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1 Introduction

Existence and multiplicity of solutions to boundary value problems (BVPs) associated with
ordinary differential equations (ODEs) is a subject that has been widely investigated in the
last several decades; see, for example, [3, 4, 5, 13, 16, 17, 18, 19, 20, 21, 15], and the
references therein. Often those BVPs are formulated as a fixed point problem in a Banach
space E having the form u = LFu, where L ∈ L(E) is compact and F : E→ E is continuous
and bounded (maps bounded sets into bounded sets). This equation is known as the abstract
Hammerstein equation (see [23, Chapter 7]).

In many of the papers cited above, existence and multiplicity results are obtained under
the condition that the nonlinearity varies between 0 and +∞ or between −∞ and +∞. For
instance, in [4], the author obtain existence and multiplicity of positive solutions to the
boundary value problem 

−u′′(x) = f (x,u(x)), x ∈ (0,1) ,
au(0)−bu′(0) = 0,
cu(1)+du′(1) = 0,

(1.1)

where a, b, c, and d are nonnegative real numbers such that ac+ad+ cb > 0 and f : [0,1]×
R+→ R+ is a continuous function, where R+ = [0,+∞). It is known (see [4, Proposition
3.2]) that problem (1.1) has no positive solutions if either

f (t, x)
x
> λ1 for all (t, x) ∈ [0,1]× (0,+∞)

or
f (t, x)

x
< λ1 for all (t, x) ∈ [0,1]× (0,+∞) ,

where λ1 is the smallest positive eigenvalue of the linear boundary value problem
−u′′(x) = λu(x), x ∈ (0,1) ,
au(0)−bu′(0) = 0,
cu(1)+du′(1) = 0.

This result means that a necessary condition for the existence of a positive solution to prob-
lem (1.1) is that the nonlinearity f must cross the linear function λ1u at least once. An
existence result is obtained under the hypothesis

f (t,u) ≥ αu for all (t,u) ∈ [0,1]×
[
p,q

]
and f (t,u) ≤ βu for all (t,u) ∈ [0,1]× [r, s]

with α > λ1 > β and other suitable conditions. Moreover, this result holds if the intervals[
p,q

]
and [r, s] are neighborhoods of 0 and +∞ (see [4, Corollary 3.7]).

Results similar to [4, Corollary 3.7] are often seen in the literature; in the case of second
order BVPs see, for example, [3, 6, 15, 16, 17], and in the singular case, see [5]; for fourth
order BVPs, see [22].

It is clear from the above discussion that the eigenvalues of L play some role in the ex-
istence of solutions to the abstract Hammerstein equation. Thus, in this paper, we focus our
attention on existence of positive solutions (solutions belonging to a cone) to the equation
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u = LFu. Roughly speaking, we will prove that there exists two nonnegative real numbers
λ+ ≤ λ− such that the Hammerstein equation has no positive solutions if the nonlinearity F
lies above the linear function

(
λ+

)−1 u or below
(
λ−

)−1 u, and we obtain existence otherwise
(see Theorems 3.7 and 3.10 in Section 3 below). We may also ask when do λ+ and λ−

coincide with a positive eigenvalue of L? We answer this question in Theorems 3.13 and
3.15.

In order to illustrate the importance of our results, we conclude this paper with two
applications. Throughout, we let A∗ := A \ {0} where A is any subset of a Banach space.

2 Preliminaries

In all that follows, E denotes a real Banach space, L (E) is the set of all continuous linear
maps from E into E, and Q(E) is the subset of L(E) consisting of compact maps. For
L ∈ L(E), r(L) = limn→∞ ‖Ln‖

1
n denotes the spectral radius of L.

Definition 2.1. Let K be a nonempty closed convex subset of E. Then K is said to be a
cone if K∩ (−K) = {0} and (tK) ⊂ K for all t ≥ 0.

It is well known that a cone induces a partial ordering in the Banach space E. We write
for all x, y ∈ E, x ≤ y if y− x ∈ K; x < y if y− x ∈ K and y , x; x � y if y− x < K; and x� y
if intK , ∅ and y− x ∈ intK. The notations ≥, >, �, and� are defined similarly.

Definition 2.2. Let K be a cone in E. Then:

(i) K is reproducing if E = K −K;

(ii) K is total if E = K −K;

(iii) K is normal if there exists a positive constant N such that for all u, v ∈ K, u≤ v implies
‖u‖ ≤ N ‖v‖.

Remark 2.3. A cone with nonempty interior is a typical example of a reproducing cone.

Definition 2.4. Let K be a cone in E and L ∈ L(E). Then:

(i) L is said to be increasing if L(K) ⊂ K;

(ii) An increasing operator L ∈ L(E) is K-normal if there exists a positive constant N such
that for all u, v ∈ K, u ≤ v implies ‖Lu‖ ≤ N ‖Lv‖ .

We will make extensive use of fixed point index theory. For the sake of completeness,
we recall some basic facts related to this; see, for example, [7, 14, 15].

Let K be a nonempty closed subset of E. Then K is called a retract of E if there exists
a continuous mapping r : E→ K such that r (x) = x for all x ∈ K. Such a mapping is called
a retraction. From a theorem by Dugundji, every nonempty closed convex subset of E is a
retract of E. In particular, every cone in E is a retract of E.

