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OPTIMAL OPEN LOOP MARKOV DECISION RULES MAY

REQUIRE PARAMETRIC EXCITATION∗

ROGER BROCKETT†

Abstract. We present here a general theory, and give a specific example, showing that there

exist time invariant Markov decision problems, with no time variation in the model which, when

optimized over an infinite interval, have optimal closed loop control laws that are time varying.

Although similar behavior was observed much earlier for specific problems arising in chemical and

aeronautical engineering, this work is not applicable to Markov decision problems because of the

specific form of the constraints involving the action of the semigroup of stochastic matrices on the

standard simplex and the bilinear structure that goes along with rate control for Markov processes.

The results given here are especially interesting insofar as they are analogous to the optimal solutions

of stochastic control problems associated with Carnot cycles. As in some earlier work, the conditions

under which time varying controls are optimal are characterized in terms of the the second variation

about a singular solution. In this case the second variation is expressible in terms of a kernel function

and conditions under which the second variation is positive definite can be checked by determining

if the transform of this kernel is positive real or not.

1. Introduction. A basic problem in Markov Decision theory is that of max-

imizing the expected value of a time averaged reward through the choice of an in-

finitesimal generator A(t) subject to A ∈ A. When the set A is described as

A = {A|A =
(

A0 +
∑

uiBi

)

; u(t) ∈ U ⊂ R
m} ; U convex

the problem my be stated as that of maximizing η where

ṗ =
(

A +
∑

ui(t)Bi

)

p ; η =
1

tf

∫ tf

0

cT p(t) dt ; u(t) ∈ U

General references and background material on Markov processes can be found in [1]

and references [2-3] treat this particular control model. For a fixed value of tf this

problem bears some similarity to the bilinear optimal control problems considered in

John Baillieul’s 1975 thesis [4]. The important difference is that here the matrices A

and Bi are not skew-symmetric, as they were in his work, but rather they are such

that the entries of A+
∑

uiBi are nonnegative off the diagonal and the entries in each

column sum to zero. This implies that if p(0) lies in the so-called standard simplex

consisting of vectors with nonnegative entries whose components sum to one then p

remains in this set for all time. Put another way, in Baillieul’s work the relevant

geometric objects were the unit sphere and the action of the orthogonal group on it

whereas here the corresponding objets are the standard simplex and the action of the

semigroup of stochastic matrices on it.
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We limit our attention to a special case of the situation considered in [1] and

[2]; here there is no cost term associated with the choice of control, although we do

put limits on the values u(t) can take on. In such cases the control can be expected

to consist of bang-bang segments and singular arcs. In the wider subject of optimal

control, singular arcs only exist under rather special circumstances but what we see

here is that the singular arcs associated with constant controls are not so exceptional.

As we will show, looking for constant singular arcs comes down to looking for the

solutions p(u) of (A +
∑

uiBi)p(u) = 0 which maximize cT p(u).

For the infinite time problem with

η = lim
tf→∞

1

tf

∫ tf

0

cT p(t) dt

the optimal control can not be unique; changes in p(·), limited to a finite interval,

have no effect on the infinite time average. If we fix a value of tf >> 1 and consider

the problem of maximizing

η =

∫ tf

0

cT P dt

subject to the periodicity condition condition p(0) = p(tf ), then one might expect that

the optimal solution would be unique and that it would closely approximate a solution

to the infinite time problem. However, there is no reason to expect that there is a

period p which is optimal for the original problem, even though A and B1, B2, ..., Bk

are constant. (See reference [5].) It would be necessary to exclude the possibility that

an optimal control is the sum of periodic terms with incommensurate frequencies, etc.

We will see that it can happen that the optimal control, when expressed in feedback

form, is time varying and we will give a general criterion for this to be the case. In a

wider context there is a fairly large literature on the question of when periodic controls

are, and are not, optimal for time invariant systems [6-8] but we are unaware of any

such work directly applicable to MDP. Earlier work on the randomized controls [9]

and our work on the second law of thermodynamics and the Carnot cycle [10] are,

however, suggestive of what is seen here.

