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Abstract

In the paper we deal with Toeplitz operators acting on the Bergman sp&@") of
square integrable analytic functions on the unit Balin C". A bounded linear opera-
tor acting on the spac@?(B") is calledradial if it commutes with unitary changes of
variables. Zhou, Chen, and Dong [9] showed that every radial opeBdtodiagonal
with respect to the standard orthonormal monomial basis,{in. Extending their
result we prove that the corresponding eigenvalues depend only on the length of multi-
indexa, i.e. there exists a bounded sequengg,{, of complex numbers such that
Se = /l|c,|ea.

Toeplitz operator is known to be radial if and only if its generating synghisla
radial function, i.e., there exists a functiandefined on [01], such thag(z) = a(|2)
for almost allze B". In this caseTye, = yna(lal)e,, where the eigenvalue sequence

(Vn,a(k))ﬁo:o is given by

yna(K) = 2(k+n) fola(r)rz'“zn‘ldr = (k+n) fola( Vryrkn-gr,

Denote byl', the set{yna: a€ L*([0,1])}. By a result of Sarez [8], theC*-algebra
generated by; coincides with the closure df; in ¢~ and is equal to the closure of
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dy in £, whered, consists of all bounded sequences (xk),” , such that
sup((k+ 1) X1 — xk|) < 400.
k>0

We show that th&€*-algebra generated Hy, does not actually depend enand co-
incides with the set of all bounded sequenceg,{,, that areslowly oscillatingin

the following sense:x; — x| tends to O uniformly aifr—} — 1 or, in other words,

the functionx: {0,1,2,...} — C is uniformly continuous with respect to the distance
p(j,K) =In(j + 1)—In(k+ 1)|. At the same time we give an example of a complex-
valued functiona € L([0,1],rdr) such that its eigenvalue sequengg is bounded

but is not slowly oscillating in the indicated sense. This, in particular, implies that
a bounded Toeplitz operator havimgboundeddefining symbol does not necessar-
ily belong to theC*-algebra generated by Toeplitz operators wittundeddefining
symbols.

AMS Subject Classification: Primary 47B35; Secondary 32A36, 44A60.
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1 Introduction and Main Results

1.1 Bergman space on the unit ball

We shall use some notation and well-known facts from Rudin [3] and Zhu [10]. Denote by
(-,-) the usual inner product ig8": (zw) = Z?:lszj. Let|-| be the Euclidean norm i@"
induced by this inner product, and 8t be the unit ball inC". Denote bydvthe Lebesgue
measure oit" = R?" normalized so thai(B") = 1, and denote bylo the surface measure

on the unit spher8?*! = 9B" normalized so thar(S*"1) = 1. LetN ={0,1,2,...}. Given

a multi-indexa € N" and a vectoz € C", we understand the symbadlg, o! andz* in the

usual sense: .
|a|=Zozj, a!zl_[aj!, z":l_[ZTj.
j=1 j=

Consider theBergman spaceA? = A2(B",v) of all square integrable analytic functions on
B". Denote by €,).cxn the standard orthonormal monomial basisAf:

e.(d) = /(nr:trll!) 2

The reproducing kernel Kof the spaceA? at a pointz € B" satisfies(f,K,) = f(2) for all
f e A2, and is given by the following formula:

1

K(w) = > &@e, = AW

aeNN

The Berezin transfornof a bounded linear operat®: A% — A? is a functionB" — C
defined by
(S K. Ky)

T 1Z%)™HS Ko, Ky).

(B(S))(2 =
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It is well known that the Berezin transfor is injective: if 8(S) is identically zero, then
S = 0. A proof of this fact for the one-dimensional case is given by Strdkffip
Given a functiorg € L1(B"), the Toeplitz operator §is defined on a dense subsetmt

by
(To(@ = fB of d

If ge L*(B"), thenTg is bounded andTg|| < [|gllw-

1.2 Radial operators on the unit ball

Following Zhou, Chen and Dong [9] we recall the concept ehdial functionon B" and
of aradial operatoracting onA2. Theradialization of a measurable functioh: B" — C
is given by

rad(f)(@) := [u f(U2)dH(U),

wheredH is the normalized Haar measure on the compact griypconsisting of the
unitary matrices of orden.
A function f: B" — C is calledradial if rad(f) coincides withf almost everywhere.
For a continuous functioffi this means thaf(z) = f(|Z) for all ze B".
Given a unitary matridd € U, denote by¥Py the corresponding “change of a variable
operator” acting oA?:
Yuf)@:=fU"2.