Let K be a retract of E and U be a bounded open subset of K such that U ⊂ B(0,R),
where B(0,R) is the ball centered at 0 of radius R. For any completely continuous mapping
f : U → K with f (x) , x for all x ∈ ∂U, the integer given by

i ( f ,U,K) = deg
(
I− f ◦ r,B(0,R)∩ r−1 (U) ,0

)
,
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where deg is the Leray-Schauder degree, is well defined and is called the fixed point index.
Properties of the fixed point index

Normality: i ( f ,U,K) = 1 if f (x) = x0 ∈ U for all x ∈ U.

Homotopy invariance: Let H : [0,1]×U → K be a completely continuous mapping
such that H (t, x) , x for all (t, x) ∈ [0,1]×∂U. The integer i(H (t, ·) ,U,K) is indepen-
dent of t.

Additivity: i ( f ,U,K) = i ( f ,U1,K)+ i ( f ,U2,K) whenever U1 and U2 are two disjoint
open subsets of U such that f has no fixed point in U \ (U1∪U2).

Permanence: If K′ is a retract of K with f (U) ⊂ K′, then i( f ,U,K) = i( f ,U∩K′,K′).

Solution property: If i ( f ,U,K) , 0, then f admits a fixed point in U.

Now we assume that K is a cone in E and for all R > 0, we let KR = B (0,R)∩K. We
will need the following lemmas related to the computation of the index i ( f ,KR,K).

Lemma 2.5. If f (x) , λx for all x ∈ ∂KR = ∂B(0,R)∩K and λ ≥ 1, then

i ( f ,KR,K) = 1.

Lemma 2.6. If f (x) , λx for all x ∈ ∂KR = ∂B(0,R)∩K and λ ∈ (0,1], and if inf{‖ f (x)‖ :
x ∈ ∂KR} > 0, then

i ( f ,KR,K) = 0.

Lemma 2.7. If f (x) � x for all x ∈ ∂KR = ∂B(0,R)∩K, then

i ( f ,KR,K) = 1.

Lemma 2.8. If f (x) � x for all x ∈ ∂KR = ∂B(0,R)∩K, then

i ( f ,KR,K) = 0.

For additional details and proofs of these lemmas, we refer the reader to [14].

3 Main results

Let K be a cone in E, L ∈ L(E) be increasing, and F : K → K be a continuous bounded
mapping. We focus our attention in this section on the existence of positive solutions to the
abstract equation

u = LFu. (3.1)

By a positive solution to (3.1), we mean a vector u ∈ K∗ satisfying u = LFu. We recall that
λ ≥ 0 is a positive eigenvalue of L if there exists u ∈ K∗ such that Lu = λu, and it is an
interior eigenvalue if there exists u ∈ intK such that Lu = λu. For any subset P of K with
P∗ , ∅, let

Λ+P (L) =
{
λ ≥ 0 : there exists u ∈ P∗ such that Lu ≤ λu

}
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and
Λ−P (L) =

{
λ ≥ 0 : there exists u ∈ P∗ such that Lu ≥ λu

}
.

When these quantities exist, we set

λ+P = infΛ+P (L) , λ−P = supΛ−P (L) , λ+ = infΛ+K (L) , and λ− = supΛ−K (L) .

Remark 3.1. (i) Note that 0 ∈Λ−P (L), and if λ ∈Λ−P (L), then [0,λ]⊂Λ−P (L). (ii) If λ ∈Λ+P (L),
then [λ,+∞) ⊂ Λ+P (L). (iii) We have Λ+P (L) ⊂ Λ+K (L) and Λ−P (L) ⊂ Λ−K (L).

The following lemmas provide sufficient conditions for the existence of λ+P and λ−P. Let
N0 = {0,1,2, . . . }.

Lemma 3.2. If P is a cone and L(K) ⊂ P, then Λ+P (L) , ∅.

Proof. For λ > r(L),
(
I−

L
λ

)−1
=

∑
n∈N0

Ln

λn , and since for all integers n, Ln (K) ⊂ P, we obtain(
I−

L
λ

)−1
(K) ⊂ P. Thus, for any u ∈ K∗, v =

(
I−

L
λ

)−1
(u) ∈ P∗. In other words, λv > Lv, and

so λ ∈ Λ+P (L). �

Lemma 3.3. If intK , ∅, then Λ+intK (L) , ∅.

Proof. For λ > r(L),
(
I−

L
λ

)−1
=

∑
n∈N0

Ln

λn is a homeomorphism of E, so
(
I−

L
λ

)−1
(intK) is

an open set contained in K. Therefore,
(
I−

L
λ

)−1
(intK) ⊂ intK. Thus, for any u ∈ intK,

v =
(
I−

L
λ

)−1
(u) ∈ intK, i.e., λv > Lv, so λ ∈ Λ+intK (L). �

Lemma 3.4. Assume that K is normal. Then for any nonempty subset P ⊂ K, Λ−P (L) is
bounded from above by r(L).