Notation: We use ei, for i = 1, 2, ..., n to denote the standard basis vectors in

R
n and let e denote the vector of all ones, e =

∑

ei. The n− 1-dimensional manifold

with boundary defined by the convex hull of the points {e1, e2, ..., en} will be written

as ∆n−1, or simply ∆ if the dimension is clear. That is, ∆ is just the standard

simplex defined above. If A is a square matrix whose the entries are nonnegative off

the diagonal and whose columns sum to zero we will call it an infinitesimal generator.

An infinitesimal generator is always singular; if its null space is one dimensional we

will say that it is irreducible.

Remark: Notice that the the vector c which enters into the definition of the

performance measure influences the optimal solution only insofar as it differs from a
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multiple of e. Because eT p = 1, regardless of the value of p ∈ ∆, adding a multiple of

e to c only adds a constant to η and does not change the optimal policy. We will say

that c is in reduced form if eT c = 0 and this condition can be assumed without loss

of generality.

2. An Example. We begin with an example chosen to illustrate particular as-

pects of the type of problems we are investigating. Consider the differential equation

and performance measure

ṗ = (A + uB)p ; η = lim
tf→∞

1

tf

∫ tf

0

cT p dt

with A and B given by

A =













−1 0 0 1

1 −1 0 0

0 1 −1 0

0 0 1 −1













; B =













0 1 1 1

0 −1 0 0

0 0 −1 0

0 0 0 −1













and cT = [0, 1, 0 0]. The objective is to maximize η. Clearly A+uB is an infinitesimal

generator of a continuous time Markov process for u(t) ∈ [0,∞) or any subinterval of

[0,∞).

If M is an infinitesimal generator will refer to a probability vector satisfying

Mp̄ = 0

as an invariant distribution for M . A short calculation shows that for the above

choice of A + uB the invariant distribution is a function of u given by

p̄i =
(1 + u)4−i

4 + 6u + 4u2 + u3
; i = 1, 2, 3, 4

For u = 0 we see that p̄ = [1/4, 1/4, 1/4, 1/4]T and for u >> 1, p̄ ≈ [1, 0, 0, 0]T . Thus a

short period over which the integral of u is large will drive p close to the vector e1 and

a lengthy period over which u is near zero causes p to approach [1/4, 1/4, 1/4, 1/4]. l.

In this sense, a large value of u acts as a “reset”, driving all the probability to state

one whereas when u = 0 the distribution relaxes, to the uniform distribution.

The left-hand panel of figure 1 shows the graph of p̄2 as a function of u. An

analysis of the function p2 = (1 + u)2/(4 + 6u + 4u2 + u3) shows that the maximum

value of p2 is about .277 which corresponds to u ≈ .52. The steady state probability

vector corresponding to this choice of u is p∞ ≈ [.421, .277, .182, .120]T .

We will discuss in more detail the application of the maximum principle to this

type of problem in section 5, but for now we observe that because there is no penalty

on u and because u enters the hamiltonian linearly it is reasonable to expect that

the optimal control for this problem is either constant or bang-bang. With this in
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Fig. 1. Left. A plot of the steady state value p̄2 as a function of 1 + u. Right. A plot of p2 as

a function of time for ṗ = Ap and p(0) = e1

mind, we now construct for this example, a time varying control that gives a better

performance than the best constant control. As we noted above, in a limiting sense,

a large value of u will send p to e1. On the other hand, a calculation shows that for

u = 0 and initial condition p(0) = e1 we have

p2 =
1

2
e−t sin t +

1

4
(1 − e−2t)

The integral of p2 from zero to t is

∫ t

0

p2(σ) dσ =
1 + t

4
−

1 − e−2t

8
−

e−t

4
(cos t + sin t)

The right-hand panel of figure one shows the graph of

γ(tf ) =
1

tf

∫ tf

0

p2(t) dt

as a function of tf . It is the contribution to η that accrues if the p(0) = e1 and the

control u = 0 is used on [0, tf ]. The maximum value of γ(tf ) is about .3, corresponding

to tf ≈ 2. Now consider a periodic control policy consisting of an alternation between

two types of segments. On one segment of length 2 we let u = 0. On the other

segment, of very short duration, we let u be very large, effectively driving the state

back to e1. Repeating these steps infinitely often results in a performance which is

about .30. Thus we see that there is a time varying control that gives a larger payoff

than the best constant control.