HereU* is the conjugated transposedf Note that¥y is a unitary operator on the space
A2, its inverse isPy-, and the formulaP'y,u, = Yu,Yu, holds for allU,U; € U,,.
Given a bounded linear operat®r A% — A2, its radializationRad@) is defined by

Rad®) := f Yy SYy- dH(U),
Un

where the integration is understood in the weak sense.

A bounded linear operat@® is calledradial if S¥y = ¥yS for all U € U, or, equiva-
lently, if Rad@) = S.

Zhou, Chen, and Dong [9] proved that the Berezin transform “commutes with the radi-
alization” in the following sense: for every bounded linear operatacting inA2

B(Rad)) = radB(S).

It follows thatS is radial if and only ifB(S) is radial. In the one-dimensional case (i.e., for
n = 1) these facts were proved by Zorboska [11].

For eachr € N" denote byP, the orthogonal projection onto the one-dimensional space
generated by,:

Pa(x) = (X, €) €q-
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Given a bounded sequente (im),._, of complex numbers, denote By the following
operator (adial operator with eigenvalue sequente

Ry:= Z Ao Pas

aeNn

where the convergence of the series is understood in the strong operator topology. The
Berezin transform oR; was computed in [1, 9]:

2(m+n)!

=D A (2.1)

BRY)D = (1- m%”“Z

Since the functiorB(R,) is radial, the operatdr, is radial.

Theorem 1.1.Let S be a bounded linear radial operator#?. Then there exists a bounded
complex sequencesuch that S= R;.

Zhou, Chen, and Dong [9] proved one part of this theorem, namely,Sthatdiag-
onal with respect to the monomial basis. In Section 2 we prove the remaining part: the
eigenvalues o8 depend only on the length of the multi-index.

1.3 Radial Toeplitz operators on the unit ball

Zhou, Chen, and Dong [9] proved that a Toeplitz operdipis radial if and only if its
generating symbad is radial, i.e., if there exists a functiamdefined on [01] such that

9(2) = a(|zl) for almost allze B". ThenTy is diagonal with respect to the orthonormal
monomial basis, and the corresponding eigenvalues depend only on the length of multi-
indices. Denote the eigenvalue sequence of such operatgy:by

Ty = Ynallal)e,.

An explicit expression of the eigenvalugga(m) in terms ofa was found by Grudsky,
Karapetyants and Vasilevski [1] (see also [9]):

1
Yna(m) = (M- 1) fo a( V)™, (1.2)

or, changing a variable,

1
Yna(k) = 2(m+n) fo a(r)r2™2-1qr, (1.3)

Denote byl'n(L*([0,1])), or I'y in short, the set of all these eigenvalue sequences, which
are generated by the radial Toeplitz operators with bounded generating functions:

I :=Tn(L7([0,1])) = {yna: a€L™([0,1])}. (1.4)
Definey1 4 andI'y by (1.3) and (1.4) witln = 1:

1
y1a(k) = 2(k+1) fo a(r)r¥+1dr, (1.5)
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[ :=T1(L7([0,1])) = {y1a: @€ L™([0,1])}. (1.6)

Denote byd; (N) the set of all bounded sequences (X;)jev satisfying the condition

ing((m 1)(AX)x) < +oo,

where AX)k = Xk+1 — Xk-

Then theC*-algebra generated by radial Toeplitz operators with bounded generated
symbols is isometrically isomorphic to tk-algebra generated [iy,.

Theorem 1.2(Suarez [8]) The C-algebra generated bl; coincides with the topological
closure ofl"1 in £*(N), being the topological closure of (N) in £*°(N).

