prime } , k ^ { \prime } } \left(2^{j} q q s_{1}\right.\right. \\
&\left.\left.k^{k^{\prime} q s_{2}}\left(M_{s}\left(\sum_{I^{\prime}, J^{\prime}} \inf _{x^{\prime} \in I^{\prime}, y^{\prime} \in J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x^{\prime}, y^{\prime}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{r}\right)^{1 / r}\right)^{q}\right\}^{1 / q} .
\end{aligned}
$$

Since $w \in A_{p_{0}} \subset A_{p / r}$, then taking the L_{w}^{p} norm and applying $L_{w}^{p / r}\left(l^{q / r}\right)$ boundedness of M_{s} for $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<r<\min \left\{\frac{p}{p_{0}}, 1, q\right\}$, then

$$
\begin{aligned}
&\left\|\left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}} \sum_{I, J} \sup _{x \in I, y \in J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right)^{q}\right\}^{1 / q}\right\|_{L^{p}(w)} \\
& \leq C\left\|\left\{\sum_{j^{\prime}, k^{\prime}}\left(2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}} \sum_{I^{\prime}, J^{\prime}} \inf _{x^{\prime} \in I^{\prime}, y^{\prime} \in J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x^{\prime}, y^{\prime}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{q}\right\}^{1 / q}\right\|_{L^{p}(w)} .
\end{aligned}
$$

which completes the proof of Theorem 1.11.

Now we turn to give the proof of Theorem 1.12. Assume that M satisfies the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1\right\}$ and we choose $p_{0}>q_{w}$ such that $w \in A_{p_{0}}$ and $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<$ $\min \left\{\frac{p}{p_{0}}, 1\right\}$. As in the proof of Theorem 1.11, we get

$$
\left|\left(\psi_{j, k} * f\right)(x, y)\right| \leq \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L} 2^{-\left|k-k^{\prime}\right| L}\left\{M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{r}\right\}^{1 / r}\left(x^{*}, y^{*}\right)
$$

Therefore, for $x^{*} \in I, y^{*} \in J$,

$$
\begin{aligned}
& \sup _{(x, y) \in I \times J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I}\left(x^{*}\right) \chi_{J}\left(y^{*}\right) \\
& \leq C \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L} 2^{-\left|k-k^{\prime}\right| L}\left\{M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{r}\right\}^{1 / r}\left(x^{*}, y^{*}\right),
\end{aligned}
$$

where $\left|s_{1}\right|,\left|s_{2}\right|<L$. When $1 \leq p<\infty$, since $w \in A_{p_{0}} \subset A_{p / r}$, taking the L_{w}^{p} norm and applying $L_{w}^{p / r}\left(l^{1 / r}\right)$ boundedness of M_{s} for $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<r<\min \left\{\frac{p}{p_{0}}, 1\right\}$, we have

$$
\begin{aligned}
& \left\|\sum_{I, J} \sup _{(x, y) \in I \times J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right\|_{L^{p}(w)} \\
\leq & C \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L L^{-\left|k-k^{\prime}\right| L}}\left\|\left\{M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} X_{J^{\prime}}\right)^{r}\right\}^{1 / r}\right\|_{L^{p}(w)} \\
\leq & C \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L} 2^{-\left|k-k^{\prime}\right| L}\left\|\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right\|_{L^{p}(w)}
\end{aligned}
$$

If $q \geq 1$, applying Hölder's inequality and if $0<q<1$ by using usual inequality, summing over j, k, then we get

$$
\begin{align*}
& \left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\sum_{I, J} \sup _{(x, y) \in I X J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} \\
\leq & C\left\{\sum_{j^{\prime}, k^{\prime}}\left(2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}}\left\|\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} . \tag{2.1}
\end{align*}
$$

When $0<p<1$, since $w \in A_{p_{0}} \subset A_{p / r}$ and taking the L_{w}^{p} norm and applying $L_{w}^{p / r}\left(l^{1 / r}\right)$ boundedness of M_{s} for $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<r<\min \left\{\frac{p}{p_{0}}, 1\right\}$, then we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}}\left(\sup _{(x, y) \in I \times J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right)^{p} w\left(x^{*}, y^{*}\right) d x^{*} d y^{*} \\
\leq & C \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L} 2^{-\left|k-k^{\prime}\right| L} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}}\left\{M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{r}\right\}^{p / r} w\left(x^{*}, y^{*}\right) d x^{*} d y^{*} \\
\leq & C \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| L} 2^{-\left|k-k^{\prime}\right| L} \int_{\mathbb{R}^{n} \times \mathbb{R}^{m}}\left\{\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right\}^{p} w\left(x^{*}, y^{*}\right) d x^{*} d y^{*}
\end{aligned}
$$