Although this is not essential for the purpose of showing that a time varying

policy can be preferable to the best constant policy, we point out that the result is

not the consequence of some standard degeneracy. The linearized approximation of

this system, obtained by linearizing about an equilibrium point, (A + u0B)p0 = 0 is

δ̇ = (A + u0B)δ + vBp0

This system is controllable for values of u such that

W (u) = [Bp0, (A + uB)Bp0, (A + uB)2Bp0, (A + uB)3Bp0]
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is of rank three, so that the given vectors span the three dimensional tangent space

of ∆. Expressing p0 as (eeT +(A+uB)T (A+uB))−1e we see that the three-by-three

principle minor is a rational function of u which is nonzero for u = 0 and hence non

zero for all but a finite number of values of u. However, one may observe that the

system is not generic in that typically two four-by-four Markov matrices will generate a

12-dimensional Lie algebra but the pair A, B only generate a five dimensional algebra.

This algebra consists of the linear span of A, B, and (e1 − e2)e
T , (e2 − e3)e

T and

(e3 − e4)e
T . The situation with respect to observability based on observing cT p can

be analyzed similarly with similar results.

By way of contrast, the performance of the three dimensional problem having the

same basic reset-diffuse possibiliies as the problem just considered,

A =







−1 0 1

1 −1 0

0 1 −1






; B =







0 1 1

0 −1 0

0 0 −1







can not be improved using time variation.

3. Optimal Constant Policies. We begin by developing a pair of expressions

for the invariant distribution associated with affine families of irreducible infinitesimal

generators of the form A +
∑

uiBi. Recall our definition, e =
∑

ei. If Ap0 = 0 and

p0 ∈ ∆ then

[

eT

A

]

p0 =

[

1

0

]

Premultiplication by [e AT ] gives (eeT + AT A)p0 = e. Irreducibility implies that

(eeT + AT A) is invertible and so

p0 = (eeT + AT A)−1e

There is an alternative approach that is also useful because it avoids introducing

second degree terms in A. If Ap0 = 0 with p0 ∈ ∆ then we have

[

0 eT

e A

][

0

p0

]

=

[

1

0

]

=⇒

[

0

p0

]

=

[

0 eT

e A

]−1 [

1

0

]

where, again, irreducibility implies that the indicated inverse exists.

One way to define the Moore-Penrose inverse of a matrix A is to define it as the

limit

A+ = lim
ǫ→0

(ǫI + AT A)−1AT

If A is an irreducible infinitesimal generator its range space contains all vectors whose

components sum to zero; the null space of A consists of the multiples of the invariant
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distribution. The null space of AT is consists of the multiples of e. For any B such

that eT B = 0 we have
[

0 eT

e A

]−1 [

0

B

]

=

[

0

A+B

]

Now suppose that we are given k matrices, B1, B2, ..., Bk all of whose columns

sum to zero, and suppose we wish to determine the choice of u that maximizes cT p

for (A +
∑

uiBi)p = 0 ; p ∈ ∆n−1, and u ∈ U . Starting from the expression

η(u) =

[

0 cT
]

[

0 eT

e A +
∑

uiBi

]−1 [

1

0

]

and then differentiating with respect to ui, we have

∂η

∂ui

∣

∣

∣

u=0
=

[

0 −cT
]

[

0 eT

e Ā

]−1 [

0 0

0 Bi

][

0 eT

e Ā

]−1 [

1

0

]

where Ā = A+
∑

uiBi. This allows us to express the first order necessary conditions

for u = 0 to be a stationary point as

∂η

∂ui

∣

∣

∣

u=0
=

[

0 −cT
]

[

0 eT

e Ā

]−1 [

0

Bip0

]

= 0

If A is an irreducible infinitesimal generator then eT A is necessarily zero and

Ax = y can be solved uniquely for x subject to the conditions eT y = 0 and pT
0 x = 0.

The solution obtained under these circumstances coincides with x = A+y. Thus we

can express the derivative more succinctly as

∂η

∂ui

∣

∣

∣

u=0
= cĀ+Bi(ee

T + AT A)−1e = −cĀ+Bip0

Similarly, for the second derivative,

∂2η

∂uiuj

∣

∣

∣

u=0
= c(Ā+BiĀ

+Bj + Ā+BjĀ
+Bi)p0 = qij .