Proof. If λ > 0 and u ∈ P∗ with ‖u‖ = 1 are such that Lu ≥ λu, then

u ≤ T nu for all n ∈ N∗,

where T =
L
λ

. Hence, the normality of K implies that

1 ≤ N
1
n
∥∥∥T nu

∥∥∥ 1
n = N

1
n
‖Lnu‖

1
n

λ
≤ N

1
n
‖Ln‖

1
n

λ
,

where N is the constant of normality of K. Letting n→∞, we have

λ ≤ lim
n

N
1
n
∥∥∥Ln

∥∥∥ 1
n = r(L),

which proves the lemma. �

Lemma 3.5. Assume that L is K-normal. Then, for any cone P ⊂ K with L(K) ⊂ P, Λ−P (L)
is bounded from above by r(L).
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Proof. If λ > 0 and u ∈ P∗ with ‖Lu‖ = 1 are such that Lu ≥ λu, then

Lu ≤ T nLu for all n ∈ N∗,

where T =
L
λ

. Hence, the K−normality of L implies that

1 ≤ N
1
n
∥∥∥T nLu

∥∥∥ 1
n = N

1
n
‖LnLu‖

1
n

λ
≤ N

1
n
‖Ln‖

1
n

λ
,

where N is the constant of the K−normality of L. Letting n→∞, we obtain

λ ≤ lim
n

N
1
n
∥∥∥Ln

∥∥∥ 1
n = r(L),

which completes the proof. �

Before presenting existence results for equation (3.1), we need to draw attention to
the following fact. If L admits a positive eigenvalue λ, then λ+ ≤ λ− and λ ∈

[
λ+,λ−

]
. In

what follows, we will prove that for any cone P, with L(K) ⊂ P ⊂ K, if L is completely
continuous, no matter if L has a positive eigenvalue or not, we always have λ+P ≤ λ

−
P. To

prove this we need following results.

Proposition 3.6. Let either

Fu ≤ αu for all u ∈ P∗ with αλ−P < 1 (3.2)

or
Fu ≥ βu for all u ∈ P∗ with βλ+P > 1 (3.3)

hold, where P⊂K is nonempty with L(K)⊂ P. Then equation (3.1) has no positive solutions.

Proof. We present the proof in the case where (3.2) holds; the proof in the other case is
similar. Assume there exists u ∈ K∗ such that LFu = u. Then u ∈ P∗ , and since Fu ≤ αu, it

follows that Lu ≥
1
α

u and
1
α
≤ λ−P, which contradicts αλ−P < 1. This completes the proof. �

From [14, Theorem 2.3.3] we can obtain the following existence result.

Theorem 3.7. Assume that L ∈ Q(E), P ⊂ K is a cone with L(K) ⊂ P, and there exist real
numbers α, β, R1, and R2 with αλ−P < 1, βλ+P > 1, and 0 < R1 < R2. If either

Fu ≤ αu for all u ∈ P∩∂B(0,R1) and Fu ≥ βu for all u ∈ P∩∂B(0,R2), (3.4)

or

Fu ≥ βu for all u ∈ P∩∂B(0,R1) and Fu ≤ αu for all u ∈ P∩∂B(0,R2), (3.5)

then equation (3.1) admits a positive solution u with R1 < ‖u‖ < R2.

We also have the following comparison result.
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Theorem 3.8. Assume that L ∈ Q(E). Then for any cone P ⊂ K with L(K) ⊂ P, we have
λ+P ≤ λ

−
P.

Proof. The case λ+P = 0 is obvious, so assume that λ+P > λ
−
P ≥ 0 and consider the function

G : K→ K defined by

Gu =
βu+α‖u‖u

1+ ‖u‖

with 0 < β < α and βλ+P > 1 > αλ−P. On one hand, we have

Gu−αu =
(β−α)u
1+ ‖u‖

< 0 for all u ∈ K∗,

so by Proposition 3.6, the equation u = LGu admits no positive solution. On the other hand,
for any 0 < R1 < R2, we have

Gu ≤ αu for all u ∈ K∩∂B(0,R1) with αλ−P < 1

and
Gu−βu =

(α−β)u‖u‖
1+ ‖u‖

> 0 for all u ∈ K∩∂B(0,R2) with βλ+P > 1.

Condition (3.4) is satisfied, so by Theorem 3.7, the equation u= LGu has a positive solution.
This contradiction implies λ+P ≤ λ

−
P. �

Remark 3.9. From Lemmas 2.7 and 2.8 we see that if L ∈ Q(E), then for any cone P ⊂ K
with L(K) ⊂ P and any R > 0, we have

1. i(αL,B(0,R)∩P,P) = 1 if αλ−P < 1, and

2. i(βL,B(0,R)∩P,P) = 0 if βλ+P > 1.

Next we present an existence result for positive solutions to the Hammerstein equation
(3.1) in case the cone K is normal. This result includes those covered by [4, Corollary 3.7].

Theorem 3.10. Assume that L ∈ Q(E), K is normal, P ⊂ K is a cone with L(K) ⊂ P, and
there exist nonnegative real numbers α, β, and γ, and continuous functions Gi : K → K,
i = 1,2,3, with

αλ−P < 1 and βλ+P > 1,

Fu ≤ αu+G1u for all u ∈ P∗∩B(0, δ) for some δ > 0,

and
βu−G2u ≤ Fu ≤ γu+G3u for all u ∈ P∗.

If either
G1u = o (‖u‖) as u→ 0 and Giu = o (‖u‖) as u→∞ for i = 2,3, (3.6)

or
G1u = o (‖u‖) as u→∞ and Giu = o (‖u‖) as u→ 0 for i = 2,3, (3.7)

then equation (3.1) has a positive solution.
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Proof. We give the proof in case (3.6) holds; the proof if (3.7) holds is similar. All we need
to do is to show the existence of 0 < r < R such that

i(LF,B(0,r)∩P,P) = 1 and i(LF,B(0,R)∩P,P) = 0.