1.4 Slowly oscillating sequences

Denote by SQY) the set of all bounded sequences thlatwly oscillatein the sense of
Schmidt [5] (see also Landau [2] and Stanojesnind Stanojevi [6]):

SOW) := {xe £ lim X=X = 0}.
I+l q
K

In other words, SQY) consists of all bounded functiods— C that are uniformly continu-
ous with respect to the “logarithmic metrip{j,k) := |In(j + 1) - In(k+ 1)|. In Section 3 we
give some properties and equivalent definitions ofGfelgebra SQY).

In Section 4 we prove that th& -algebra generated by, does not actually depend on
Applying Theorem 1.2 and some standard approximation techniques (de éa-YRoussin
means) we obtain the main result of the paper.

Theorem 1.3. For each n the C-algebra generated by, coincides with the topological
closure ofl'y in £* and is equal t&SO).

As shown by Grudsky, Karapetyants and Vasilevski [1 éL([0, 1],r?"1dr) and the
sequence, is bounded, thef, a(m+ 1) —yna(m) — 0. At the same time, in this situation
vn.a does not necessarily belong to $0( The next result is proved in Section 5.

Theorem 1.4. There exists a functional([0, 1],rdr) such thaty, 5 € £°(N) \ SOWN).

That is, a bounded Toeplitz operator havingooundediefining symbol does not nec-
essarily belong to th€*-algebra generated by Toeplitz operators vithundeddefining
symbols.

2 Diagonalization of Radial Operators in the Monomial Basis
Lemma 2.1(Zhou, Chen, and Dong [Q])Let S: A% — A? be a bounded radial operator

ande be a multi-index. Then,gs an eigenfunction of S, i.&S &,,€3) = 0 for every multi-
indexg different froma.
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Proof. For a reader convenience we give here a proof, slightfedint from [9]. Choose
anindexj € {1,...,n} such thatr # 8; and a complex numbesuch thatt| = 1 andt® # thi.

For example, put
T

lovj - Bjl°
Denote byJ the diagonal matrix withj( j)st entry equal té~! and all other diagonal entries
equal to 1:

t=¢¢ where ¢=

— i -1
U_dlag(l...,l,. t _ ,1,...,1).
jst position

ThenU is a unitary matrix¥ye, = t*e,, and
t*1(S e, &) = (SPU&:.8) = (YuS&.e) = (Se.Yu-e) =t(Se,.e).
Sincet?i # A, it follows that(S e,,e3) = 0. o
Lemma 2.2(Berezin transform of basic projectiond)eta € N" and ze B. Then
B(Pe)(2) = (1-12%)" (),
where ¢ : B — C is the square of the absolute value gf e

(@) = lea@P = O 2
n! a!

Proof. We calculateP, K, for an arbitraryz € B:

P.K; =P [Zeﬁ(z)eﬁ] &@ e

LeN

The reproducing property &, implies thake,, K;) = ,(2). Therefore

B(Pa)(@ = == (PuKz Ko = (1~ 12" e, (D €, Ko) = (1-129)™ e, (2. o

Kz( 2)

Lemma 2.3. For each me N, the function z- 22" is %1 times the arithmetic mean of the
functions ¢ with |a| =

22" = Y- " m-Dls .

(m+n)I m+n (M+n-1)! el

Proof. Apply the multinomial theorem and the definitionapf:

2°" = [lejlz] - > = ]_1l TREDY '|z“|2=(;"!+r:i)!2qa(z). 0

la|= m |a|l=m |a|l=m

Lemma 2.4. Leta € N, Then for all z= B,

rad,)(2) = " 22
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Proof. Express the integration over,, through the integration over":

ada)@= [ SrEFUzrRan©) = TR [ o)

n+|0/|

The value of the latter integral is well known (e.g., see [3, Proposition 1.4.9]):
o2 _ (n=1)!a!
fsm_l &) = T Ta e .

Lemma 2.5(radialization of basic projections).eta € N". Then the radialization of Pis
the arithmetic mean of all Pwith |5 = |«/|:

(-1
RadPa) = m ﬁeZNn Pﬁ (21)
1B1=l]

Proof. We shall prove that both sides of (2.1) have the same Berezin transform, then (2.1)
will follow from the injectivity of the Berezin transform. We use the fact the Berezin trans-
form “commutes with the radialization” [9], and apply then Lemmas 2.2 and 2.4:

n+ Ial

B(RadP,))(2) = radB(P.))(2) = (1-12°)"*rad@)(2) = [277(1— 2™

On the other hand, by Lemmas 2.4 and 2.3,

%W;|B(Pﬁ)(2):(1_|12)n+1%w;|qﬁ(z) n+|a||2|2|a|(1 IZIZ)”+1

O

Lemma 2.6 (radialization of a diagonal operatorl.et (C,)q.ecnn be @ bounded family of
complex numbers. Consider the operatar.8? — A2 given by

S= Z C.P.
aeNn
Then
| m(n-1)
- 3 MO 5o 30
m=0 lal=m

Proof. Follows from Lemma 2.5 and the fact that the sum of a converging serie of mutually
orthogonal vectors does not depend on the order of summands. |

Proof of Theorem 1.1Let S be a bounded linear radial operator#f. By Lemma 2.1,
S= ) CPa
aeND

Since Rad®) = S, it follows from Lemma 2.6 that the cfiecientsc, depend only or|.
Defining A, equal toc, for somea with || = m, we obtain

S= Z’lm{z }:Rﬂ. D

|a|l=m
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3 Slowly Oscillating Sequences
Definition 3.1 (logarithmic metric orN). Definep: NxN — [0, +0) by
p(j.K) = |In(j + 1) - In(k+ 1)|.

The functionp is a metric oriN because it is obtained from the usual metfidR xR —
[0,+00), d(t,u) := |t—u|, via the injective functiolN — R, j — In(j +1).

Definition 3.2 (modulus of continuity of a sequence with respect to the logarithmic metric)
Given a complex sequenee= (X;) e, definew, x: [0, +00) — [0, +c0] by

wpx(0) :=sud|x; —xl: jkeN, p(j,k) <6}

Definition 3.3 (slowly oscillating sequencesPenote by SQY) the set of the bounded
sequences that are uniformly continuous with respect to the logarithmic metric:

SOM) = {1 e >(N): (sILrQ+ wp.(6) = 0}.

Note that the class S®] plays an important role in Tauberian theory, see Landau [2],
Schmidt [5,§ 9], Stanojevt and Stanojevi [6].

For every sequence the functionw,,x: [0,+o) — [0, +0] is increasing (in the non-
strict sense). Therefore the condition }iny+ w, x(6) = 0 is equivalent to the following one:
for all £ > 0 there exists &> 0 such thatv, x(5) < &.

The same class SO can be defined using another special mgifionN:

Definition 3.4. Definep;: NXN — [0, +00) by

lj—K B min(j +1,k+1)

KY=—7————=1-—7F———~.
p1(K) max(j + 1,k+1) max(j +1,k+1)
Proposition 3.5. p; is a metric onN.

Proof. Clearly p1 is non-negative, symmetric, and(j,k) = 0 only if j = k. We have to
prove that for allj,k, pe N

p1(j, ) +p1(p.K) — p1(j.k) > 0. (3.1)

Denote the left-hand side of (3.1) By, k, p). SinceA(],k, p) is symmetric with respect to
j andk, assume without loss of generality that k. If j < p<k, then

B\ ( PHL) [, i*1)_p=i_p-i_(p-Dk-p)
+1 k+1 k+1) p+1 k+1 (k+1)(p+1)

Ak =(1

If j <k<p, thenA(j.k, p) = BB > 0. 1f p< j <k, thenA(j.k p) = -20H2 > 0. o
Proposition 3.6(relations betweep andp1).
1. Forall jkeN,
p1(J.K) < p(}.K). (3.2)
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2. For all j,k € N satisfyingo1(j,K) < 2,
p(j.K) < 2In(2)o1(]. K). (3.3)

Proof. Since the functiong andp; are symmetric and vanish on the diagondlj{j) =
01(j, j) = 0), consider only the cage< k. Denote"Jfl 1 byt, then

. . 1 t
p(J,K) =In(1+1), Pl(]yk)—l_l—_'_t I t
Definef: (0,+o0) — (0, +c0) by

In(1+t)

f(t) :=

1+t
Then

In(1+t)