The following elementary result serves to summarize this background material.

Theorem 1. Let U ⊂ R
m be a a closed convex set. Assume that for all u ∈ U

the matrix A+
∑

uiBi is an irreducible infinitesimal generator and suppose that c 6= 0

is in reduced form. Then for each u ∈ U there exists a unique p(u) ∈ ∆n−1 such that

(A +
∑

uiBi) p(u) = 0. If u = ū lies in the interior of U and Ā = A +
∑

ūiBi, then

the two conditions

cT Ā+B(eeT + ĀT Ā)−1e = 0

Q ≤ 0
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are necessary for ū to maximize cT p(u), where

qij = c(Ā+BiĀ
+Bj + Ā+BjĀ

+Bi)(ee
T + ĀT Ā)−1e

Proof. Because U is compact and η(u) is continuous, the existence of a maximum

is obvious. As we have seen, the invariant probability distribution is (eeT +AT A)−1e.

The maximizing value of u might or might not be unique and might or might not lie

on the boundary of U . If it occurs in the interior, the first order necessary conditions

imply that cT A+Bip = 0. The second order terms will not increase η if the Hessian

is negative semidefinite.

There is a significant distinction between problems for which the optimal constant

value of u lies on the boundary of the admissible set U , and those for which u lies

in the interior of U . In section six we give a criterion which allows one to determine

when a constant interior control can be improved by parametric excitation and in

section seven we will compare the optimal closed loop performance with the optimal

open loop performance. In that context we will need to understand the effect of a

rank one perturbation on an invariant distribution.

Assume, initially, there is just one control u and that B is rank one. Consider the

one parameter family of irreducible infinitesimal generators, A + uB and the vector

p(u) ∈ ∆ that satisfies (A + uB)p(u) = 0. Writing B as an outer product, B = ghT

we see that

(eeT + AT A)p + uAT ghT p = e

Thus,

p(u) + uA+ghT p(u) = p(0)

Premultiply both sides by hT and make the definitions α = hT A+g and hT p = β

to get hT p(u) + uαhT p(u) = β. If β = 0 the invariant distribution associated with

A + ugh is independent of u. If β 6= 0 we must have u α 6= −1 and

hT p(u) =
β

1 + uα

Using this expression in the equation for p we get

p(u) = p(0) −
βu

1 + αu
A+g

Finally, if we let γ = cT A+g we have

cT p(u) = cT p(0) −
βγu

1 + αu

From this expression we see that cT p(u) is independent of u if cT A+g = 0 and that if

βγ 6= 0 the maximum is achieved with a u lying on the boundary of U .
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The following theorem extends this analysis to the situation in which there are

several ui with the corresponding Bi of rank one.

Theorem 2. Let U ⊂ R
m be a closed convex set of the form {u|ai ≤ ui ≤

bi ; ai < 0 < bi; i = 1, 2, ..., m} and let B1, B2, ..., Bk be a set of rank one matrices.

Suppose that A +
∑

uiBi is an irreducible infinitesimal generator for all u in U and

that c 6= 0 is in reduced form. Then there is choice of u that maximizes cT p(u) and

lies at a vertex of U .

Proof. As noted above, for each u ∈ U there is a unique p(u) ∈ ∆n−1 satisfying

(A+
∑

uiBi)p = 0. Suppose that û is an optimal value of u. Consider the dependence

of cT p0 on u1. From the analysis just given we see that

cT p(u) = f +
βiγiu1

1 + α1u1

where f, α1, β1, γ1 may depend on any of the inputs u2, u3, ..., uk but not u1. As above,

if β1γ1 = 0 then cT p0 does not depend on u1 and u1 can be placed on the boundary

without changing the value of η or any of the other components of u. (This is where

we use the hypothesis that the boundaries of U are aligned with the coordinate axes.)

Otherwise, β1γ1 6= 0 and there are no local maxima of cT p0 off the boundary of U .

Repeating this argument for each component individually we see that there can be no

local maxima in the interior, unless they are associated with a component of u which

does not affect cT p0.

We note briefly the following result which provides additional insight about the

conditions which lead to optimal solutions off the boundary. The hypothesis is both

weaker (no longer rank one) but also stronger ( the sign condition). It gives more

insight about the kind of conflicting effects that must be present in B if one is to have

an interior optimal solution.