Then the additivity and the solution properties of the fixed point index will imply that

i(LF,
(
B(0,R) \B(0,r)

)
∩P,P) = i(LF,B(0,R)∩P,P)− i(LF,B(0,r)∩P,P) = −1

and equation (3.1) has a positive solution u with r < ‖u‖ < R.
Consider the function H1 : [0,1]×K → K defined by H1(t,u) = tLFu+ (1− t)βLu. We

want to show the existence of R > 0 large enough so that for all t ∈ [0,1], the equation
H1(t,u) = u has no solution in ∂B(0,R)∩ P. To the contrary, suppose that for all integers
n ≥ 1, there exist tn ∈ [0,1] and un ∈ ∂B(0,n)∩P such that

un = tnLFun+ (1− tn)βLun.

Note that vn =
un

‖un‖
∈ ∂B(0,1)∩P and satisfies

vn = tnL
(

Fun

‖un‖

)
+ (1− tn)βLvn. (3.8)

Thus, the normality of the cone K combined with the inequalities

βvn−
G2un

‖un‖
≤

Fun

‖un‖
≤ γvn+

G3un

‖un‖
(3.9)

and the fact that Gi(un) = o (‖un‖) at ∞ for i = 2,3, implies that
Fun

‖un‖
is bounded. From the

compactness of L, we obtain the existence of a subsequence of (vn), also denoted by (vn),
that converges to v ∈ ∂B(0,1)∩P. Taking limits as n→∞ in (3.8) and (3.9) shows v ≥ βLv.

That is,
1
β
≥ λ+P, which contradicts βλ+P > 1.

For such an R > 0, from the homotopy property of the fixed point index and Remark
3.9, we have

i(LF,B(0,R)∩P,P) = i(H1(1, ·),B(0,R)∩P,P)

= i(H1(0, ·),B(0,R)∩P,P) = i(βL,B(0,R)∩P,P) = 0.

In a similar way, we consider the function H2 : [0,1]× K → K defined by H2(t,u) =
tLFu+ (1− t)αLu and we prove the existence of r > 0 small enough so that for all t ∈ [0,1],
the equation H2(t,u) = u has no solution in ∂B(0,r)∩P. To the contrary, suppose that for
every integer n ≥ 1 with 1/n < δ, there exists tn ∈ [0,1] and un ∈ ∂B(0,1/n)∩P such that

un = tnLFun+ (1− tn)αLun.

Now vn =
un

‖un‖
∈ ∂B(0,1)∩P and satisfies

vn = tnL
(

Fun

‖un‖

)
+ (1− tn)αLvn.
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The normality of the cone K combined with the inequality

Fun

‖un‖
≤ αvn+

G1un

‖un‖

and the fact that G1(un) = o (‖un‖) at 0 shows that
Fun

‖un‖
is bounded. Then, from the com-

pactness of L, we conclude the existence of a subsequence of (vn), also denoted by (vn), that

converges to v ∈ ∂B(0,1)∩P. Again taking limits shows that v ≤ αLv. Thus,
1
α
≤ λ−P, which

contradicts αλ−P < 1.
For such an r > 0 the homotopy property of the fixed point index and Remark 3.9 show

that

i(LF,B(0,r)∩P,P) = i(H2(1, ·),B(0,r)∩P,P)

= i(H2(0, ·),B(0,r)∩P,P) = i(αL,B(0,r)∩P,P) = 1.

This completes the proof of the theorem. �

Remark 3.11. Note that if ker L∩K∗ = ∅, then for every subset P ⊂ K with L(K) ⊂ P,

Λ+P(L) = Λ+K(L), Λ−P(L) = Λ−K(L), λ+P = λ
+, and λ−P = λ

−.

In fact, if λ > 0 and u ∈ K∗ are such that Lu ≤ λu (resp. Lu ≥ λu), then U = Lu ∈ P∗ and
LU ≤ λU (resp. LU ≥ λU).

Let P be a cone such that L (K) ⊂ P ⊂ K. In our previous results, we saw the role
played by the constants λ+P and λ−P in the existence of positive solutions for the Hammerstein
equation (3.1). Now we will present two results in which λ+P and λ−P coincide with the unique
positive eigenvalue of L. To do this, we need the following definition.

Definition 3.12. Let χ : E×E→ R be a bilinear form. We say that χ is positive if for all u,
v ∈ K, χ (u,v) ≥ 0, and we say that χ is increasing if for all u1, u2, v1, v2 ∈ K,

u1 ≤ u2 implies χ (u1,v1) ≤ χ (u2,v1) and v1 ≤ v2 implies χ (u1,v1) ≤ χ (u1,v2) .

Theorem 3.13. Assume that L ∈Q(E), λ+ > 0, and there exists a positive increasing bilinear
form χ : E×E→ R such that

0 < χ (Lu,v) = χ (u,Lv) for all u,v ∈ K∗.

Then for every subset P of K with L(K) ⊂ P, we have λ+P = λ
−
P = λ

+ = λ−, and λ1 = λ
+ = λ−

is the unique positive eigenvalue of L.

Proof. Note that λ+ > 0 implies kerL∩K∗ = ∅, and for every subset P of K with L(K) ⊂ P ⊂
K, we have λ+P = λ

+ and λ−P = λ
−. We claim that L has a positive eigenvalue. By Remark 3.9,

for any R > 0, i(αL,B(0,R)∩K,K) = 0 with αλ+ > 1. Hence, we see from Lemma 2.5 that

there exist θ ≥ 1 and u ∈ K∩∂B(0,R) such that αLu = θu. That is,
θ

α
is a positive eigenvalue

of L.
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Let λ1 be a positive eigenvalue of L and let φ be the associated eigenvector. On one
hand, we have

0 < λ+ ≤ λ1 ≤ λ
− ≤ +∞. (3.10)

At the same time, if u, v ∈ K∗ and λ, µ, are such that Lu≤ λu and Lv≥ µv, then the properties
of χ lead to

0 < λ1χ (φ,u) = χ (Lφ,u) = χ (φ,Lu) ≤ λχ (φ,u)

and
λ1χ (φ,v) = χ (Lφ,v) = χ (φ,Lv) ≥ µχ (φ,v) ,

which imply
µ ≤ λ1 ≤ λ,

that is,
λ− ≤ λ1 ≤ λ

+. (3.11)

Combining (3.10) and (3.11) gives λ− = λ+ = λ1 is the unique positive eigenvalue of L. �

Remark 3.14. If we add to Theorem 3.13 the condition that K is a total cone, then it follows
from [7, Theorem 19.2] (or [23, Proposition 7.26]) that λ− = λ+ = λ1 is the principal and
unique positive eigenvalue of L.

Theorem 3.15. Assume that L ∈ Q(E), intK , ∅, and either K is normal or L is K-normal.
Then

λ− ≤ λ+intK .

Moreover, if λ+ > 0 and K is a total cone, then λ− = r (L) > 0 is the principal eigenvalue of
L.

Proof. Assume that λ+intK < λ
− and λ ∈

(
λ+intK ,λ

−
)
. For such a λ, there exists u ∈ intK and

v ∈ K∗ such that Lu ≤ λu and Lv ≥ λv. Now u ∈ intK implies the existence of t > 0 such that
u > vt = tv.

If K is normal, then the operator T =
L
λ

maps the closed bounded convex interval [vt,u]
into itself. So Schauder’s fixed point theorem guarantees the existence of a fixed point w of
T such that vt ≤ w ≤ u and λ is an eigenvalue of L.

If L is K-normal, then the operator T =
L
λ

maps the closed bounded convex set L ([vt,u])
into itself. Schauder’s fixed point theorem then guarantees the existence of a fixed point
w ∈ L ([vt,u]) of T and λ is an eigenvalue of L.

This shows that in the two cases,
(
λ+intK ,λ

−
)
⊂ sp(L), where sp(L) is the spectrum of L,

and this contradicts L being compact.
Now if 0< λ+, then r(L)> 0, and since K is total, [7, Theorem 19.2] (or [23, Proposition

7.26]) ensures that r(L) is a positive eigenvalue of L and r(L) = λ−. �

Remark 3.16. Note that Theorem 3.15 guarantees that L has at most one interior eigenvalue.
In fact, if λ1 is an interior eigenvalue, then

λ+ ≤ λ1 ≤ λ
− ≤ λ+intK ≤ λ1,
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which implies
λ1 = λ

− = λ+intK .

Moreover, if 0 is an interior eigenvalue, then λ1 is the unique positive eigenvalue of L. If
this is the case, then λ+intK = λ

+ = λ−.

Theorem 3.17. Assume that L ∈ Q(E), intK , ∅, L (∂K \ {0}) ⊂ intK, and either K is normal
or L is K-normal. Then, λ− = λ+ = r(L) is the principal and unique positive eigenvalue of
L.

Proof. We need to prove that λ+ = λ+intK . To this end, we show that Λ+K(L) ⊂ Λ+intK(L). If
λ ∈ Λ+K(L), then there exists u ∈ K∗ such that Lu ≤ λu and there are two possibilities.

First, we could have u ∈ intK. Then λ ∈ Λ+intK(L). Second, we could have u ∈ ∂K. In
this case, U = Lu ∈ intK and LU ≤ λU. This again implies λ ∈ Λ+intK(L).

Let u ∈ ∂K \ {0}; then Lu ∈ intK, so there exists t > 0 such that Lu ≥ tu. This implies that
λ− > 0, and by Lemmas 3.4 and 3.5, r(L) ≥ λ− > 0. Thus, it follows from the Krein-Rutman
Theorem (see [7, Theorem 19.3] or [23, Theorem 7.C]) that r(L) = λ− is the principal and
positive eigenvalue of L. Finally, we see that the condition L (∂K \ {0}) ⊂ intK implies that
L has only interior eigenvalues, so uniqueness follows from Remark 3.16. �

Combining the Krein-Rutman Theorem with Theorem 3.17, we obtain the following
result.

Corollary 3.18. Assume that L ∈ Q(E), intK , ∅, L (K \ {0}) ⊂ int K, and either K is normal
or L is K-normal. Then λ− = λ+ = r(L) is the principal and unique positive eigenvalue of L.

Remark 3.19. Common to both Theorems 3.13 and 3.17 is that 0 cannot be an eigenvalue
of L and so for every subset P ⊂ K with L (K) ⊂ P, we have λ+P = λ

−
P = λ

+ = λ−.

4 Applications

In this section we apply our results to some specific boundary value problems.

4.1 Third order boundary value problem

Consider the third order boundary value problem{
−u′′′(x) = a(x) f (u(x)), x ∈ (0,1) ,
u(0) = u′(0) = u′(1) = 0,

(4.1)

where a ∈C([0,1] ,R+) does not vanish identically on any subinterval of [0,1] and f : R+→
R+ is a continuous function. We also consider the associated linear eigenvalue problem{

−u′′′(x) = µa(x)u(x), x ∈ (0,1) ,
u(0) = u′(0) = u′(1) = 0.

(4.2)
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Theorem 4.1. The linear eigenvalue problem (4.2) has a unique positive eigenvalue µ1 > 0.
Moreover, problem (4.1) has no positive solution if either

inf { f (t,u)/u, t ∈ [0,1] u > 0} > µ1

or
sup { f (t,u)/u, t ∈ [0,1] u > 0} < µ1.

Proof. Let X =
{
u ∈C2 ([0,1]) : u(0) = u′(0) = u′(1) = 0

}
be equipped with the norm de-

fined for u ∈ X by ‖u‖ = sup {|u′′(t)| , t ∈ [0,1]} and consider the operator L : X → X given
by

Lu(x) =
∫ x

0

(∫ 1

0
G(s, t)a(t)u(t)dt

)
, (4.3)

where

G(s, t) =
{

s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1,

is the Green function associated with the differential operator −
d2

dx2 and Dirichlet boundary

conditions. It is clear that µ > 0 is a positive eigenvalue of (4.2) if and only if µ−1 is a
positive eigenvalue of L. Let Q be the natural cone in X, i.e., Q = {u ∈ X : u ≥ 0 in [0,1]}.
In view of Corollary 3.18, let us prove that L(Q∗) ⊂ intQ. To this end, consider the set

S =
{
u ∈ X : u′ > 0 in (0,1) , u′′(0) > 0, and u′′(1) < 0

}
.

We have S ⊂ Q and S is an open set; in fact, X \S = F1∪F2∪F3 where

F1 =
{
u ∈ X : there exists x ∈ (0,1) with u′(x) ≤ 0

}
,

F2 =
{
u ∈ X : u′′(0) ≤ 0

}
, and

F3 =
{
u ∈ X : u′′(1) ≥ 0

}
.

It is clear that F2 and F3 are closed sets in X so let (un) ⊂ F1 tending to u in X and
(xn)⊂ (0,1) tending to x ∈ [0,1] with u′n(xn)≤ 0. Now if x ∈ (0,1), then u′(x)= limu′n(xn)≤ 0,
and so u ∈ F1. If x = 0, we have u′′(0) = limn→∞

u′n(xn)
xn
≤ 0, which implies u ∈ F2. Finally, if

x = 1, then u′′(1) = limn→∞
u′n(xn)
xn−1 ≥ 0, so u ∈ F3.

Now let u ∈ Q∗ and v = Lu; we have

v′(x) =
∫ 1

0
G(x, t)a(t)u(t)dt > 0 for any x ∈ (0,1) ,

v′′(0) =
∫ 1

0
(1− t)a(t)u(t)dt > 0, and v′′(1) = −

∫ 1

0
ta(t)u(t)dt < 0,

that is, L (Q∗) ⊂ S ⊂ intQ. Since Q is not a normal cone in X, to complete our proof we need
to show that L is a Q-normal operator. Let u1,u2 ∈ Q with u1 ≤ u2, v1 = Lu1, and v2 = Lu2.
For i = 1,2, v′i are concave functions on [0,1] and ‖vi‖ =max

{
v′′i (0),−v′′i (1)

}
. We have

v′′1 (0) =
∫ 1

0
(1− t)a(t)u1(t)dt ≤

∫ 1

0
(1− t)a(t)u2(t)dt = v′′2 (0)
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and

−v′′1 (1) =
∫ 1

0
ta(t)u1(t)dt ≤

∫ 1

0
ta(t)u2(t)dt = −v′′2 (0).

That is, ‖v1‖ ≤ ‖v2‖ and so L is Q-normal. The conclusion of the theorem then follows from
Corollary 3.18 and Proposition 3.6. �

In order to present an existence result, we introduce the following notations:

f 0 = limsup
u→0

(
max
t∈[0,1]

f (t,u)
u

)
, f∞ = limsup

u→+∞

(
max
t∈[0,1]

f (t,u)
u

)
,

f0 = liminf
u→0

(
min

t∈[0,1]

f (t,u)
u

)
, f∞ = liminf

u→+∞

(
min

t∈[0,1]

f (t,u)
u

)
.

Theorem 4.2. If either
f 0 < µ1 < f∞ ≤ f∞ <∞

or
f∞ < µ1 < f0 ≤ f 0 <∞

holds, then problem (4.1) has a positive solution.

Proof. Let E = C ([0,1]) equipped with its sup-norm, L : E → E be the operator defined
by (4.3), and F : C → C be the Nemytskii operator defined for u ∈ C by Fu(t) = f (t,u(t)),
where C is a positive cone in E. It is clear that continuity of f implies that F is continuous
and maps bounded sets of C into bounded sets of C. Also, L is an increasing and compact
operator and u is a positive solution of problem (4.1) if and only if u is a positive fixed point
of LF. Let λ+C and λ−C be defined by

λ+C = inf
{
λ ≥ 0 : Lu ≤ λu for some u ∈C∗

}
and

λ−C = sup
{
λ ≥ 0 : Lu ≥ λu for some u ∈C∗

}
.

Since 0 is not an eigenvalue of L and L(C) ⊂ Q, where Q is the cone defined in the proof of
Theorem 4.1, it follows from Remark 3.19 that

(µ1)−1 = λ−C = λ
+
C .

Moreover, f 0 < µ1 < f∞ ≤ f∞ <∞ (the other case is similar) implies there exists ε > 0
and positive constants C1, C2 such that

F(u) ≤ (µ1−ε)u+G(u) for all u ∈ Q∗∩B(0, δ)

and
(µ1+ε)u−C1 ≤ F(u) ≤

(
f∞+ε

)
u+C2 for all u ∈ Q∗,

where Gu(t) =max
{
f (t,u(t))− f 0u(t),0

}
. The conclusion of the theorem follows from The-

orem 3.10. �
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4.2 Positive solution for the generalized Fisher like equation posed on the
positive half line

Consider the boundary value problem{
−u′′(x)+ cu′(x)+λu(x) = a(x) f (x,u(x)), x ∈ (0,+∞) ,
u(0) = u(+∞) = 0,

(4.4)

where c, λ are positive constants, a ∈C(R+,R+) does not vanish identically on any subinter-
val of [0,+∞), and f : R+×R+→ R+ is a continuous function. Also consider the associated
linear eigenvalue problem{

−u′′(x)+ cu′(x)+λu(x) = µa(x)u(x), x ∈ (0,+∞) ,
u(0) = u(+∞) = 0.

(4.5)

Let G be the Green function associated with (4.4) given by

G(x, t) =
1
k

{
er1(x−t)(1− e(r1−r2)x), x ≥ t,
er2(x−t)(1− e(r1−r2)t), x ≤ t,

where r1 < 0 < r2 are the two roots of −X2+cX+λ = 0 and k = r2−r1. For the mathematical
origin and physical significance of this equation we refer the reader to [9]–[12].

Denote by E the Banach space of all continuous functions defined on [0,+∞) that vanish
at 0 and +∞ equipped with its sup-norm. Let L : E→ E be the linear operator defined by

Lu(x) =
∫ +∞

0
G(x, t)a(t)u(t)dt

and F : U → U be the Nemytskii operator defined by

Fu(t) = f (t,u(t)),

where U is the normal positive cone of E. It is clear that F is continuous and maps bounded
sets into bounded sets and u ∈ E is a positive solution of (4.4) if and only if u is a positive
fixed point of LF. Moreover, µ > 0 is a positive eigenvalue of (4.5) if and only if µ−1 is a
positive eigenvalue of L.

In order to prove the compactness of the operator L, we will make use of the following
lemmas.

Lemma 4.3. ([1], [2]) A subset A ⊂ E is relatively compact if and only if the following
conditions are satisfied

(i) A is uniformly bounded;

(ii) A is equicontinuous on every compact interval of R+;

(iii) A is equiconvergent.

By equiconvergence in Lemma 4.3 we mean that for every ε > 0 there exists Tε > 0 such
that, for all u ∈ A and t > Tε, we have |u(t)| < ε.
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Lemma 4.4. If a ∈ E, then L ∈ Q(E).

Proof. First note that
∫ +∞

0 G(0, t)a(t)dt = 0, and by Hôpital’s rule, we conclude from the
fact that a ∈ E that lim

x→+∞

∫ +∞
0 G(x, t)a(t)dt = 0. Let [a,b] ⊂ [0,+∞) and a ≤ x < y ≤ b.

Straightforward computations show that∣∣∣∣∣∣
∫ +∞

0
G(x, t)a(t)dt−

∫ +∞

0
G(y, t)a(t)dt

∣∣∣∣∣∣ ≤ 2θ∗
∫ y

x
e−r1ta(t)dt+2γ∗

∫ y

x
e−r2ta(t)dt ,

where θ∗ = sup
{
e−r1 x

(
1− e(r1−r2)x

)
: x ∈ [a,b]

}
and γ∗ = sup {er2 x : x ∈ [a,b]}.

Since the functions z→
∫ z

0 e−r1ta(t)dt and z→
∫ z

0 e−r2ta(t)dt are uniformly continuous
on [a,b], for any ε > 0 there exists δ > 0 such that, for all x, y ∈ [a,b] with |x− y| < δ, we
have ∣∣∣∣∣∣

∫ +∞

0
G(x, t)a(t)dt−

∫ +∞

0
G(y, t)a(t)dt

∣∣∣∣∣∣ < ε. (4.6)

Therefore, the function x→
∫ +∞

0 G(x, t)a(t)dt is continuous and supx≥0{
∫ +∞

0 G(x, t)a(t)dt}
<∞. Thus, for all u ∈ E, Lu(0) = 0, lim

x→+∞
Lu(x) = 0, and Lu is continuous on [0,+∞), that

is, Lu ∈ E. In addition,

|Lu(x)| ≤
(
sup
x≥0

{∫ +∞

0
G(x, t)a(t)dt

})
‖u‖ ,

so L ∈ L(E).
To show the compactness of L, let B be a subset of E bounded by M > 0. Then L(B) is

bounded by
(
supx≥0{

∫ +∞
0 G(x, t)a(t)dt}

)
M, and for all u ∈ B and x, y ∈ [a,b] ⊂ [0,+∞) with

0 < y− x < δ, (4.6) implies
|Lu(x)−Lu(y)| ≤ Mε,

that is, L(B) is equicontinuous on any compact subinterval of [0,+∞).
Now, for any u ∈ B, we have

|Lu(x)| ≤ M
∫ +∞

0
G(x, t)a(t)dt,

so from the fact that lim
x→+∞

∫ +∞
0 G(x, t)a(t)dt = 0, for any ε > 0 there exists Tε > 0 such that

|Lu(x)| ≤ M
∫ +∞

0
G(x, t)a(t)dt < ε for any x > Tε.

Hence, L(B) is equiconvergent. Thus, Lemma 4.3 guarantees L ∈ Q(E). �

Now consider the functional α : U → R+ defined by

α(u) =min
{
u(x), x ∈

[
γ,δ

]}
,

where
[
γ,δ

]
⊂ (0,+∞) is a given interval. It is easy to see that α has the following properties:

α (λu) = λα (u) for any u ∈ U and λ ≥ 0;
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u ≤ v implies α (u) ≤ α (v) where u, v ∈ U;

α (Lu) = 0 implies u = 0;

and for all u ∈ U,
α (Lu) ≥C0α (u) , (4.7)

where C0 =min
{∫ δ
γ

G(x, t)a(t)dt : x ∈
[
γ,δ

]}
> 0.