=" >0,

and thusf is strictly increasing on (G-0). Slnce lim_g+ f(t) =1 and f(1) = 2In(2), we
see thatf (t) > 1 for allt > 0 andf(t) < 2In(2) for allt € (0,1]. Substituting by "+1 -1we
obtain (3.2) and (3.3). |

Corollary 3.7. The setSO[N) can be defined using the metri¢instead ofo:

SOW) = {1 e £~(): Jim sup |2; - A =0},
=0 p1(j K=o

Let us mention some simple properties of St(
Proposition 3.8. SO[N) is a closed subalgebra of the'@lgebra¢>(N).

Proof. Itis a general fact that the set of the uniformly continuous functions on some metric
spaceM is a closed subalgebra of tk-algebra of the bounded continuous functions on
M. In our caseM = (N, p). Since

Wy f+g S Wp f+Wpg, Wpaf = I/llwp,f7 Wp,fg < wp,f”g”oo +wp,g”f||oo, w,

the set SQY) is closed with respect to the algebraic operations. The topological closeness
of SOW) in ¢ (N) follows from the inequality

wp,1(0) < 2/If = gllo + wp g(9)- O

Proposition 3.9(comparison of SQY) to ¢(N)). The set of the converging sequenc@$)c
is a proper subset dBO().

Proof. 1. Denote byN := NU {o} the one-point compactification (Alexandreompactifi-
cation) ofN. The topology orN can be induced by the metric
. ] k
K):=|— - ——|.
Ak ‘j+1 k+1
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If o € ¢(N), theno is uniformly continuous with respect to the metdeg, butdg is less or
equal tharp:

[j =K - lj =Kl

d(].K) = (j+1)k+1) ~ max(j+1,k+1)

= p1(},K) < p(j, k).

2. The sequence= (X;j)jex With Xj = cos(In(j + 1)) does not converge but belongs to SP(
since

|X) = % = |[cos(In( + 1)) - cos(Ink+ 1))| < [In(j +1) - In(k+1)| = p(j. K). O

We define now thdeft and right shiftsof a sequence. Given a complex sequexee
(Xj)jen, define the sequences(x) andrr(x) as follows:

TL(X) i= (X1, X2, X3, ...), TR(X) := (0, X0, X1,...).
More formally,

0, j=0;

=X TR = {x- 1 jei1,23,..)
-1 T RS

Note thatr; (tr(X)) = x for every sequence.
Both 7 andrr are bounded linear operators 6A(N). In the following two proposi-
tions we show that SQY) is an invariant subspace of each one of these operators.

Proposition 3.10. For every xe SON), 7 (X) € SON).

Proof. The image ofr| (X) is a subset of the image af thereford|r (X)|| < ||x||. If § >0,
j.keN, j<kandp(],k) <, then

p(j+l,k+1):InTL2:Inﬂ'+ln(

1 1 k+1
— |- — o 5K <6
" 1 1+ ) In(l+j )<In p(j.K) <o

k+1 +1 j+1

It follows thatw,, -, (x)(0) < wyx(0) and(sﬂrgl wp.r (0(0)=0. O

Proposition 3.11. For every xe SOf), 7r(X) € SON).

Proof. The sequencesandrr(x) have the same image up to one element zero:
{Tr(X¥)j: jeN}={xj: jeN}U{O}.

Thereforel|rr(X)llo = [IX/lco-

2. Lets€(0.3), j.keN, j<kandp(j.K) < 6. Thenj > 1,k> 2, and
—j _k+1 (k+1)-(j+1)
k ~ k k+1
Applying Proposition 3.6 we see that

) k
p1(j-1Lk-1)=

3 .
< épl(l’k)-

3

. 3 . 1
p1(j—-Lk-1)< EP(J,k) = 55 <5
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and
p(j—Lk-1)<2In(2)1(j -1, k-1)< 2In(2)g(5 = 3In(2).

Thus for eveng e (0, %)
Wp.rr(x)(0) < w, x(31In(2)0).

Thereforeé Iigpwp,TR(x) (6) =0. m

4 T',is aDense Subset of SBY)

First we prove thal,, is contained in SQY).

Proposition 4.1. Let ae L*([0, 1]). Theny,, € SON). More precisely,

Ivnalleo < ll@lleo, (4.1)

and for all jke N,
|7n,a(j) - Vn,a(k)| < 2llallep(), K). (4.2)

Proof. The inequality (4.1) follows directly from (1.3):

l .
Iyna(j)l < 2(n+ ) fo 221l dr = |a|e.

The proof of (4.2) is based on an idea communicated to us by K. M. EsmeralaGarc
Since both sides of (4.2) are symmetric with respect to the indieeslk, without loss of
generality we consider the cage k. First factorizea(r) and bound it byjal|e:

[Yna(i) — yna(k)| = ' f (0 DL () o (4.3)
0
1 .
< llalle f |(n+ )r2" 2t — (n+ kyr2 2 dr, (4.4)
0

Denote byrg the unique solution of the equation j)r2*2i-1 — (n+k)r2**2%-1 = 0 on the
interval (Q1):
(N ] D
o=l

The functionr - (n+ j)r2™2i-1_ (n+k)r2+2-1 takes positive values on the interval i(§)
and negative values on the intervad,(). Dividing the integral (4.4) on two parts by the
pointrg, we obtain:

rnali) —na(k)] < 2lalle(ry™ = rg™ %) = 2lallery™? pa(j.K).
Sincerg < 1 andp1(j,K) < p(J,k), the inequality (4.2) follows. O
Definition 4.2. Denote byd;(N) the set of the bounded sequenzesich that

sug{(j + 1)IXj1— Xjl) < +co.
JeN
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Proposition 4.3. di(N) is a proper subset GSO(N).
Proof. 1. Letx e d;(N) and

= SUF((J +1)IXj41— le)
jeN

Then for allj,k € N with j < k we have
k-1

k-1
k+1 .
X~ xJ|<Z|xq+1 Xql < MZ Z —Mln— <MIn=7 = Mo(j. )
QJ a=]

Thereforedl(N) is contained in SQY).
2. Consider the sequence

nllog,(j +2)]
Viog(7+2)

Xj :=sin

For everyj andk with k > j,
nllogy(k+2)]  mllogy(j +2)]

ViIogo(k+2)  y/logy(j+2)
- rlog,(k+2) B n(log,(j+2)-1)

" Jogk+2)  log(1+2)

=] <

= n(ylog,(k+2) - log,(j +2)) + N
ﬂlogz I;ig /4

\/|092(k+ 2)+ /logy(j + 2) V0og,(j + 2)
Thusx € SO(). On the other hand, if = 2€ — 3, then

702-1) | _ |l _70E-1)

Jlog,2¢ - 1) Jog,@?-1))|

Appying the inequalitysin(t)| > % which holds for allt with [t| < 7, we obtain:

IXj+1—Xj| = Xj| = [sin

(K2-1) 1 1
Xii1—xi| > 2|k ————2) |5 2(k- VKo -1)> 5= ——
o Jlog,(2¥ — 1) ( ) k- \logy(j+3)

Thereforex ¢ di(N). O

Lemma 4.4. Let xe ¢*(N) and¢ € (0,1). Denote by y the sequence of the de la Vallée-
Poussin means of x:

q sl
= . . 4.5
Yi 1+U§Jk§:;xk (4.5)

Then ye d;(N) and
“y_ XHOO < wp,X(é)- (46)
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Proof. Note that for allj € N, the sum in the right-hand side of (4.5) contains| ]| terms.

Therefore
j+Ljs]

. [IXlloo = [IXlloo-
1+j6] kZ:;

For j e N, let us estimate the fierencdy;.1 - yjl:

lyjl <

j+L(j+1)8] 1 j+Lis]
Xk — n
1+1[)o] kz:;

j+L(j+1)e]
| X

lYj+1—Yjl = Xk

1+1(j+2)5]
L(j+1)0]-L]o]
~ A+ + Do)+ L))

IXloo(Ljo] + 1) [1X/]oo
T (+De@+Ljel) (J+1)
¥l
C(j+ 1)

1
2 + mmﬂ(nmﬂ

Thusy € di(N). Let us prove (4.6). Iff <k < j+|jd], then

o(J,K) =1In % < Inl].( <In(1+6) <6.
Therefore
j+Ljél
lyj — Xl < 1+ 1j0] Z X = Xj| < wp x(6). O

k=]
Proposition 4.5. d;(N) is a dense subset 8O{N).

Proof. Lete > 0. Using the fact thab, x(6) — 0 asé — 0, choose @ > 0 such thatv, x(6) <
. Definey by (4.5). Thery € di(N) and||x-Vll. < & by Lemma 4.4. |

Theorem 1.3 follows from Proposition 4.5 and Theorem 1.2:
Proposition 4.6.I'; is a dense subset SO®).

Proof. Proposition 4.1 implies thdt; is contained in SQY). Let x € SON) ande > 0.
Applying Proposition 4.5 find a sequenge d;(N) such that

&
—XAlloo < =.
Iy =Xl < 5

Using Theorem 1.2 we find a functi@ne L*([0, 1]) such thatly1a —Yllo < 5. Then
lyra=Xleo < llyza=Ylleo + Iy = Xl < &. m

Lemma 4.7. Let ac L*([0, 1]). Thenyna = 1" (y14).

Proof. Follows directly from the definitions of, 5 andy1 5, see (1.3) and (1.5). |

Proposition 4.8. T, is a dense subset SO®).
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Proof. By Proposition 4.1I", is a subset of SQY).

Let xe SON) ande > 0. Denoterg‘l(x) by y. By Proposition 3.11y € SO{N). Using
Proposition 4.6 find a functioa e L*([0, 1]) such thatly —y1 all- < &. Then apply Lemma
4.7:

IX=vnalleo = IT172Y) =1 (1) leo = T2y = y10)leo < [y = Y18lleo < &. O

We finish this section with an important observation. The results stated up to this mo-
ment do not take into account the multiplicities of the eigenvalues. In this connection we
recall that for each bounded radial operaRyron A%(B") with the eigenvalue sequence
A € {*(N), the equality

R, = /lpe(x
+p-1

holds for all multi-indicesr € N" satisfyingle| = p, and there arg' ", *) such multi-indices.

As was mentioned, for each natural numb#reC*-algebra generated by Toeplitz oper-
ators onA%(B") with bounded radial symbols is isomorphic and isometric ta@thalgebra
of multiplication operator®; on £?(N) whose eigenvalue sequences belong toN§Ognd
thus itsC* structure does not depend nnAt the same time these algebras, winga var-
ied, are quite dferent if we count multiplicities of eigenvalues, that is when the operators
forming the algebra are considered by their action on the basis elements of the correspond-
ing Hilbert spaceA?(B").

Let us consider in more detail sequences of eigenvalues with multiplicities. Formula
for the rising sum of binomial cdicients states that

mZ:‘)(n;r_nIl):(n+E—l)

Now, for everyj € N there exists a uniqupin N such that

(n+ p—l) < <(n+ p)'
n n

Denote thisp by 7n(j), and say that the indejxis located on the-st “level”.
Given a sequence € ¢, defined,(1) as the sequence obtained franby repeating
eacht, according to its multiplicity. That is,

("P1) elements

On()=("d . A, A2 . A ... A ...
e—— Y Y —— ——
(G N ) R oy O (6 (o
times times  times  times ti?ﬁés

Since the isometric homomorphisiy, of £°(N) is injective, theC*-algebra generated by
the set{®n(yna): ae< L*[0,1]} coincides with®,(SOWN)), that is, with theC*-algebra
obtained from SQf) by applying the mappin@;,.

Note that for allp, q with p < g the following estimates hold:

Inqu < In(n+q)—ln(n+p)s nInqu,
p+1 n n p+1



Radial Toeplitz Operators 91

which implies thatP,(SO()) coincides with th&€*-algebra SQ ,n(IN), a subalgebra SO,
which consists of all sequences having the same elements on each “level”:

SOrepn() := {u € SOR): if mn(j) =mn(K). then pj = juc}.