so if $q / p \geq 1$, applying Hölder's inequality and if $0<q / p<1$ by using usual inequality, we get

$$
\begin{align*}
& \left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\sum_{I, J} \sup _{(x, y) \in I \times J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} \\
\leq & C\left\{\sum_{j^{\prime}, k^{\prime}}\left(2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}}\left\|\sum_{I^{\prime}, J^{\prime}} \mid\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right) \chi_{I^{\prime}} \chi_{J^{\prime}}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} . \tag{2.2}
\end{align*}
$$

Combining (2.1) with (2.2), since ($x_{I}^{\prime}, y_{J}^{\prime}$) are arbitrary points in $I^{\prime} \times J^{\prime}$, we can get the desired result, namely

$$
\begin{aligned}
& \left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\sum_{I, J} \sup _{(x, y) \in I X J}\left|\left(\psi_{j, k} * f\right)(x, y)\right| \chi_{I} \chi_{J}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} \\
\leq & C\left\{\sum_{j^{\prime}, k^{\prime}}\left(2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}}\left\|\sum_{I^{\prime}, J^{\prime}} \inf _{\left(x^{\prime}, y^{\prime}\right) \in I^{\prime} \times J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x^{\prime}, y^{\prime}\right)\right| \chi_{I^{\prime}} \chi_{J^{\prime}}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q} .
\end{aligned}
$$

As a consequence of Theorem 1.11 and Theorem 1.12, we have the following characterization of $\dot{F}_{p, w}^{s, q}$ and Besov Spaces $\dot{B}_{p, w}^{s, q}$.

Corollary 2.3. Let $0<p, q<\infty$ and $s=\left(s_{1}, s_{2}\right) \in \mathbb{R}^{2}, w \in A_{\infty}$. Suppose that M be the integer which satisfying the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1, q\right\}$, then we have

$$
\|f\|_{\dot{F}_{p, w}^{s, q}} \approx\left\|\left\{\sum_{j, k}\left(\sum_{I, J} 2^{j s_{1}} 2^{k s_{2}} \mid\left(\psi_{j, k} * f\right)\left(x_{I}, y_{J}\right) \chi_{I} \chi_{J}\right)^{q}\right\}^{1 / q}\right\|_{L^{p}(w)},
$$

and let M be the integer which satisfying the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1\right\}$, then we have

$$
\|f\|_{\dot{B}_{p, w}^{s, q}} \approx\left\{\sum_{j, k}\left(2^{j s_{1}} 2^{k s_{2}}\left\|\sum_{I, J} \mid\left(\psi_{j, k} * f\right)\left(x_{I}, y_{J}\right) \chi_{I} \chi_{J}\right\|_{L^{p}(w)}\right)^{q}\right\}^{1 / q},
$$

where $j, k, x_{I}, y_{J}, \chi_{I}, \chi_{J}, \psi_{j, k}$ are the same in Theorem 1.11.

3 Boundedness of Flag Singular Integrals

The main purpose of this section is to obtain the boundedness of flag singular integrals on weighted multi-parameter Triebel-Lizorkin and Besov Spaces associated with non-isotropic flag singular integrals. We first give some propositions.

Proposition 3.1. Let $0<p, q<\infty, w \in A_{\infty}$. Then $\mathcal{S}_{F, M}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ is dense in $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ and $\dot{B}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, where M satisfying the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1, q\right\}$ for $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, and M satisfying the inequality $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<\min \left\{\frac{p}{q_{w}}, 1\right\}$ for $\dot{B}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times\right.$ \mathbb{R}^{m}).

Proof. Suppose $f \in \dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, we get

$$
f(x, y)=\sum_{j, k} \sum_{I, J}|I||J| \tilde{\psi}_{j, k}\left(x, y, x_{I}, y_{J}\right)\left(\psi_{j, k} * f\right)\left(x_{I}, y_{J}\right)
$$

where the series converges in $\mathcal{S}_{F, M}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. It suffices to show that

$$
\begin{aligned}
F & =F_{M_{1}, M_{2}, s}\left(x, y, x_{I}, y_{J}\right) \\
& =\sum_{|j| \leq M_{1}, k \mid \leq M_{2}} \sum_{I \times J \subseteq B(0, s)}|I||J| \widetilde{\psi}_{j, k}\left(x, y, x_{I}, y_{J}\right)\left(\psi_{j, k} * f\right)\left(x_{I}, y_{J}\right)
\end{aligned}
$$

