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A GEOMETRIC FRAMEWORK FOR STABILIZATION BY ENERGY
SHAPING: SUFFICIENT CONDITIONS FOR EXISTENCE OF
SOLUTIONS*

BAHMAN GHARESIFARD, ANDREW D. LEWIS!, AND ABDOL-REZA MANSOURI$

Abstract. We present a geometric formulation for the energy shaping problem. The central
objective is the initiation of a more systematic exploration of energy shaping with the aim of de-
termining whether a given system can be stabilized using energy shaping feedback. We investigate
the partial differential equations for the kinetic energy shaping problem using the formal theory of
partial differential equations. The main contribution is sufficient conditions for integrability of these
partial differential equations. We couple these results with the integrability results for potential
energy shaping [25]. This gives some new avenues for answering key questions in energy shaping that

have not been addressed to this point.

1. Introduction. In Brockett’s 1977 paper [9] it was observed that there were
structural aspects of mechanical systems that made them attractive as a class of
control problems. In this paper he mentioned differential geometry as the common
mathematical structure between control theory and analytical mechanics. He inves-
tigated the Lagrangian and Hamiltonian formulations for mechanical systems and
considered the interplay of the mechanical and control theoretic structures.

One interesting control problem is the following: given a mechanical system with
an unstable equilibrium at a point qg, stabilize the system using feedback. One of the
recent developments in the stabilization of equilibria is the energy shaping method.
The key idea concerns the construction of a feedback for which the closed-loop system
possesses the structure of a mechanical system. A feedback so obtained is called an
energy shaping feedback and the procedure by which it is obtained is called energy
shaping. In the classical notion of energy shaping, the assumed method consists
of two stages: shaping the kinetic energy of the system—so-called kinetic energy
shaping—and changing the potential energy of the system—so-called potential energy
shaping. If such an energy shaping feedback exists, then for stability one has to ensure
that the Hessian of the closed-loop potential energy is positive definite.

The cart-pendulum, as a mechanical system with one degree of underactuation,
is one of the systems that has been stabilized using the energy shaping method [14,
26]. The system has the upright equilibria as saddle points and potential energy
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shaping alone is not enough to stabilize the system; therefore kinetic energy shaping
is necessary. More complicated mechanical systems with more degrees of freedom like
the spherical pendulum have been stabilized using the energy shaping method [8]. Tt
is worth mentioning that the spherical pendulum has been mentioned as an example
of a mechanical control system in Brockett’s 1977 paper [9].

To the authors’ knowledge there has been no linearly controllable example (note
that linear controllability is a necessary condition for stabilization by energy shaping)
in the literature that could be proved to be not stabilizable by the energy shaping
method. For linear systems, linear controllability is also a sufficient condition for ex-
istence of a stabilizing feedback [40, 29]. Such sharp conditions for nonlinear systems
do not exist in the literature. Thus the question of which mechanical systems are
stabilizable using energy shaping is still unresolved. Moreover, almost all the exist-
ing results on energy shaping are based on a specific parametrization of the assumed
solutions to the energy shaping problem. While the parameterizations used are suffi-
cient for the particular problems, it is not clear whether (1) a better controller would
result if a richer class of feedbacks were available or (2) there are systems that are
not presently amenable to stabilization by energy shaping using existing parameteri-
zations, but which could be stabilized using energy shaping were the complete set of
energy shaping feedbacks known.

In this paper we give a geometric framework for kinetic energy shaping that should
help to answer some of the key questions about stabilization of mechanical systems us-
ing energy shaping. Recently there have been notable attempts to investigate various
features of the energy shaping problem. The first classical appearance of the notion
of potential energy shaping problem is in [35]. Van der Schaft had a significant geo-
metric contribution to the problem from the Hamiltonian point of view [37]. It turns
out that this method has an extension in the Lagrangian setting called the method
of controlled Lagrangians; this has been investigated by Bloch, Leonard, Marsden,
Chang, [8, 7]. In recent work, Chang, Woolsey and others have realized that the
space of possible kinetic energy feedbacks can be enlarged by considering the addition
of appropriate gyroscopic forcing [13, 39]. In the Hamiltonian framework, the idea
of kinetic energy shaping has been related in [15] to the notion of interconnection
and modified into the of IDA-PBC method [26]. The equivalence of the Controlled
Lagrangian method and the IDA-PBC method has been addressed in [14, 6]. Both
methods result in a set of partial differential equations whose solutions determine the
energy shaping feedbacks. In other recent work, the possibility of finding a coordinate
change for simplifying the kinetic energy shaping partial differential equations in the
IDA-PBC method has been investigated [38]. Lewis in [24] reformulated the kinetic
energy shaping problem as the problem of finding an energy preserving connection
with its associated closed-loop metric.