Thus, if λ ≥ 0 and u ∈ U∗ are such that Lu ≤ λu, then

0 < α(Lu) ≤ λα (u) ,

and by (4.7),
0 <C0α (u) ≤ α(Lu) ≤ λα (u) ,

that is, λ ≥C0, and so λ+ ≥C0 > 0.
Consider the bilinear form χ : E×E→ R defined for u, v ∈ E by

χ (u,v) =
∫ +∞

0
e−cxa(x)u(x)v(x)dx.

It is clear that χ is positive, increasing, and for all u, v ∈U∗, χ(Lu,v) > 0. Let u, v ∈U, W1 =

Lu, and W2 = Lv. We need to prove that e−cxW′1(x) and e−cxW′2(x) are bounded functions.
Let x0 ≥ 0 be such that W′1(x0) = 0. Then,

∣∣∣e−cxW′1(x)
∣∣∣ = ∣∣∣∣∣∣

∫ x

x0

e−cx (mu−λW1)

∣∣∣∣∣∣ ≤
(∫ +∞

0
e−cxdx

)
(‖m‖‖u‖+λ‖W1‖) <∞,

and similarly ∣∣∣e−cxW′2(x)
∣∣∣ ≤ (∫ +∞

0
e−cxdx

)
(‖m‖‖v‖+λ‖W2‖) <∞.

Two integrations by parts then lead to

χ (Lu,v) =
∫ +∞

0
e−cxa(x)W1(x)v(x)dx

=

∫ +∞

0
e−cxa(x)W1(x)

(
−W′′2 (x)+ cW′2(x)+λW2(x)

)
dx

and∫ +∞

0
aW1

(
−
(
e−cxW′2

)′
+λe−cxW2

)
dx

=

∫ +∞

0
aW2

(
−
(
e−cxW′1

)′
+λe−cxW1

)
dx = χ (u,Lv) .

The hypotheses of Theorem 3.13 are satisfied, so we have the following result.
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Theorem 4.5. The linear eigenvalue problem (4.5) has a unique positive eigenvalue µ1 > 0.
Moreover, problem (4.4) has no positive solutions if either

inf { f (t,u)/u, t ∈ [0,1] u > 0} > µ1

or
sup { f (t,u)/u, t ∈ [0,1] u > 0} < µ1.

To prove our existence result we need the following notation:

f 0 = limsup
u→0

(
max

t∈[0,+∞)

f (t,u)
u

)
, f∞ = limsup

u→+∞

(
max

t∈[0,+∞)

f (t,u)
u

)

f0 = liminf
u→0

(
min

t∈[0,+∞)

f (t,u)
u

)
, f∞ = liminf

u→+∞

(
min

t∈[0,+∞)

f (t,u)
u

)
.

Theorem 4.6. If either
f 0 < µ1 < f∞ ≤ f∞ <∞

or
f∞ < µ1 < f0 ≤ f 0 <∞,

then problem (4.4) has a positive solution.

Proof. The condition f 0 < µ1 < f∞ ≤ f∞ <∞ (the other case is similar) implies that there
exists ε > 0 and positive constants C1, C2 such that

F(u) ≤ (µ1−ε)u+G(u) for all ∈ U∗∩B(0, δ)

and
(µ1+ε)u−C1 ≤ F(u) ≤

(
f∞+ε

)
u+C2 for all u ∈ U∗,

where Gu(t) =max
{
f (t,u(t))− f 0u(t),0

}
. The conclusion then follows from Theorem 3.10.

�

Remark 4.7. The generalized Fisher equation posed on the real line has been studied in [8]
and [9]. Arguing as in Sub-section 4.2, we can prove the existence of 0 < µ+ ≤ µ− such that,
if

f 0 < µ+ ≤ µ− < f∞ ≤ f∞ <∞

or
f∞ < µ+ ≤ µ− < f0 ≤ f 0 <∞

holds, then the boundary value problem{
−u′′(x)+ cu′(x)+λu(x) = a(x) f (x,u(x)), x ∈ R,
u(−∞) = u(+∞) = 0,

has a positive solution in the case where a ∈ C
(
R,R+

)
does not vanish identically on any

subinterval of R, and vanishes at ±∞, f ∈C
(
R×R+,R+

)
, and

f 0 = limsup
u→0

(
max

t∈[0,+∞)

f (t,u)
u

)
, f∞ = limsup

u→+∞

(
max

t∈[0,+∞)

f (t,u)
u

)
,
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f0 = liminf
u→0

(
min

t∈[0,+∞)

f (t,u)
u

)
, f∞ = liminf

u→+∞

(
min

t∈[0,+∞)

f (t,u)
u

)
.

Moreover, the eigenvalue problem{
−u′′(x)+ cu(x)+λu(x) = µa(x)u(x), x ∈ R,
u(−∞) = u(+∞) = 0,

admits at least one positive eigenvalue.
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