converges to f in $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, as M_{1}, M_{2} and s tend to infinity, where the $B(0, s)=\{(x, y) \in$ $\left.\mathbb{R}^{n} \times \mathbb{R}^{m}: x^{2}+y^{2}<s^{2}\right\}$. To do this, let W the set $\{(I, J): I \times J \subseteq B(0, s)\}$, where the I, J are dyadic cubes in \mathbb{R}^{n} and \mathbb{R}^{m} with side length 2^{-j-N} and $2^{-2 j-N}+2^{-k-N}$, respectively, and let W^{c} be the complement of W. Let also $V=\left\{(j, k):|j| \leq M_{1},|k| \leq M_{2}\right\}$ and V^{c} denotes its complement.

For $\left(x_{I^{\prime}}, y_{J^{\prime}}\right) \in I^{\prime} \times J^{\prime}$, then

$$
\begin{aligned}
& \left|\psi_{j^{\prime}, k^{\prime}} * \sum_{(j, k) \in V^{c}} \sum_{(I, J) \in W^{c}}\right| I|J| \widetilde{\psi}_{j, k}\left(\cdot, \cdot, x_{I}, y_{J}\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\left(\psi_{j, k} * f\right)\left(x_{I}, y_{J}\right) \mid \\
\leq & C \sum_{(j, k) \in V^{c}} 2^{-\left|j-j^{\prime}\right| L} 2^{-\left|k-k^{\prime}\right| L}\left\{M_{s}\left(\sum_{(I, J) \in W^{c}}\left|\left(\psi_{j}, k * f\right)\left(x_{I}, y_{J}\right)\right| \chi_{I} \chi_{J}\right)^{r}\right\}^{1 / r}
\end{aligned}
$$

where any r satisfy $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<r<\min \left\{\frac{p}{p_{0}}, 1, q\right\}$. Repeating the proof of Min-Max comparison principle of $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, when $w \in A_{\infty}$, we get

$$
\begin{aligned}
& \left\|\left\{\sum_{j^{\prime}, k^{\prime}} \sum_{I^{\prime}, J^{\prime}} 2^{j^{\prime} s_{1} q} 2^{k^{\prime} s_{2} q}\left|\left(\psi_{j^{\prime}, k^{\prime}} * F\right)\right|^{q} \chi_{I^{\prime}} \chi_{J^{\prime}}\right\}^{1 / q}\right\|_{L^{p}(w)} \\
& \leq\left\|\left\{\sum_{(j, k) \in V^{c}} \sum_{(I, J) \in W^{c}} 2^{j s_{1} q} 2^{k s_{2} q}\left|\left(\psi_{j, k} * f\right)\right|^{q} \chi_{I} \chi_{J}\right\}^{1 / q}\right\|_{L^{p}(w)}
\end{aligned}
$$

where the last term tends to zero as M_{1}, M_{2} and r tend to infinity whenever $f \in \dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times\right.$ \mathbb{R}^{n}).

When $f \in \dot{B}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, we can similarly get the desired result.
Since $\mathcal{S}_{F, M}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, it is immediate to obtain that
Proposition 3.2. $L^{2}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$ is dense in $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$ and $\dot{B}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$ for $0<p, q<\infty$.
We now prove the boundedness of non-isotropic flag singular integrals on $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$ and $\dot{B}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$.
Proof of Theorem 1.13 and Theorem 1.14. For $f \in L^{2}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right) \cap \dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{m} \times \mathbb{R}^{n}\right)$, by discrete Calderón's identity,

$$
\left(\psi_{j, k} * T f\right)(x, y)=\sum_{j^{\prime}, k^{\prime}} \sum_{I^{\prime}, J^{\prime}}\left|I^{\prime}\left\|J^{\prime}\right\| \psi_{j, k} * K * \widetilde{\phi}_{j^{\prime}, k^{\prime}}\left(\cdot-x_{I^{\prime}},-y_{J^{\prime}}\right)(x, y)\right| \phi_{j^{\prime}, k^{\prime}} * f\left(x_{I^{\prime}}, y_{J^{\prime}}\right)
$$