A differential geometric approach to the kinetic energy shaping problem—the so-



A GEOMETRIC FRAMEWORK FOR STABILIZATION BY ENERGY SHAPING 355

called A-method

—has been presented in [5]. In this paper the authors propose a system of linear
partial differential equations for the kinetic energy shaping problem in terms of a new
variable, A = G&GZI, where G, and G are the open-loop and closed-loop metrics,
respectively. The main idea of the A-method is that it transforms the set of quasi-
linear equations for kinetic energy shaping into a set of overdetermined linear partial
differential equations [3]. In [4] an equivalent system of linear partial differential equa-
tions is given for the assumed procedure of kinetic energy shaping problem. Moreover,
the authors investigate the compatibility conditions for the set of A-equation in local
coordinates. However, the analysis of the compatibility conditions is not complete,
and many structural questions remain unanswered, even after one accounts for the
results in [3, 4]. The A-method has been modified by adding the possibility of using
gyroscopic forces for enlarging the space of solutions [13].

Lewis [24] has introduced an affine differential geometric approach to energy shap-
ing in order to have a better geometric understanding of the problem and to state
some of the questions that had not been addressed before. The main idea of the ap-
proach involves first understanding the existence of such an energy shaping feedback
and then what such a feedback might look like. In recent work, sufficient conditions
for the existence of potential energy shaping are derived assuming that kinetic energy
shaping has taken place [25]. The results are based on the integrability theory for
linear partial differential equations developed by Goldschmidt [18] and Spencer [34].
Although the results offer some insight, they are limited by the fact that kinetic energy
shaping has been assumed to precede potential energy shaping.

In the present work, we use the affine differential geometric approach for modeling
mechanical systems. We consider the class of simple mechanical control systems.
The central objective of this paper is the initiation of a more systematic geometric
exploration of energy shaping with the aim of determining whether a given system
can be stabilized using energy shaping feedback. Most of the previous results have
dealt with a particular solution and neither the role of closed-loop stability nor a
complete exploration of the space of solutions has been discussed with any degree of
generality. We use the geometric theory of partial differential equations originated by
Goldschmidt and Spencer in the late 1960’s using jet bundle structure [31, 18, 34].
We describe the energy shaping partial differential equations as a fibered submanifold
of the k-jet bundle (in our case, k = 1) of a fibered manifold. By revealing the
geometric structure of kinetic energy shaping, we observe similarities of the problem
of kinetic energy shaping with some well-known problems in Riemannian geometry;
in particular, the problem of finding a metric connection, initiated by Eisenhart and
Veblen [16].

We also discuss the integrability of the A-equation from a geometric point of

view [18, 19], and we address some interesting geometric features of the integrability
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conditions in the A\-method. In particular, we notice that the necessary conditions
for the set of A-equations restricted to the underactuated distribution are related to
the Ricci identity [12, 23], an identity which also features prominently in the work
of Eisenhart and Veblen [16] on the metric connection problem. The similarities of
the kinetic energy shaping problem and the metric connection problem, we reveal the

geometric structure of the compatibility conditions.

We also couple the set of A-equations for kinetic energy shaping with the inte-
grability results of potential energy shaping [25]. This allows us to address some key
questions in energy shaping that have not been addressed to this point. For example,
the procedure shows how a poor design of closed-loop metric can make it impossible to
achieve any flexibility in the character of the possible closed-loop potential functions.
Finally, we discuss systems with one degree of underactuation and we show that for
this class of systems there is always a solution to the potential energy shaping problem

for each closed-loop energy shaping metric.

This paper is organized as follows. In Section 2 we review the affine geometric
setup for the energy shaping problem [24], and we state some of the fundamental open
problems in energy shaping. In Section 3 we give a brief review of the mathematical
structures we use in this paper. In particular, Section 3.1 gives an introduction to the
geometric methods for analyzing formal integrability of partial differential equations
[18], [19]. The main character of the theorems in this section is extremely algebraic
and may seem unmotivated to a reader unfamiliar with the formal theory of partial
differential equations. A reader new to these techniques is advised that some effort
will be required to become comfortable with them. In Section 3.2 we motivate the
definition of a connection as a section of a jet bundle [30] in order to give a precise
definition for the space of torsion free connections on a manifold. We give a geomet-
ric formulation for the partial differential equations of the kinetic energy shaping in
Section 4, and we recall the existing results for potential energy shaping [25]. In this
paper we use the geometric formulation of the kinetic energy shaping problem using
the A-method [5], [13]. We review and reprove the main results of the A-method in
Section 4.2. Section 5 contains the main contribution of the paper. We prove that the
set of A-equations has an involutive symbol and is formally integrable under a certain
surjectivity condition. In other words, we give sufficient conditions for the existence
of a formal solution to the A-equations. Section 7 deals with the potential energy
shaping problem. We analyze the set of conditions in [25] to characterize the set of
acceptable closed-loop metrics. Finally, in Section 8 we give a set of sufficient condi-
tions for total energy shaping and, as an example, we specialize our results to systems
with one degree of underactuation. In particular we show that in this case, for any
closed-loop metric that satisfies the kinetic energy shaping conditions a closed-loop