Theorem 3. Suppose that A + uB is an irreducible infinitesimal generator for

a ≤ u ≤ b and that c 6= 0 is in reduced form. Suppose that all the eigenvalues of A+B

are real and that

A+B =

k
∑

i=1

ξiχ
T
i

with k being the rank of A+B. Then if cT A+ξiχ
T
i p(0) have the same sign for all

i = 1, 2, ..., k there is a choice of u that maximizes cT p(u) and lies on the boundary

of U .

Proof. From the developments given above we see that the performance measure

has a partial fraction expansion of the form

cT p(u) = cT p(0) −
∑ βiγiu

1 + αiu

with

αi = χT
i A+ξi ; βi = χT

i p0 ; γi = cT A+ξi
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The hypothesis implies that residues all have the same sign and so the function has

no relative maxima.

4. The Maximum Principle. The previous section can be viewed as a pream-

ble to an investigation of what the maximum principle implies about the optimal

solution to this class of problems. If instead of the optimal control problem defined

in the introduction, we fix a value for T , the maximum principle asserts that there

exists a nonzero pair (q, q0) with q a vector and q0 a nonnegative scalar, satisfying

further conditions related to

h(p, q, , u) = qT (A +
∑

uiBi)p + q0c
T p

These conditions are as follows. In additional to p which satisfy the original equations

of motion

ṗ = Ap +
∑

uiBip

the dual variable q must satisfy the costate equation

q̇ = −
(

A +
∑

uiBi

)T

q + q0c ; q0 ≥ 0

and the optimal ui(t) must maximize the Hamiltonian along optimal trajectories.

If we take U to be closed and convex then, because h is linear in u, we see that

whenever qT Bip is nonzero the control ui takes on a value lying in the boundary of U .

However, if there are solutions to the state-costate equations such that qT Bp vanishes

over some interval then interior values of u may be part of an optimal control. A

solution (p, q, u) defined on an interval over which qT Bip ≡ 0 for some i is called a

singular arc.

We now reexamine the constant solutions described in Theorem 1 to determine

when they are singular arcs. For p to be a constant solution we require A+
∑

uiBi)p =

0 and for q to be a constant solution we require (A +
∑

uiB)T
i q = q0c. However,

because (A +
∑

uiBi)
T e = 0 and, assuming that c is in reduced form, the equation

for (p, q) can be expressed as
[

0 eT

e A +
∑

uiBi

] [

0

p0

]

=

[

1

0

]

and
[

0 eT

e (A +
∑

uiBi)
T

] [

α

q

]

=

[

0

q0c

]

These equations are decoupled and for a given value of u have a unique solution.

Theorem 4. Let Ā = A +
∑

uiBi. Under the assumptions of Theorem one, the

constant functions

p(t) = (eeT + ĀT Ā)−1e ; q(t) = (eeT + ĀT Ā)−1q0Ac
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satisfy the state-costate equations. If tf finite,

cT Ā+B(eeT + AT A)−1e = 0

and u lies in the interior of U then such solutions define a singular arcs.

Proof. Because we are assuming that Ā is irreducible, eeT + ĀT Ā is nonsingular

and Ā(eeT + ĀT Ā)−1e = 0 . To show that the constant solution q(t) = q0(ee
T −

ĀT Â)−1Ac satisfies the costate equation we set q̇ = 0 in the costate equation and

premultiply by (A =
∑

uiBi). Noting that eT c = 0 we get the result claimed. The

solution then satisfies all the conditions of the maximum principle if for i = 1, 2, ..., k

cT AT (eeT + ĀT Ā)−1Bi(ee
T + ĀT Ā)−1e = c(Ā+)T Bip0 = 0

5. The Second Order Analysis. We have seen that a constant control cor-

responding to a value of u in the interior of U necessarily generates a singular arc

if it is a local optimizer in the class of constant controls. By computing the second

variation about this solution we can hope to determine wether or not it is also a local

maximum in the wider class of time varying controls. In section 4 we computed the

second derivative with respect to constant changes in u. Here we carry out the sec-

ond analysis with respect to more general perturbations. As it happens, the results

are more transparent for the infinite time problem and we limit our analysis to that

situation.

For the sake of readability, we first analyze the situation in which u is one di-

mensional. Starting with the equilibrium solution (p0, u0) corresponding to (A +

uB)p0(u) = 0, introduce δ = p − p0(u). After integrating both sides of δ̇ = Aδ +

vBp0(u) + vBδ we get

δ(t) = A

∫ t

0

δ(σ)dσ + Bp0(u)

∫ t

0

v(σ)dσ +

∫ t

0

v(σ)Bδ(σ)dσ

Of course δ is bounded and so

lim
tf→∞

δ(tf ) − δ(0)

tf
= 0

Thus

0 = lim
tf→∞

1

tf

(

A

∫ tf

0

δ(σ)dσ + Bp0(u)

∫ tf

0

v(σ)dσ +

∫ tf

0

v(σ)Bδ(σ)dσ

)

dt

Using an over-bar to denote time averages this can be written as

0 = Aδ̄ + Bp0(u)v̄ + lim
T→∞

1

tf

∫ tf

0

v(σ)Bδ(σ)dσdt

Because δ is first order in v the last term is second order in v. Thus, to first order

in v we have cT δ̄ = cT A+Bp0(u)v̄ and, from the first order necessary conditions, this

term vanishes.
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Assuming that η is stationary with respect to first order changes, we can drop

the terms that are linear in v and restrict our attention to

δ(t) = A

∫ t

0

δ(σ)dσ +

∫ t

0

v(σ)Bδ(σ)dσ

Replacing δ in the nonlinear term by its first order approximation gives

δ(t) = A

∫ t

0

δ(σ)dσ +

∫ t

0

v(σ)B

∫ σ

0

eA(σ−τ)Bp0v(τ) dτ dσ + ǫ(t)

where ǫ is order three or higher.

As is easily seen, If ū is the average value of u then the average value of the

solution of an asymptotically stable linear system ẋ = Ax + bu is given by x̄ = A−1ū.

Slightly modifying this to fit our present circumstances, we note that if A has a simple

eigenvalue at 0 with all other eigenvalues having negative real parts and if b lies in

the range space of A, then we have x̄ = −A+bū. In terms of the definition

r(t) =

∫ t

0

v(σ)B

∫ σ

0

eA(σ−τ)Bp0v(τ) dτ dσ

we have

cT δ̄ = cT A+r̄

provided that the indicated average exists. This places in evidence the role of the

kernel function

w(σ, ν) = cT A+BeA(σ−ν)Bp0

Quadratic functionals of this form play an important role in various areas of math-

ematics and certainly in system theory. Its definiteness properties are conveniently

characterized in terms of its Laplace transform and well known tests for the positive

realness. In concrete terms, if the Laplace transform of w(t, 0) is φ(s) and if at some

frequency ω we have Re φ(iω) > 0 then by letting v(t) = ǫ sinωt with |ǫ| small we

will improve on cT p0. On the other hand, u0 is maximizing if this function is negative

definite. If it is nonzero and neither negative definite nor negative semidefinite then

u0 is not maximizing.

With a little additional effort we can generalize this to the multiple input situa-

tion.

Theorem 5. Let A, Bi, U and c be as in Theorem 1, and consider the optimiza-

tion problem defined there. Suppose ū ∈ U is constant and that for Ā = A +
∑

ūiBi

we have cT Ā+Bp(ū) = 0. Consider the matrix W whose ijth entry is

wij(t) = −cT
(

Bie
ĀtBj + Bje

ĀtBi

)

p0
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If ū belongs to the interior of U then ū is optimal in the class of time varying open

loop controls if the matrix W (t−σ) is positive definite in the sense that aT Wa defines

a positive definite functional for all constant vectors a. It is not optimal if for some

choice of a the kernel aT Wa is neither positive definite nor positive semidefinite.

Proof. The multivariable version of the second order change in η that results from

changing u0 to u0 + v depends on

rij(t) =

∫ t

0

vi(σ)B

∫ σ

0

eA(σ−τ)Bp0vj(τ) dτ dσ

As above, this leads to

cT δ̄ = cT A+r̄ij

Define the matrix

wij(t − σ) = cT A+Bie
A(t−σ)Bjp0

where p0 is the invariant distribution corresponding to u0. We can then express the

effect of a change in input as

δη = lim
tf→∞

1

tf

∫ tf

0

∫ t

0

∑

i,j

vi(t)wij(t − σ)vj(σ) dσ dt

If all of these are negative definite then u0 indeed represents a local maximum. If any

fail to be at least negative semidefinite then the solution u0 can not be optimal.