The author in [11] has showed

$$
\begin{aligned}
& \quad\left|\psi_{j, k} * K * \widetilde{\phi}_{j^{\prime}, k^{\prime}}\left(\cdot-x_{I^{\prime}}, \cdot-y_{J^{\prime}}\right)(x, y)\right| \\
& \leq C 2^{-\left|j-j^{\prime}\right| M} 2^{-\left|k-k^{\prime}\right| M} \\
& \quad \times \int_{\mathbb{R}^{m}} \frac{2^{-\left(j \wedge j^{\prime}\right) M}}{\left(2^{-\left(j \wedge j^{\prime}\right)}+\left|\left(x-x_{I^{\prime}}, y-z-y_{J^{\prime}}\right)\right|\right)^{n+2 m+M}} \frac{2^{-\left(k \wedge k^{\prime}\right) M}}{\left(2^{-\left(k \wedge k^{\prime}\right)}+|z|\right)^{m+M}} d z .
\end{aligned}
$$

Similar to the proof of Lemma 3.3 in [11], there exists a constant K depending only on M such that, when $2^{-j} \vee 2^{-j^{\prime}} \leq \sqrt{2^{-k} \vee 2^{-k^{\prime}}}$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{m}} \frac{2^{-\left(j \wedge j^{\prime}\right) M}}{\left(2^{-\left(j \wedge j^{\prime}\right)}+\left|\left(x-x_{I^{\prime}}, y-z-y_{J^{\prime}}\right)\right|\right)^{n+2 m+M}} \frac{2^{-\left(k \wedge k^{\prime}\right) M}}{\left(2^{-\left(k \wedge k^{\prime}\right)}+|z|\right)^{m+M}} d z \\
\leq & C \frac{2^{-\left(j \wedge j^{\prime}\right) K}}{\left(2^{-\left(j \wedge j^{\prime}\right)}+\left|x-x_{I^{\prime}}\right|\right)^{n+K}} \frac{2^{-\left(k \wedge k^{\prime}\right) K}}{\left(2^{-\left(k \wedge k^{\prime}\right)}+\left|y-y_{J^{\prime}}\right|\right)^{m+K}},
\end{aligned}
$$

and when $2^{-j} \vee 2^{-j^{\prime}}>\sqrt{2^{-k} \vee 2^{-k^{\prime}}}$,

$$
\begin{aligned}
& \int_{\mathbb{R}^{m}} \frac{2^{-\left(j \wedge j^{\prime}\right) M}}{\left(2^{-\left(j \wedge j^{\prime}\right)}+\left|\left(x-x_{I^{\prime}}, y-z-y_{J^{\prime}}\right)\right|\right)^{n+2 m+M}} \frac{2^{-\left(k \wedge k^{\prime}\right) M}}{\left(2^{-\left(k \wedge k^{\prime}\right)}+|z|\right)^{m+M}} d z \\
\leq & C \frac{2^{-\left(j \wedge j^{\prime}\right) K}}{\left(2^{-\left(j \wedge j^{\prime}\right)}+\left|x-x_{I^{\prime}}\right|\right)^{n+K}} \frac{2^{-\left(j \wedge \jmath^{\prime}\right) K}}{\left(2^{-\left(j \wedge j^{\prime}\right)}+\sqrt{\left|y-y_{J^{\prime}}\right|}\right)^{2 m+K}}
\end{aligned}
$$

By an analogous argument to the proof of Theorem 1.11, we have

$$
\begin{equation*}
\psi_{j, k} * T f(x, y) \leq \sum_{j^{\prime}, k^{\prime}} 2^{-\left|j-j^{\prime}\right| M} 2^{-\left|k-k^{\prime}\right| M}\left\{M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right|\right)^{r}\right\}^{1 / r}\left(u^{*}, v^{*}\right), \tag{3.1}
\end{equation*}
$$

for any $u, u^{*} \in I, x_{I^{\prime}} \in I^{\prime}, v, v^{*} \in J$ and $y_{J^{\prime}} \in J^{\prime}$, where M_{s} is the strong maximal operator.
Applying Hölder's inequality and summing over j, k, I, J yields

$$
\begin{aligned}
& \left\{\sum_{j, k}\left(\sum_{I, J} 2^{j s_{1}} 2^{k s_{2}}\left|\psi_{j, k} * T f(x, y)\left(x_{I}, y_{J}\right)\right| \chi_{I} \chi_{J}\right)^{q}\right\}^{1 / q} \\
\leq & C\left\{\sum_{j^{\prime}, k^{\prime}}\left(2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}}\left(M_{s}\left(\sum_{I^{\prime}, J^{\prime}}\left|\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right) \chi_{I^{\prime}} \chi_{J^{\prime}}\right|\right)^{r}\right)^{1 / r}\right)^{q}\right\}^{1 / q} .
\end{aligned}
$$