potential energy shaping is achievable.
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Notation. The basic differential geometric notations that we use in this paper are
those of [1] and [11]. The identity map for a set S is denoted by ids and the image
of amap f: S — W by Im(f). For a vector space V the set of (r, s)-tensors on V
is denoted by T%(V). By SiV and AiV we denote, respectively, the set of symmet-
ric and skew-symmetric (0, k)-tensors on V. We shall also require symmetrizing and

skew-symmetrizing maps. Thus, for A € T?(V), we define the following projection

maps:
1 sgn(o
Alt(A)(vla e ,’Uk) = E Z (_1) en( )A(va(l)v e ava(k));
’ geG
1
Sym(A)(vla e ,’Uk) = E Z A(vo'(l)v e ava(k))v

T oeSy

where &y, is the permutation group on k symbols and sgn(o) is the parity of the
permutation o. Let A be a (0,2)-tensor on V. We define the flat map A® : V — V* by
(A°(u);v) = A(u,v), u,v € V. The inverse of the flat map is denoted by Af : V* — V

in case A’ is invertible. We also define a similar notation for a (0, 3)-tensor A on V by
(A" (u), w) = A(w, u, u), u,w € V.
For S CV and W C V* we denote

ann(S) = {a e V* | a(v) =0, Yv € S},
coann(W) = {v € V* | a(v) =0, Ya € W}.

For the purpose of using a version of the Cartan—Kahler theorem, all manifolds
and maps will be assumed to be analytic unless otherwise stated. Many of the theo-
rems and lemmas are still true in the smooth case. Let Q be an analytic manifold, if
7w : E — Q is an analytic vector bundle, I'Y(E) denotes the set of analytic sections of
E. We denote the tangent bundle of Q by mq : TQ — Q. The set of analytic functions
on Q is denoted by C*(Q). The exterior derivative of a k-form « on Q is denoted
by da. For a (0, k)-tensor field A and a Riemannian metric G on Q, we define the
(1, k — 1)-tensor field G*A by

(1) G*'A(e, X1, , Xi—1) = A(GH(a), X1, -+, Xp—1),

where a € T“(T*Q) , Xy,---, X € I'“(TQ). Finally, we give a decomposition of the
(0, 3)-tensor fields. We call a (0, 3)-tensor field A on Q:
a) gyroscopic if A(X1, Xo, X3) = —A(X2, X1, X3), VX1, X5, X3 €T¥(TQ);
b) torsional if A(X7, Xo, X3) = —A(X1, X3, X2), VX1, X9, X5 €T¥(TQ);
c) geodesic if A(X;, Xo, X3) = A(X1, X3, Xs), VX1, Xo, X3 €T¥(TQ);
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d) skew if A € T¥(A3(TQ)).
We denote the set of gyroscopic and torsional tensor fields on Q, respectively, by
Gyr(TQ) and Tor(TQ). We can record the decomposition of T(TQ) as follows [24],
[17]:

TY(TQ) = S3(TQ) @ (Gyr(TQ) Nker Alt) @ (Tor(TQ) Nker Alt) & A3(TQ).

2. Statement of the problem. A forced simple mechanical system is a quadru-
ple ¥ = (Q,G,V, F.) where Q is an n-dimensional manifold called the configuration
manifold, G is a Riemannian metric on Q, V' is a function on the configuration man-
ifold called the potential function and F, : TQ — T*Q is a bundle map over idq
called the external force. We denote by V® the covariant derivative with respect to
the associated Levi-Civita connection. The governing equations for a forced simple

mechanical system are
VS Y (t) = =Gt o dV (y(t)) + G Fe(+/(1)),

where v : I — Q is an analytic curve on Q.

Similarly, a simple mechanical control system is a quintuple ¥ = (Q, G, V, Fo, W)
where Q is an n-dimensional manifold called the configuration manifold, G is a Rie-
mannian metric on Q, V' is a function on the configuration manifold called the potential
function, Fo : TQ — T*Q is a bundle map over idq called the ezternal force and W
is a subbundle of T*Q called the control subbundle [11]. The governing equations for

a simple mechanical control system are
V5 () = =GFodV (1(1) + G*Fe(+' (1) + Grul(y' (1)),

where v : I — Q is a curve on Q and u : TQ — W is the control force. A class of
external forces in which we are interested is gyroscopic forces.

DEFINITION 2.1. Let ¥ = (Q, G, V, F,) be a forced simple mechanical system. We
call an external force Fg : TQ — T*Q a gyroscopic force if, for all X € T¥(TQ),

(X, Fa(X)) =0.
A linear gyroscopic force is a gyroscopic force with the following form:
Fou(X) = -Bg,(X), X eT*(T,Q)

where B ;1 is a skew-symmetric (0, 2)-tensor. A quadratic gyroscopic force is a gyro-

scopic force Fg o with the following form:
Foa(X) =Bgo(X), X eI(T,Q),

where Bg 2 is a (0, 3)-tensor which is skew-symmetric in the first two arguments, i.e.,
Bgo(X, Y. Z) = -Bg2Y, X, 2), X,Y,Z € I“(T,Q). By definition of the flat map, a
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quadratic gyroscopic force is defined by
(Feo(X); Z) =Ba2(Z, X, X), X, Z eT¥(TyQ).

Given an open-loop simple mechanical control system Yo = (Q, Go1, Vor, Fol, Wal),
we seek a control force such that the closed-loop system is a forced simple mechanical
system 3¢ = (Q,Gey, Vo, Fa), possibly with some external force. The reason for
seeking this as the closed-loop system is that the stability analysis of the equilibria for
mechanical systems is well understood [11, Chapter 6]. The class of gyroscopic forces
does not change the total energy of the closed-loop system, while adding gyroscopic
forces increases the possibility of finding a stable closed-loop system [13]. In this
paper we assume that the open-loop external force F, is zero. Moreover, it turns out
that only the quadratic gyroscopic forces are useful in extending the space of possible
closed-loop metrics [24]. The objective, therefore, can be phrased with the following
definition.

DEFINITION 2.2. Let Xo1 = (Q, Go1, Vor, Fol, Wo1) be an open-loop simple mechan-
ical control system with Fo1 = 0. If there exists a bundle map ushp : TQ — Wor (called
control) with ushp = —Ukin — Upot Such that the closed-loop system is a forced simple
mechanical system 3o = (Q, Gel, Ve, Fa1), where Fe is a quadratic gyroscopic force
with associated (0,3)-tensor B and

1. Gh o wn(Y/(1) = Vv (1) = VI, 7/ (1) — Gy o (B (7 (1)),
2. upor (1(1)) = Gy 0 GEdVaa(y(1)) — Vi (1(1)),
then the control usnp is called an energy shaping feedback.

REMARK 2.3. Throughout this work, we assume that the equilibrium point gy € Q
is a reqular point for Wy1. Moreover, we assume that the control codistribution Wy
is integrable. This assumption is common in the literature and many examples fall
into this case.

The conditions of Definition 2.2 contain as unknowns the closed-loop metric G,
the closed-loop potential energy V;; and the gyroscopic (0, 3)-tensor field B. One can
observe that these equations involve the first jet of the unknowns. One can construct
concretely a set of first-order partial differential equations as necessary and sufficient
conditions for the existence of an energy shaping feedback. Let W C T*Q be a given
subbundle and define the associated G-orthogonal projection map P € I'“(T*Q®TQ)
by

Ker(P) = G, W

Note that P completely prescribes W. We apply P to the equation from part 1

of Definition 2.2 to arrive at the following equation:

P(st(lt)’}/(t) - VS/O(lt)”YI(t) - Gg] o ]Bb (Fyl(t))) = O
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Assume Q is an n-dimensional manifold and WV is an integrable codistribution of
dimension n — m. In adapted local coordinates the kinetic energy shaping partial

differential equation is given by
PHGH(Gerjn + Gel kg — Gelijt) — G (Go ik + Go ik, — Golkjt) — GiiBug) = 0,

where 4,5, k,l,r € {1,--- ,n}, a € {1,---,m} and we denote the first derivative of
Geyyj with respect to q" by Gel - Similarly, let P:T*Q — T*Q/W,1 be the canonical

projection on to the quotient vector bundle. We have
P(GY) 0 GhdVa(v(1)) — dVa(y(t))) = 0.
In local coordinates we have
Pi(Got,ijGer’ Ve k = Vo) =0,

where 4,5,k € {1,--- ,n}, a € {1,--- ,m} and we denoted the first derivative of V¢,
with respect to ¢* by Vel - For more details on the affine differential geometric setup
of energy shaping problem see [24].

Now that the energy shaping partial differential equations have been specified,

we provide a summary of some of the fundamental questions one can now ask.

Some problems in energy shaping

P1. Describe the set of achievable closed-loop metrics. There has not been much
treatment on this problem in the literature apart from giving a geometric
description of the problem [5].

P2. Assume that one has found a closed-loop metric which satisfies the kinetic
energy shaping problem. What are the conditions under which there exists
a closed-loop potential function which satisfies the potential energy shaping
problem?

P3. Describe the set of achievable closed-loop potential functions by allowing the
closed-loop metric to vary over the achievable set.

P4. Give a complete description of the set of stabilizing potential energy shaping
functions. In order to have a stabilizing energy shaping feedback, the Hes-
sian of the closed-loop potential functions should be positive definite. The
type of obstruction this condition puts on the set of achieved energy shaping
feedbacks has not yet been characterized in a geometric fashion.

P5. Describe the effect of including gyroscopic forces in the procedure of energy
shaping. An algebraic presentation of this problem has been given in [24].
Although one can extend our results in the current paper to the case with
gyroscopic forces, many geometric and algebraic constructions need to be
performed to clarify how the results should be interpreted in terms of stabi-

lization.
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P6.

P7.

Reconstruct some of the existing results using the sufficient conditions pre-
sented in the current paper; namely, answer the following questions using the
results of this paper:

(a) why is it always the case that one can construct an explicit solution to
the set of partial differential equations for systems with one degree of
underactuation?

(b) why is linear controllability a sufficient condition for existence of a sta-
bilizing energy shaping feedback in linear systems?

Find some interesting counterexamples. It would be revealing to have an
example for which there exists no stabilizing energy shaping feedback, even
under the absence of gyroscopic forces. This might help to understand the key
primary question in energy shaping: when is it possible to stabilize a system

by the energy shaping method?

Answers in this paper

Al.

A2.

A3.

AG6.

In Section 5 we partially answer Problem 1. Assuming that W, is integrable,
we describe a set of sufficient conditions under which one can construct a for-
mal solution to the set of kinetic energy shaping problem in the analytic case
and in the absence of gyroscopic forces. Moreover, we show that any analytic
solution to the kinetic energy shaping problem satisfies those conditions. (See
Theorems 5.6 and 6.6.)

Lewis [25] presented a set of sufficient condition for Problem 2 using a geo-
metric analysis of the potential energy shaping partial differential equations.
In Section 7 we couple this sufficient condition with the kinetic energy shap-
ing results. In other words, we give conditions on the closed-loop metric
so that there exists a solution to the set of potential energy shaping partial
differential equations. (See Theorem 7.8.)

Problem 3 is wide open and even a clear geometric formulation of this problem
is far from being achieved. In this paper, we start down one possible avenue by
placing the problem in the setting of geometric partial differential equations
[18], [19]. In particular, we give a set of conditions on the set of closed-
loop metrics under which there exists a closed-loop potential function that
satisfies the set of potential energy shaping partial differential equations. (See
Theorem 7.8.)

Problem 6(a) has been discussed in [4] and [2]. But the results do not re-
veal how the geometric obstructions given by the kinetic and potential energy
shaping conditions are satisfied. In Example 7.9 we give a result which essen-
tially solves the problem. The second question has been posed and solved in
[40]. It would be interesting to recover the sufficient conditions solely by look-
ing at the integrability conditions for the energy shaping partial differential

equations.
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3. Preliminaries. We review some basic background for modeling the system
of partial differential equations in the energy shaping problem. This section consists
of three main parts. The first part deals with the geometric modeling of partial
differential equations and the second part gives a useful definition of a connection on
a vector bundle which characterizes the structure of the set of all connections. Finally,
we present the so-called Ricci identity [12] which plays a significant role in answering

some questions about the kinetic energy shaping problem.

3.1. Formal integrability of partial differential equations. In this sec-
tion, we describe the main technique that we use for studying the energy shaping
partial differential equations. The discussion centers around an analogue for the
Cauchy—Kowalevski theorem [10] and formal integrability. We follow the contribu-
tions made by Goldschmidt and Spencer in the late 1960’s [18, 19, 34].

Although understanding the proofs of the main theorems depends on the tech-
niques described in this section, we emphasize that the statement of the main results
of the paper are accessible without understanding formal methods in detail. The main
results in the paper involve applications of the important Theorem 3.20 stated below.
However, the verification of the hypothesis of this theorem typically takes some effort.

In this section we describe the tools used to verify the hypothesis of Theorem 3.20.

3.1.1. Representation of a partial differential equation as a fibered sub-
manifold of a jet bundle. We denote by (E, 7, Q) a fibered manifold 7 : E — Q. The
vertical bundle of a fibered manifold 7 is the subbundle of T# given by V& = ker(T).
We denote by Jim the bundle of k-jets [31]. If (£, U) is an analytic local section of T,
we denote its k-jet by jr&. We denote an element of Jym by jp&(x). If we represent
the sheaf of germs of sections of 7 by .#q(w), then ji induces a morphism of sheaves
Sa(m) = SqUkm). We let mp, : Jpym — Q and 7f : Jpm — i, | < k, be the canoni-
cal projections. One can show that 7 and 7le are surjective submersions; moreover,
7le : Jym — Jym is an epimorphism of fibered manifolds and (Jg, 7le= Jim) is a bundle.
The following definition establishes the relationship between jet bundles and systems
of partial differential equations.

DEFINITION 3.1. Let (E,7,Q) be a fibered manifold and let Jpm be its bundle of
k-jets. A partial differential equation is a fibered submanifold Ry, C Jym.

We denote by 7y, the restriction of m; to Rx. As one can see, the “equation”
representation of the partial differential equation is obscure here. The following local
characterization of a partial differential equation as a kernel of a fibered manifold
morphism is helpful in clarifying the equation point of view.

PROPOSITION 3.2. Let (E, 7, Q) be a fibered manifold. Given a partial differential
equations Ry C Jpm and a point p € Q, there exists neighborhood U of p, a fibered

manifold (E', 7', U), an analytic section n of 7, and a morphism of fibered manifolds
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@7, (U) — E such that
7rk_1(U) N Ry = ker,, ® = {uy, € wlzl(uk) | ®(ur) = n(mg(uk))}

Proof. Because Ry, is a fibered submanifold, there exists an adapted chart (U, ¢r)
for Jpm with the induced chart (U, ¢) on Q such that

orUx) C HU) X VX W CR* x R™ x R™  n,m,m’ € Zs,
and such that
. H(U) NRy = {(z,v,0) | z € p(U) , v V}.

Take E' = U x V and 7'(z,v) = . Taking ®(u) = (x,v) and n(z) = (z,0), the result
follows. O

A morphism @ : Jym — 7 of fibered manifolds induces a differential operator D
of order k which is a sheaf morphism of the form ® o j; : SQ(E) — SQ(E).

3.1.2. Prolongations and symbols.

Prolongation. The process of differentiating a partial differential equation in
order to arrive at a higher order partial differential equation is called prolongation.
One can phrase this statement as the following definition.

DEFINITION 3.3. Let (E, 7, Q) be a fibered manifold and let Ry, C Jim be a partial

differential equation. The r*"-prolongation of Ry is the subset
Pr(Rk) = J,m N JkJrTTr.

A partial differential equation Ry is regular if p,(Ry) is a fibered submanifold of
Ji4rm for each 7 € Zsg. One can represent the r"-prolongation of a partial differential
equations using the associated morphism. The r*"-prolongation of ® is defined to be
the unique morphism of fibered manifolds over Q, p,.(®) : J, 417 — J.7’, that makes

the following diagram commutes:

Salrrm) 20 So(d)

jk+7‘T er

FQ(E) — 2 H(E)

It is fairly clear that that for v, € Z>¢ and r > | we have w’gif(pr(Rk)) C
pi(R). We adopt the notation ﬁ],:jr'lr : pr(Re) — pi(Rg) and #igqr @ pr(Rg) — Q as
the canonical projections. There is no guarantee that the first map is a surjective
submersion; surjectivity of this map leads to the concept of formal integrability which
will be discussed later. The following remark is advantageous for later purposes; for
details of the proof we refer to [20], [19].
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REMARK 3.4. Let 7 be a fibered manifold as before and let Ry, C Jpm be a partial
differential equation. If p,(Rg) is a fibered submanifold of Jgirm, then pi(p-(Ry)) =
pi+r(Ri). Since one can define p.(Ry) as the kernel of a morphism of fibered mani-

folds, this follows immediately from studying the following exact commutative diagram:

0

| ]

0 — pryi(Rp) —— Jk+r+l7T —> Jiprn’

l p1(pr <I>)) J/

0 —— pi(pr(Ry)) —— Jkrum ———J

|

0

Whenever Ry, is regular, for sake of convenience, we use Ry, for the r*-prolongation.
Symbols. The highest order terms in the linearization of a partial differential
equation carry valuable information about formal integrability of the partial differen-
tial equation [18]. Similar to our approach for defining a partial differential equation,
we give two equivalent formal definitions to capture these higher order terms, one as
a vector bundle morphism and one as a family of subspaces.
Given pg_1 € Jg_1m, recall that (w,’j_l)_l(pk_l) has the structure of an affine
space modeled on SkT* (e 1)Q®Vﬂ,(l)c—l(pkil)ﬂ'. For each p;, € Jim we have V, 771]3—1
= SkTWk 1(Pr—1

(mE)y*Vr = Vrk . The identification of these bundles is made implicitly in most of

)Q @V_ E1 ()T 38 well as a vector bundle isomorphism ;S T*Q ®

the literature [31] and we follow this convention.
DEFINITION 3.5. Let (E, 7, Q) be a fibered manifold and let Ry, C Jim be a partial
differential equation. The symbol of Ry is the family Gi of vector spaces given by

Grlpy = Vpu i NV i1, i € I

Let € be a section of E over an open neighborhood U C Q and let p € U. Let
{f1,"-, fu} be R-valued functions defined on a neighborhood U of p € Q which
vanish at p. Define ¢ : S, T*Q ® Vr — V. by [18]

ke (dfy - dfi @ €)(p) — k(1 £)-6)(p).

e), is well-defined since the derivatives of (IT¥_, f;) vanish up to order k — 1 at p. We
have the following lemma.
LEMMA 3.6. Let (E,m, Q) be a fibered manifold. We have the following short

exact sequence of vector bundles over Jym:

Vrk
0——=S, T"Q® Vr LN V7 —k>1(7r’]§ D) (Vmp—1) —0.
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The following definition introduces the symbol map as a morphism of vector bun-
dles. It is crucial to understand the distinction between the definition of the symbol
map as a bundle map and the definition of the symbol map at a point as a map of
vector spaces. This explicit distinction is usually dropped in the literature.

DEFINITION 3.7. Let (E,m, Q) and (E',7',Q) be fibered manifolds and let ® :
Jpm — E' be a morphism over idq. The symbol of ® is defined to be

o(®) =V®o e : TS T Q® (7)*Vr — V'

The following proposition relates the definition of the symbol as family of vector
spaces with that as a map.
PROPOSITION 3.8. Let m be a fibered manifold as above and let pr, € Ry C Jpm.

Then the following sequences are exact:

« a(®)]
1. ) —— Gk|pk —>SkTﬂ.k(pk)Q ®V7r§(pk)ﬂ' —p§V<p(pk)7TI ;

VR lvay
2.0 > Gk|Pk > Vpkﬂ-k > Vﬂ-llzfl(pk)ﬂkil .

Proof. The proof of exactness of the first sequence follows from the following

exact commutative diagram:

0 0

| L

00— Gk|Pk — SkT:’k(ZDk)Q ® Vﬂf’?(m)(ﬂ-) - V‘I’(Pk)ﬂl

| o

0 Vot (o () Vo () — Dy

Similarly, for the second sequence, one should consider the following exact commuta-

tive diagram:

0 0
l l VTE vy
0 > Gk|p;c V:Dkﬂ-k Vﬂﬁ,l(Pk)ﬂ-kfl
l l Vrk ‘
k k—1
0 —— Vi M1 VT Vak (o) Th=1 —— 0
The second row is exact since V7r’,§71 is an epimorphism of vector spaces. O

Note that G is not always a vector bundle over Viy.

Prolongation of symbols. We establish a process for prolonging the symbol of

a partial differential equation. This process can be obtained in a purely algebraic
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manner [21]. Let (E, 7, Q) be a fibered manifold and Ry C Ji7 a partial differential
equation. We fix a point py € Ry, we let z = mj(px) and we let {e', -+, e"} be a basis
for T:Q. We denote a basis element for S TXQ by eite’2 -..e’ where iy,--- i) €
{1, ,n} satisfy i3 < iy < --- <i,. For k,r € Z>¢ we define the natural inclusion
Ay Skqr TEQ = S, TEQ® S, TEQ by

Ag i A

. 11,02 Slkdr . i1 02 |, Sir Grtl ... plkdr
i€l e e — A e'le " ®Re e .

RERK 25 PN R PO

The map Ay, can be extended naturally to
Ak,r ® idyy : Sk_;,_TT;Q & ng(pk)w — SkT;Q ® STT;Q ® ng(pk)ﬂ.

Let ® : Jym — 7« be the local morphism associated to Ry and let o(®) be the
associated symbol map. With G|, = ker o(®)|,,, we establish the r‘"-prolongation
of the symbol by the following definition.

DEFINITION 3.9. Let Ry C Ji7 be a partial differential equation. For each py € Ry,
with © = 7 (pr), the map

Pr(0(®)lpy)  Sktr TEQ @ Vak ()™ = SrTEQ @ V)

defined by (ids, T:Q®0(®)|p, )o (A, ®idyr) is called the r'" -prolongation of o(®)|,, -
Its kernel is denoted by p,(Gglp,) and is called the r*"-prolongation of the symbol.
REMARK 3.10. FEven if Gy is a vector bundle over N7y, p.(Gr) might not be a

vector bundle over Viry. In case it is, we sometimes use the notation Gy, instead of
pr(Gk) -

3.1.3. Formal integrability. Given a partial differential equation, we would
like to study the existence of solutions. Specifically, we would like to construct the
solutions of a given partial differential equation by constructing its Taylor series order
by order. Since the theory we use rests on the Cauchy—Kowalevski theorem we assume
analyticity of all the data. We start by giving a formal definition for solutions.

DEFINITION 3.11. Let (E, 7, Q) be a fibered manifold and let Ry, C Jipm be a
kth-order partial differential equation. A local formal solution of order k is a pair
(&, U) where U is an open subset of Q and & is a section of R over U. If Ry is
regular, one can define a formal solution of order (k+r) as a pair (Ex4r,U), where
Etr 15 a section of Rgyp.

One can come up with different examples which are not “formally integrable” in
the sense that one can not construct a solution as a Taylor series.

DEFINITION 3.12. Let (E, 7, Q) be a fibered manifold and let Ry, C Jipm be a
regular partial differential equation. Then Ry is called formally integrable if the
maps WZI:"H : pr+1(Ri) — pr(Ri) are epimorphisms of fibered manifolds for each
r € Z>g.
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PROPOSITION 3.13. If Ry is formally integrable then p,.(Gg) is a vector bundle
over Ry, for each r € Z>y.
Proof. As Ry, is formally integrable, WZIIH is an epimorphism and so locally of

constant rank. Then the following short exact sequence:
0 — Gipr1 —= V(Tptri1) —= V(Tptr) —=0

yields that Gy, is of constant rank. 0

The §-sequence. Another purely algebraic construction which is used exten-
sively for the formal theory is the d-sequence. The d-sequence has been utilized by
Spencer [33] in the theory of deformation of structures. We describe this construction
in the partial differential equation framework, omitting some details, and we construct
the d-sequence for T*Q which provides a characterization of the d operator with the
fiberwise exterior derivative on the set of differential r-forms on T*Q. Generally,
there is no necessity for a manifold structure and one can give the construction of the
d-sequence in a purely algebraic fashion [21].

We start by characterizing A, T*Q ® S T*Q as a subset of differential r-forms on

T*Q. First we give the following lemma whose proof is straightforward.

LEMMA 3.14. Let F be a R-vector space and denote by

the symmetric homogenous functions of degree k. Then, for f € Py(F), there exists
a unique A € Si(F) such that Az, --- ,x) = f(x) for each x € F.

LEMMA 3.15. The following map from A, TEQ ® S TEQ to the set of differential

r-forms on T:Q is a monomorphism of R-vector spaces:
¢k,r(a ® A)(I)(’Ul; T 7UT) - A(Ia T ,x)a(vl, e av’l“); V1, ,Upr € TpTzQ = Tsz

where p € TEQ.

The characterization basically identifies the symmetric tensor part of A, T:Q ®
S;T:Q with a homogenous polynomial function of order k. Let d, be the exterior
derivative on T:Q restricted to differential r-forms. One can define a linear map
Or e t A TEQ R SETEQ — A1 TEQ ® Sk TLQ by asking that the following diagram

be commutative:

5
ATIQOSTIQ —5 A, 1 TEQ® S, 1 TEQ

l‘i’k,r l¢k1,r+l

(A, TEQ) — == I (A, 11 T2Q)
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Explicitly, for « € A, T:Q and A € S, T:Q,

5T,k(a®A)(U17" C oy Upg1, U,y s o 7uk—1) =
r+1
Zra(vl,--- Uy U 1) AV, U, 0 Ug—1)-
j=1

In other words, the 6, operator imitates the exterior derivative on the space of
differential forms on T:Q when we identify the symmetric homogenous polynomials
of degree k with a symmetric k-tensor.

It turns out that the following sequence, the so-called r*"§-sequence, is exact (here

we simply denote d, 5 by 0):
0—=5,T'Q—2-T'Q®S, 1 T'Q 2> .-
A TIQ® S, TEQ ——0

Let Ry C Jiym be a partial differential equation. Consider the following exact and
commutative diagram:

ory1(P)
00— AsT"Q®Gpyrp1 — > AsT"Q® S 1 T*Q® Vm R AsT*Q® S, 1 T*Q® V!

|
I's la la
v o (®)

00— Ast1T"Q® Gpyr — > As 1T QR® Sk, T*QAVTE —> A1 T*Q® S, T*Q® V!
The map J induces a new J-sequence for the symbol at each point. Note that se-
quences involving the symbol shall really be specified at each point and for the sake of
simplicity we omit the point. What is more, there is no guarantee that this sequence

is exact in general. Summarizing, we have the following graded differential complex:

4

0 Grgr T*Q® Grypg —os - -

(2) 2 ALT*Q® Gl —— 0 .

We denote by HZJFPS

we call it the Spencer cohomology group of degree k + r — s.

(Gg) the cohomology at A;T*Q ® Gg4r—s of this complex and

Z-{-T—S(Gk) = ker((sS,kJrTfS)/lm(5571,k+r+175)-

Gg is said to be m-acyclic if HZ+T =0forall0<s<mandr>0.

DEFINITION 3.16. Let Q be an n-dimensional manifold and let Ry C Jym be a
partial differential equation as above. If the symbol is n-acyclic it is called involutive.

By definition, a symbol is involutive if and only if its corresponding J-sequences are
exact. In particular, the symbol of the trivial system of partial differential equations
is involutive.

REMARK 3.17. The concept of involutivity is a prominent algebraic concept which

is mot easy to grasp at first glance and it is simply not possible to provide a complete
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review of the concept in this document. Guillemin and Sternberg relate the different
interpretations of an involutive symbol and actually propose a practical method for
verifying involutivity [22]. J. P. Serre’s complementary note on the appendiz of this
paper completes the picture by relating the sequence given in equation 2 to the Koszul
complex.

We next address the concept of quasi-regular basis and a practical method for
verifying involutivity [32].

DEFINITION 3.18 (Quasi-regular basis). Let (E, 7, