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Abstract

In this paper, the authors use the discrete Littlewood-Paley-Stein theory to introduce
weighted multi-parameter Triebel-Lizorkin and Besov spaces associated with non-
isotropic flag singular integrals under a rather weak weight condition (w € A.,). They
also obtain the boundedness of flag singular integrals on these spaces.
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1 Introduction and Statement of Main Results

The flag singular integral theory was studied extensively over the past decades. Miiller,
Ricci and Stein in [8] first introduced flag singular integrals when they studied the Marcinkiewicz
multiplier on the Heisenberg group. Nagel, Ricci and Stein in [9] dealt with a class of prod-
uct singular integrals with the flag kernel and proved the L” boundedness of flag singular
integrals. See [3] and [4] for more details.

More recently, Han and Lu in [5], [6] developed multi-parameter Hardy spaces H? asso-
ciated with flag singular integrals. Ruan in [11] constructed multi-parameter Hardy spaces
associated with non-isotropic flag singular integrals via the discrete Littlewood-Paley-Stein
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theory and the discrete Calderén’s identity, and obtained the boundedness of flag singular
integrals from H? to H? and from H? to LP.

Ding, Lu and Ma in [2] introduced Triebel-Lizorkin and Besov spaces associated with
flag singular integrals and proved the boundedness of flag singular integrals on these spaces.
Wu and Liu in [13] gave characterizations of multi-parameter Triebel-Lizorkin and Besov
spaces associated with flag singular integrals. The weighted multi-parameter Triebel-Lizorkin
and Besov spaces in the pure product setting were first constructed by Lu and Zhu in [7].
More weighted results in multi-parameter setting can be found in [1], [10].

The main purpose of this paper is to extend the results in [11] on multi-parameter Hardy
spaces to weighted multi-parameter Triebel-Lizorkin and Besov spaces. To be more precise,
the authors introduce weighted multi-parameter Triebel-Lizorkin and Besov spaces related
to non-isotropic flag singualr integrals. As a consequence, the boundedness of non-isotropic
flag singular integrals on these spaces is presented.

Firstly, we recall the definition of product weights. For 1 < p < oo, we say that a non-
negative locally integrable function w € A,(R" x R™) if there exists a constant C > 0 such
that

-1

P
(%fw(x)dx)(%fw(x)_l/(p_l)dx) <C (1.1)
R R

for all dyadic rectangles R = I X J, where [ and J are cubes in R” and R™, respectively. We
say that w € A|(R" xR™) if there exists a constant C > 0 such that

Mow(x) < Cw(x)

for almost every x € R"*™, where M is the strong maximal operator defined by

R>x

1
Mof) = sup fR FOldy,

where the supreme is taken over all dyadic rectangles R = I X J be as in (1.1). We define the
class w € A (R* X R™) by

AR XR™) = U A, (R XR™).
1<p<eo
If we Ay(R" xR™) for some ¢g > 1, then we use g,, = inf{g : w € A/} to denote the critical
index of w. Notice that w € A, (R" X R™) implies that g, < oo.
Let S(R") denote Schwartz functions on R”. In order to construct a test function defined

on R"xR™, we give the definition of the non-standard convolution *; which depends only
on the second variable.

Definition 1.1.[11] We define a non-standard convolution #*; by

Y(x,y) =y P (x,y) = f vV xy -2 (2)dz,

m

where ¢ € SR™™), Y@ € S(R™) satisfying
> W@ x 22y =1

JEZ
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for all (x,y) € R* x R™\{(0,0)}, and

PNTRICAE RS

keZ

for all z € R™\{0}, and the cancellation conditions

f XYy (x,y)dxdy = f 2P (@)dz=0
R}’H~m m

for all nonnegative integers «,( and y.
We now define the non-isotropic Littlewood-Paley-Stein square function.

Definition 1.2. [11] Let f € L?,1 < p < co. The Littlewood-Paley-Stein square function
f is defined by

}”2, 1.2)

gAYy ={ > Wik fxy)P
ik

where

Yixny) = 0 0 g (),

P (xy) = 202migD@Tx,2%y), yP (@) = 2"y (2%).

From the Fourier transform, it is easy to see that the following continuous Calderén’s
identity holds on L?>(R"” x R™),

FOoy) =D s jpx f(x,).
ik
We formulate the definitions of product kernel and flag kernel associated with the non-
isotropic dilations as follows.

Definition 1.3. [9] A distribution K* on R"™™ xR™ is said to be a product kernel on
R x R™ if K* is a C* function away from the coordinate subspaces {(0,0,z) : (0,0) €
R z € R™} and {(x,y,0) : (x,y) € R, 0 € R™}, and for all (x,y,z) € R" X R™ X R™ with
|x|+|y] # 0 and z # O satisfies

(1) (Differential Inequalities) For any multi-indices @ = (a1, ,an), 8= (B1, - ,Bm), ¥ =

(71,"' ,Ym),

5§5'553K”(x,y,z)| < Copoyl(x, y)| "+ 2mHal+ 2D mm=,

(2) (Cancellation Conditions)For any multi-indices @ = (a1, ,a@,), 8= (81, .Bm), every
normalized bump function ¢; on R™ and every 6 > 0,

< Ca/ﬁ|(x’y)|_(n+2m+|a|+2|ﬁ|);

f K (x.3.2)01(62)dz
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for any multi-indices y = (y;,---,¥m), every normalized bump function ¢, on R"*" and
every ¢ > 0,

< Cy o™ M,

[ ok 0@t sy
R’l+"l

for every normalized bump function ¢3 on R**"*" and every 61,6, > 0,

f KA (x,y,2)¢3(81x,6%y,622) dxdydz| < C.
R’l+"l+"l

Definition 1.4. [9] A distribution K on R is said to be a flag kernel on R” X R™ if K
is a C* function away from the coordinate subspaces {(0,y) : 0 € R",y € R™}, and for all
(x,y) € R" X R™ with |x| # 0 satisfies

(1) (Differential Inequalities) For any multi-indices a = (a1, - ,@,), 8= (81, ** ,Bm),

FRK x| < Cophd™ (e, )22

(2) (Cancellation Conditions)For any multi-indices @ = (a1, ,@;,), every normalized bump
function ¢; on R™ and every ¢ > 0,

f K (x,y)p1(8y)dy| < Colx™7;
for any multi-indices 8 = (81, ,Bn), every normalized bump function ¢, on R" and every
0>0,

[&n 5‘fK(x,y)¢2 (6x)dx| < Clyl ™ ¥!;

every normalized bump function ¢3 on R"*”" and every 61,6, > 0,

<C.

f K(x,y)¢3(01x,02y)dxdy
R’l+"l

We now recall the test functions of order M, Sy(R"*" x R™), where M is a positive
integer.

Definition 1.5. [11] We say f(x,y,z) € Sy(R"™™ xR™) if f is a Schwartz test function
and satisfies the following conditions:
(1) For |, 1Bl Iyl < M - 1,

1 1
(1 =+ |(x,y)|)n+2m+3M+|a|+2|ﬁ| (1 + |Z|)m+M+|,y| H

028007 f(x,y,2)l < C

(i) For [x—x'| < $(1+|x]) and [y -y | < $(1 +]yI),|el = || = M and |y| < M -1,

l(x—x",y =)l 1

a y _aa y ro
AT )= 0008 0 20 < €S e (g
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(iii) For |z—2'| < 2(1 +[zl), [yl = M and |a],|8] < M -1,

1 lz—2

o Y _a Y !
|8Xa§8zf(x’y’z) 8xa§8zf(x’y’z )l < C(l + |(x’y)|)n+2m+3M+|al+2|ﬁ| (] + |Z|)m+2M’

(iv) For [x=x'| < 21 +|x]), ly =y 1 < (A + )|z 2| < $(1 +12]), and |v| = M,

0%V (6, 2) = 050 f(x Y ,2) = DBy0L f (3,2 ) + DBy f (X .2
c=xy=y) k=2
(L+](x, )]y 2m+OM (1 4 [g]ym2M”

(v) For |al, B, [y < M -1,

oy, 20Xy dxdy = f f(x,y,2)27dz=0.

m

Rn+m

If f(x,y,2) € Sy (R™™ xR™), the norm of f in § 5 (R"*™ xR™) is defined by
1 f1ls ymremxrey = inf{C : (i) — (iv) hold}.