6. Optimal Closed Loop Solutions. In our papers [2-3] we have described the

the optimal closed loop control for the class of Markov decision problems treated here,

with a more general class of performance measures. It is of interest to compare the

open loop control, which makes no use of any observation of the state, and the closed

loop control with perfect observation found there. Suppose that the states are labeled

x1, x2, ..., xn and that pi(t) is the probability that the system is in state i at time t.

Recall the special role played by rank one matrices in Theorem 2. If each of the Bi

is of the form Bi = gie
T
j then there is no difference between the performance of open

loop and closed loop control provided that U is of the form U = {u|ai ≤ ui ≤ bi}. In

this situation the value of ui does not influence the transition rates except when the

system is in state xj . Because the control only influences the evolution of the state

when it is in one particular state it can be considered to be an open loop control or a

closed loop control and Theorem 2 makes it clear that the optimal control will lie on

the boundary.

7. Diffusion Processes. We have focused our attention here on finite state

Markov processes but the basic ideas are also applicable to a class of stochastic control

problems involving diffusion processes. In principle, for these problems the operators
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are infinite dimensional but there are important classes of problems for which the

analysis can be reduced to a finite dimensional situation. In order to convey a flavor

of how this happens we give an example involving a diffusion process in R
2.

Consider the Itô equation with a multiplicative control

[

dx

dy

]

=

([

−1 0

0 −1

]

+ u

[

1 1

−1 −1

])[

x

y

]

dt +

[

dw

0

]

In this case the probability density satisfies the u-dependent Fokker-Plank equation

∂ρ(t, x, y)

∂t
=

∂(x − ux − uy)ρ(t, x, y)

∂x
+

∂(y + uy + ux)ρ(t, x, y)

∂y
−

1

2

∂2ρ(t, x)

∂x2

Suppose we wish to minimize the average value, of the variance over [0,∞),

η = lim
tf→∞

1

tf

∫ tf

0

∫ ∞

−∞

x2ρ(t, x)dx

subject to the constraint |u(t)| ≤ 2

If u is identically zero then ρ approaches a zero mean Gaussian with variance 1/2.

On the other hand, if u = −1 the steady state variance is 1/4 and this is the smallest

value of σ11 that can be obtained using a constant control. The obvious question is

then, can we do better using a time varying control?

It is convenient to work directly with the given stochastic equation rather than

the equation for the density. For the linear stochastic equation

dx = (A + uB)xdt + Rdw ; η = lim
tf→∞

1

tf

∫ tf

0

cT Σ(σ)c dσ

we have

Σ̇ = (A + uB)Σ + Σ(A + uB)T + RRT

If we wish to minimize the average value of some linear functional of the variance then

here again, the control enters the hamiltonian linearly and the situation is much the

same as we had above.

Continuing with the example, the variance equation can be written as

d

dt







σ11

2σ12

σ22






=







−2 + 2u u 0

−2u −2 2u

0 −u −2 − 2u













σ11

2σ12

σ22






+







1

0

0







From this we see that in steady state we have

1

4







2 + 2u + u2 2u + 2u2 u2

−2u − 2u2 4 − 4u2 −2 + 2u2

u2 −2u + 2u2 2 − u + u2













1

0

0






=







σ11

σ12

σ22






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Thus

σ11 = (2 + 2u + u2)/4

which, as we claimed above, takes on a minimum value of 1/4 when u = −1. At

u = −1 we have

d

dt







σ11

2σ12

σ22






=







−4 + 2v −1 + v 0

2 − 2v −2 −2 + 2v

0 1 − v −2v













σ11

σ12

2σ22






+







1

0

0







and σ11 = 1 ; 2σ12 = 0 ; σ22 = 1. In terms of the definitions

Ā =







−4 −1 0

2 −2 −2

0 1 0






; B =







2 1 0

−2 0 2

0 0 − 1 −2







the kernel function defining the second variation is

w(t − σ) = eT
1 BeĀ(t−σ)B(e1 + e2)
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