Let $\max \left\{\frac{n}{n+M}, \frac{m}{m+M}\right\}<r<\min \left\{\frac{p}{p_{0}}, 1, q\right\}$, since $w \in A_{p_{0}} \subset A_{p / r}$, applying $L_{w}^{p / r}\left(l^{q / r}\right)$ boundedness of M_{s}, then we have

$$
\begin{aligned}
&\left\|\left\{\sum_{j, k}\left(\sum_{I, J} 2^{j s_{1}} 2^{k s_{2}} \mid \psi_{j, k} * T f(x, y)\left(x_{I}, y_{J}\right) \chi_{I} \chi_{J}\right)^{q}\right\}^{1 / q}\right\|_{L^{p}(w)} \\
& \leq C\left\|\left\{\sum_{j^{\prime}, k^{\prime}}\left(\sum_{I^{\prime}, J^{\prime}} 2^{j^{\prime} s_{1}} 2^{k^{\prime} s_{2}} \mid\left(\phi_{j^{\prime}, k^{\prime}} * f\right)\left(x_{I^{\prime}}, y_{J^{\prime}}\right) \chi_{I^{\prime}} \chi_{J^{\prime}}\right)^{q}\right\}^{1 / q}\right\|_{L^{p}(w)} .
\end{aligned}
$$

Namely,

$$
\|T f\|_{\dot{F}_{p, w}^{s, q}} \leq C\|f\|_{\dot{F}_{p, w}^{s, q}}
$$

Since $L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$ is dense in $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$, then T can be extend to be a bounded operator on $\dot{F}_{p, w}^{s, q}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$.

From the proof of Theorem 1.13, it is obvious that Theorem 1.14 follows from similar proof of Theorem 1.12 and Theorem 1.13. Here we omit the details.

Acknowledgements

The research is supported by NNSF-China (Grant No.11171345), the Doctoral Fund of Ministry of Education of China (Grant No. 20120023110003). The second author is also supported by NNSF-China (Grant No.51234005).

References

[1] Y. Ding, Y. Han, G. Lu and X. Wu, Boundedness of singular integrals on multiparameter weighted Hardy spaces $H_{w}^{p}\left(\mathbb{R}^{n} \times \mathbb{R}^{m}\right)$. Potential Anal. 37 (2012), pp 31-56.
[2] Y. Ding, G. Lu and B. Ma, Multi-parameter Triebel-Lizorkin and Besov spaces associated with flag singular integrals. Acta Math. Sin.(English Series) 26 (2010), pp 603620.
[3] P. Glowacki, Composition and L^{2}-boundedness of flag kernels. Collo. Math. 118 (2010), pp 581-585.
[4] P. Glowacki, L^{p}-boundedness of flag kernels on homogeneous groups. Avaible at http://arxiv.org/pdf/1006.2532.pdf.
[5] Y. Han and G. Lu, Some recent works on multi-parameter Hardy space theory and discrete Littlewood-Paley analysis. Trends in partial differential equations. 99-191 Adv. Lect. Math. (ALM). 10, Int. Press, Somerville, MA 2010.
[6] Y. Han and G. Lu, Discrete Littlewood-Paley-Stein theory and multiparameter Hardy spaces associated with flag singular integrals. Avaible at http://arxiv.org/abs/0801.1701.
[7] G. Lu and Y. Zhu, Singular integrals and weighted Triebel-Lizorkin and Besov spaces of arbitrary number of parameters. Acta Math. Sin.(English Series) 29 (2013), pp 3952.
[8] D. Müller, F. Ricci and E. M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg(-type) group I. Invent. Math. 119 (1995), pp 119-233.
[9] A. Nagel, F. Ricci and E. M. Stein, Singular integral with flag kernels and analysis on quadratic CR mainfolds. J. Funct. Anal. 181 (2001), pp 29-118.
[10] Z. Ruan, Weighted Hardy spaces in the three-parameter case. J. Math. Anal. Appl. 367 (2010), pp 625-639.
[11] Z. Ruan, Non-isotropic flag singular integrals on multi-parameter Hardy spaces. Taiwanese J. Math. 15 (2011), pp 473-499.
[12] H. Triebel, Theory of function spaces, Monographs in Mathematics. 78 Birkhäuser Verlag, Basel, 1983.
[13] X. Wu and Z. Liu, Characterization of multi-parameter Besov and Triebel-Lizorkin spaces associated with flag singular integrals. J. Funct. Spaces Appl. 2012 (2012), Article I.D. 275791, 18 pages.

[^0]: *E-mail address: liaofanghui1028@163.com
 ${ }^{\dagger}$ E-mail address: liuzg@cumtb.edu.cn