The following is the test function space Sg ) on R" X R™ associated with the flag struc-
ture.

Definition 1.6. [11] A function f(x,y) defined on R"” X R™ is said to be a test function in
Sr . if there exists a function f ¥ e Sy (R™™ x R™) such that

Sy = » iy -z2)dz. (1.3)

The norm of f in S on R” XR™ is defined by
1118 pg (R ey = inf{“fﬁ”SM(RnerXRm) : for all representations of f in (1.3)}.

The dual space of S is denoted by (Sg) .

Since the functions ;; constructed above belong to Sg s, the Littlewood-Paley-Stein
square function g(f) can be defined for all distributions in (Sf, M)’. Thus the author in [11]
defined the multi-parameter Hardy space associated with non-isotropic flag singular integral
as follows.

Definition 1.7. [11] Let 0 < p < co. The multi-parameter Hardy space associated with
non-isotropic flag singular integrals is defined as H?(R” xR™) ={fe(SF M)’ 1g(f)e LP(R*x
RMLIf fe H?(R” x R™), the norm of f is defined by ”f”HZ = lg(Olp-

Clearly, it follows that H?(R3) =[P(R? for 1 < p < co.

It is proved in [11] that the definition is independent of the choice of functions ¢ ;; and
the following boundedness result of convolution type flag singular integrals on R* X R™ was
established.



Non-Isotropic Triebel-Lizorkin and Besov Spaces 79

Theorem 1.8. [11] Let T be the flag singular integral. Then for any 0 < p <1, there
exists a constant C = C(p) such that

ITHllgz < Cllf Nz

In this paper, we will use the method in [11] to develop a theory of weighted multi-
parameter Triebel-Lizorkin and Besov spaces with non-isotropic flag singular integrals. We
first give the

Definition 1.9. Let 0 < p,q < o0, s = (s1,52) € R?, w € Ao,. Let M be the integer which

satisfying the inequality rnax{ — mTM} < rnin{f, l,q}, then weighted Triebel-Lizorkin
q

space F ;:W associated with non-isotropic flag singular integrals is defined by

EyS (R xR = (f € (Sran) < Iy, < oo,

where

”f”F“"’ — ||{ Z (2]&12/{‘?2'1//];]{ >I<fl)f]}l/q|

pw
JkeZ

Lr(w)

And let M be the integer which satisfying the inequality max{ﬁ, ﬁ} < rnin{ﬁ, 1}, then
weighted Besov space B;’ffv associated with non-isotropic flag singular integrals is defined
by

BYL (R XR") = (f € Sran) Il < oo,

where

Wl ={ D (2512450 g x Flusen)) .

pw
JkeZ

We will prove that Definition 1.9 is independent of the choice function ¢ ;; by Min-
Max comparison principle. The main tool to prove the Min-Max comparison principle is
the following discrete Calderdn’s identity.

Theorem 1.10. [11] Suppose that s ;i are the same as in Definition 1.1. Then

f(x’y) = Z Z |I”J|Jj,k(x’y’xl’yJ)(l//j,k *f)(xl’y.])’ (14)

ik 1J

where Fl/;j’k(x,y,XI,yJ) € SpuR*xXR™), I cR",J Cc R™ are dyadic cubes with side-length
I(D) =2777N, 1(J) = 275N 1. 27277N for a fixed large integer N, x;,y; are any fixed points in
1, J, respectively. The above series converges in the norm of Sgy(R" X R™) and in the dual
space (Sgpy(R" X R™)).