That is, the described above eigenvalue repetitions do not change in essence a slowly oscil-
lating behavior of sequences.

5 Example

In this section we construct lroundedsequencel = (4j)jen such thatl = yn, for a cer-
tain functiona € L1([0,1],rdr) but 1 ¢ SOEN). This implies that the corresponding radial
Toeplitz operator is bounded, but it does not belong toGhalgebra generated by radial
Toeplitz operators with bounded symbols.

Proposition 5.1. Define f: {ze C: R(2) > 0} — C by

f(2) = —exp(— In?(z+ n)) (5.1)

whereln is the principal value of the natural logarithm (with imaginary part (i, 7]).
Then there exists a unique functioreA(R,,e " du) such that f is the Laplace transform
of A:

f(2) = fo - A(u)e?'dz

Proof For everyz € C with R(2) > 0 we can write In£+n) as Inz+ n|+iarg@+ n) with
-7 <arg+n) < 7. Then

1 i . 5
(2= Zen ’exp(g(ln|z+ n+iargE+n)) )‘
_ 2argg+n)
T z+n| eXp( 3 Nzt n|)
_ 1
|Z+ |1+ 2arg(z+n)
Sincejz+n|>1 and—% < __Zafgfm) g’

1f(2l <

|z+n[23°
Therefore for everyx > 0,

f|f(x+ly)| dy<f((x+n)2 V223 f(1+y2)2/3

andf belongs to the Hardy cla$$® on the half-plangze C: R(2) > 0}. By Paley—Wiener
theorem (see, for example, Rudin [4, Theorem 19.2]), there exists a furcadr(0, +o)
such that for allk > 0

f(x) = fo - A(u)e*du.
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The unigueness @ follows from the injective property of the Laplace transform. Applying
Holder’s inequality we easily see thate L1(R,, e du):

| T IAwIe v du< Al ( [ - e-2uo|u)”2 Al i
0 =2 7

Proposition 5.2. The sequence = (4j)jen, Where
Aj = exp(L In?(j + n)), (5.2)
3n

belongs tof®(N) \ SO{N). Moreover there exists a functioneal([0,1],rdr) such that
/l = '}/n7a.

Proof. Since|4;| = 1 for all j € N, the sequencg is bounded. LefA be the function from
Proposition 5.1. Defina: [0,1] — C by

a(r) = A(-2Inr).

Then

1 1 1 1 1 1 +00 i
fola(r)|rdr:§j; |a(\/f)|dt:§f0 |A(—In(t))|dt:§f0 |JA(u)edu< +oo,
and

ya) =0 [ aDrar= e [ Ao
= (] +n)j(;+wA(u)e‘(j+”)“du: (j+n)f(j+n) = 2.
Let us prove thatl ¢ SON). For everyj,k e N we have
) - A = ‘exp(ér (In(j+ 1) - In°(k+ n))) - 1’.

Replacej by the following function ok:

00— ke | K
J(k) = k+Ln1/2(k+n)J.
Then
jto-k_ 1 )
k+n |n1/2(k+n)+ (k+n)
and
In(j(K) +n) = In(k+ n)+|n(1Jr J'E(kl—nk)
1 1 1
=Ink+n) + INV2(k + ) ~ 2Ink+n) +O(|n3/2(k+n))'
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Denote Irf(j(k) +n) —In?(k+n) by Ly and consider the asymptotic behaviolgfask — oo

Lic:= I2(j () + 1) — In?(k+ ) = =1+ 2In2(k-+ ) +0(_In(k_1+ n))'

SinceLy increases slowly for largle for everyK > 0 there exists an integ&r> K such that
Lk + 1 is close enough to an integer multiple af6say to 6nr?:

L+ 1~ 6mr2.

For suchk,

p-ti= g - o))
[4jk) — Akl ’exp(sﬂ(LHl 6mre) |exp 3 1| ~ |exp 3 1 #0.

It means thalljk) — Ak does not converge to 0 &goes to infinity. On the other hand,

j+1 (k+n) R
k+1 7 (k+1)InY2(k+n)

p(j(K),k) =1In
It follows thatA ¢ SON). O
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