The above discrete Calderén’s identity enables us to derive the following theorems. In
what follows, we use the notation A ~ B to denote that two quantities A and B are com-
parable independent of other substantial quantities involved in the paper. The Min-Max
comparison principle on Triebel-Lizorkin spaces as follows.
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Theorem 1.11. Suppose that0 < p,q < oo, s = (s1,52) €R?, w € Ay, and ¢,V € SR™™),
@y e S®R™),

P(x,y) = o1 52 0D (x,y), w(x,y) =Dy (x,y),

and ¢ ;Y ik satisfy the same conditions as in Definition 1.2, max{ — m+M} < mzn{qu , l,q},

where M depends on p and q. Then for f € (Sky) , we have

”{ D (2282 Y sup *f(u,V)I)qXIXJ}Uq|

Ly
JkeZ 17 uel,velJ w)
T . q l/q
~ ||{ Z (2’”2 ”Z inf ¢k *f(u,V)I) XIXJ} .
ez T7 uel,velJ Lr(w)
Ji .

[ cR",J c R™ are dyadic cubes with side-length I(I) = 277N, I(J) = 272"N 1 27kN for g
fixed large integer N, x1,y; are any fixed points in I,J, respectively.

Similarly, we have the Min-Max comparison principle on Besov spaces.

Theorem 1.12. Suppose that0 < p,q < oo, s = (s1,52) € R%, w € Ay, and ¢V, yV) € SR™™),
@,y e SR™),

d(x,y) = ¢V w2 0P (x,y), wix,y) =Dy @(x,y),

p
and ¢ i, ji satisfy the same conditions as in Definition 1.2, max{n+M, m+M} < mzn{q 1},

where M depends on p and q. Then for f € (Sgy) , we have

{ Z (2js12kxz Z sup |l//j,k *f(”,V)IXIXJ|

jkez 7 uel,velJ

~ { Z (2/“2’”2 Z inf |¢,k * fu,vlyixs
I

4 uel,veJ
JkeZ J

al/q
Lf’(w)) }

al/q
Lf’(w)) }

[ CcR™,J C R™ are dyadic cubes with side-length I(I) = 277N, 1(J) = 272N 4 275N for a
fixed large integer N, x1,y; are any fixed pointsin I,J, respectively.

Using discrete Calderén’s identity and almost orthogonal estimates, we can prove the
following theorems:

Theorem 1.13. Let T be the flag singular integral. For any 0 < p,q < oo, s = (s1,52) € R?,
W E A, max{ } < mzn{ e l,q} there exists a constant C = C(p) such that

n+M? m+M

IT(Pllgse, < CllfNlgsa -

pw

Theorem 1.14. Let T be the flag singular integral. For any 0 < p,q < oo, s =(s1,52) € R?,
W E A, max{ } < mln{ ; }, there exists a constant C = C(p) such that

n+M? m+M

IT (Mg, < CllA g, -
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2 The Min-Max Comparison Principle on Weighted Multipa-
rameter Triebel-Lizorkin and Besov Spaces
In this section, we establish the Min-Max comparison principle on weighted multi-parameter

Triebel-Lizorkin and Besov spaces associated with non-isotropic flag singular integrals.
We first recall the almost orthogonal estimates.

Lemma 2.1. [1]] For any given positive integers L and K, there exists a constant C de-
pending only on K, L such that iftvVt < VsV s, then

(tvi)HK (sVvsHK
@Vt +|x)yK (sv s +|y)ymtK’

W5 % by o (X9 <C< A )( )L

and if tVt > VsV s, then
(tvi)K (tvi)K
Ve + DK v+ D2k

W5 By ¢ (XY <C< A >L< )L

where Yrssby ¢ € Sry on R xXR™,

Next, we give the following lemma which is crucial in dealing with weighted multi-
parameter Triebel-Lizorkin and Besov spaces.

Lemma 2.2. [11] Given large positive integer N and j,k,j kK €Z. Let I,I and J,J be
dyadic cubes in R" and R™ respectively, such that (1) = 277N, [(J) = 272/"N 427N [y =
2-J N, l(J’) =272/ Nyo-k-N_ For any u,u* € I, v,v* € J, then we have when j/\j’ > M,

2—(jAj’)K2—(k/\k’)K|I'”J'|

= (2—(j/\j’) +lu—xp |)n+K(2—(k/\k’) +v—y K

|¢j’,k’ *f(x]”yj’)l
1/r %
MY(Z |¢j’,k’ *f(x]’5yj’)|r/\/1’/\/]’)} v,
rJ

S kAR
and when jA j < 5=,

2 220N K |
77 (2—(jAj’) +lu—xp |)n+K(2—(j/\j') + /Iv —y_J' [)2m+K

M( Z (% *f(xl',yJ’)|rX1’XJ’)}1/r(M*,v*),
r.J

|¢j’ &Syl

where M is the Hardy-Littlewood maximal function on R" xXR™, and M, is strong maximal

n m
function function on R" XR™, r satisfying max{ Py e K} <r.

Now we are ready to give the
Proof of Theorems 1.11 and 1.12.  Suppose that M satisfies the inequality max{

n+M> m+M}

< mln{ e l,q} then we choose pg > g,, such thatw € A, and max{ < rnln{ , l,q}.

n+M> m+M}



82 F. Liao and Z. Liu

By Theorem 1.10, we can choose N depending on M, by the discrete Calder6n identity,
f € (SEgum) can be represented by

Fayy =D D MW 18y 0 y.xy )@y 0+ )Gy,

j/ ,k, I/ ,J’
we write

Wi 06 = D0 W W @i ey ¥ &N g 5 P Y-
JK T

By Lemma 2.1 and Lemma 2.2, for any given positive integer L, we get

Wik DO D T W Biac oy D g+ 030

JK T
<C 3 T KK (3 g1 o Gyl ) ) )
4 r.Jy

for any x,x* € I, xy € I',y,y* €Jandy, € J', where M is the strong maximal function.
Applying Holder’s inequality and summing over j,k,/,J yields

{ Z (27512ks: Z sup | i * f )(x,y)IXIXJ)q}Uq

ik 17 xel,yeJ
<o 3 (@ 2w (M Y107+ or oy exr)) )
iK rJy

where [s1],|s2| < L. Since x and y, are arbitrary points in [ and J, respectively, then we
have

{2(2”12’”22 sup I(l//j,k*f)(x,y)IXIXJ)q}l/q

Ik 17 xel,yeJ
7 ’ . ’ ’ 1/ 1/
el Y0y g e ) )

Since w € A, C Ay, then taking the LY, norm and applying L{i/ "(19/") boundedness of M

n m

for max{m,m} <r< min{p%,l,q}, then

”{ Z (27012k Z sup (¥ jx *f)(x,y)l)a)a)q}l/q

ik 7 xel,yeJ

SC“{ Z (2/ e Z ' i'n,f'ej' I(py *f)(x’,y’)IXI’XJ’)q}Uq|

j,,k, I,,J,XEI 5)

Lr(w)

Lr(w)

which completes the proof of Theorem 1.11.
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Now we turn to give the proof of Theorem 1.12. Assume that M satisfies the inequality
max{ } < rmn{ £ 1} and we choose pg > g,, such thatw € A,/ and max{ <

n+M> m+M n+M> m+M}

mln{p } As in the proof of Theorem 1.11, we get

Wjacx Nl < S 2T H I (S Py erxs ) | 0.
rJ

j/ ’k/
Therefore, for x* € I,y* € J,

sup (W * O (XK ()
(x,y)elxJ
< N 2 g kK (S @ x Dy erxs ) )0,
rJ

j/ ,k’

where [s1],|s2] < L. When 1 < p < co, since w € A,; CA,,, taking the L? norm and applying

L2/"(1Y/7) boundedness of M, for max{ <r<min {[’)’ 1}, we have

n+M? m+M}

“Z sup | e * Yy

7 (xy)elx] Lr(w)

Lr(w)

< Yy 2 K (3 Ky o+ Gy s ) |
r.J

j/ ,k’

Lr(w)

<C Y 2 N R (kPG x|
/K rJ

If ¢ > 1, applying Holder’s inequality and if O < g < 1 by using usual inequality, summing
over j,k, then we get

DI

Z sup (W ji *f)(x,y)IXIXJ| U,(W))q}l/q

ik 17 (x,y)elxJ (2 1)
/ s17k s nlla .
SC{ Z (2] s19k 52 Z |(¢j’ X *f)(xl/ ’yJ')IXI’XJ'| LP(W)) } .
j,’k, I/’J/

When 0 < p < 1, since w € Apo - Ap/r and taking the L, norm and applying L{’V/r(ll/’)

boundedness of M, for max { T M

}< r<rn1n{ i,l},then we have

[Rn ( sup (¥ jk *f)(x’y)IXIXJ)pW(x*,y*)dx*dy*

XR™ - (x,y)elxJ
J s k= ! r p/r k * k *
<C Y orlidibgkekiL f (M DM@y w =Dy erxr) | w v datdy
7 7 RTXR™ ’ gt
j ik r,J

SCZ2_|j_j Lo —lk=kIL Lﬂme Z by 5 )y )erx } w(x",y ) dx*dy*

J ok
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so if g¢/p > 1, applying Holder’s inequality and if 0 < ¢/p < 1 by using usual inequality, we
get

Z sup (Y ik *f)(x,y)IXIXJ|

7 (xy)EerxJ

Z |(¢] K * )y W x |

{ Z (2 Jsiokss

ik

el Z (2f s19k 52

|4

a\l/q
LJ’(w)) }

qa\1/q (2.2)
LJ’(W)) } :

Combining (2.1) with (2.2), since (x’I,y’J) are arbitrary points in [ xJ, we can get the
desired result, namely

{% (2jx12ksz IZJ (x,;lngl(wj’k *f)(x,y)l)(l)(1| U}(w))q}l/q
J ’ . 1/
SC{% (2] s19k's2 I}ZJ} (x,’)’l)rg » NI « )X,y )IXI’XJ |U)(w))f1} a

]
As a consequence of Theorem 1.11 and Theorem 1.12, we have the following charac-
terization of F "w and Besov Spaces B

Corollary 2.3. Let 0< p,g< oo and s = (sl,sz) e R2w € Aw. Suppose that M be the
integer which satisfying the inequality max < mzn{ e l,q} then we have

n+M’ m+M

e ~ {0 2925w« Hxryolens)’)

pw j T = L (W) ’

n+M,m+M} < mln{q } then

an1/q
L]J(w)) } >

and let M be the integer which satisfying the inequality max{
we have

Wz, ~ {7 (2725 D i eyl
ik 1,J

where jk,x1,y;.x1.X1.¥ jk are the same in Theorem 1.11.

3 Boundedness of Flag Singular Integrals

The main purpose of this section is to obtain the boundedness of flag singular integrals on
weighted multi-parameter Triebel-Lizorkin and Besov Spaces associated with non-isotropic
flag singular integrals. We first give some propositions.

Proposition 3.1. Let0< p,qg < oo, w € Aw. Then Sppy(R" XR™) is dense in F‘Y’q (R XR™)
and B;1,(R" X R™), where M satisfying the inequality max{n+M, m+M} < mzn{ £, l,q} for

} < mln{ }for B 7 (R" x

LR XR™), and M satisfying the inequality max{ oy My

R’")
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Proof. Suppose f € FL(R" XR™), we get

FOoy) = 30> MW ek, 3 F)Cer, 1),

ik 1]

where the series converges in S (R" X R™). It suffices to show that

F= FMl,Mz,A‘(x5y5x15yJ)

- Z Z VW e Gy, X, Y)W )G Y)
|jl<My,|k|<My IXJCSB(O,s)

converges to fin F ;’ffv (R*xR™), as M, M, and s tend to infinity, where the B(0, s) = {(x,y) €
R"x R™ : x2 +y2 < s%}. To do this, let W the set {(1,J) : I x J C B(0,s)}, where the I, J are
dyadic cubes in R” and R™ with side length 277V and 272N 4 27%=N respectively, and
let W¢ be the complement of W. Let also V ={(j,k) : |j| < M,|k| < M} and V¢ denotes its
complement.

For (x;,y,) €1 xJ ', then

wrps D03 MG 31y )Gy 3 )W jacs PG|

(jk)eve I, J)ewe

s 3 2Vt (S ke ey o) |

29% I, J)ewe

n m
n+M’> m+M

comparison principle of F ;’ffv(R’" xR™), when w € A, we get

” { Z Z 2/ nak 5241y, Px*F )quI’XJ'}l/q|

where any r satisfy rnax{ } <r< rnin{pﬂo, l,q}. Repeating the proof of Min-Max

S ’ g ’ L])(w)
T,
. 1/q
< ”{ Z Z 279192k (1 *f)|qXIXJ} |LP(W),
(Ve (L Iyewe

where the last term tends to zero as M, M, and r tend to infinity whenever f € F ;’ffv R™ x
R™).
When f € B;’ﬁv(Rm xR™), we can similarly get the desired result. m]

Since Spy(R™ xXR") C L*>(R™ x R™), it is immediate to obtain that
Proposition 3.2. L*(R™ xR") is dense in F,},(R™ XR") and B!, (R™ xR") for 0 < p,q < 0.

We now prove the boundedness of non-isotropic flag singular integrals on F ;’ffv R™%XR™)
and B5,(R™ xR").
Proof of Theorem 1.13 and Theorem 1.14. For f € L>(R™ xR")N F;ﬁ, (R™xR"™), by discrete
Caldero6n’s identity,

Wik THEY) = D S s Ky o (= xp 2=y YN g 5 f ()

j,,k’ I,,J’
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The author in [11] has showed

W+ K 5y o (= xp =y )X
<2\ Mo—lk=K 1M

f 2—(ir/ M 9—(knk )M
. o ’ Z
R (2—(]/\] ) + |(x_ Xp,y—2 _yJ,)l)n+2m+M (2—(k/\k ) + |Z|)m+M

Similar to the proof of Lemma 3.3 in [11], there exists a constant K depending only on M

such that, when 27/ v 2/ < V2-kv 2K

f 2=Girj M 9—-(knk' )M
. J ’ Z
R (2—(]/\] ) + |(x_ Xp,y—2 _yJ,)l)n+2m+M (2—(k/\k ) + |Z|)m+M
2—(ir K 7—(knk K

-GN 4+ |x - xp K (2-knk) 4 ly—y, K ’

and when 277/ v 2=/ > \2-ky 2K

f 2=(irj M 2-(knk' )M
. J ’ Z
R (2—(]/\] ) + |(x_ Xp,y—2 _yJ,)|)n+2m+M (2—(k/\k ) + |Z|)m+M

2—(ir K 2—(ir) K

<C

(20N 4 |x = xp [y +K 2-GN) 4+ \fly—y 2K '

By an analogous argument to the proof of Theorem 1.11, we have

l//j,k «Tf(x,y) < Z 2_|j_j,|M2_|k_k,lM{Mx( Z |(¢j, P *f)(xl' ,yJ')|)r}l/r(u*’V*)’ a1
rJ

j/ ,k’

for any u,u* € I,xy € I ,v,v* €J and Yy € J', where M is the strong maximal operator.
Applying Holder’s inequality and summing over j,k,/,J yields

(S 22k« T e erybens))
ik LI
< Y (272w Y167+ Py l)) )
iK rJy
Let max{ﬁ, ﬁ} < r<min {pﬂo, l,q}, since w € A,,) CAp, applying L{’V/r(lq/’) bounded-

ness of M, then we have

[ (O 212 i e Ty b)) |

Gk LJ

<2 ( X272 16y e Dy err )

j/ ,k’ I/ ,J’

Lr(w)

1/q|

Lr(w)
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Namely,

T fllgsa < Clifllgs -

p.W

Since L>(R" x R™) is dense in F ;’ffv (R"xR™), then T can be extend to be a bounded operator

on FL(R" xR™).

From the proof of Theorem 1.13, it is obvious that Theorem 1.14 follows from similar
proof of Theorem 1.12 and Theorem 1.13. Here we omit the details. O
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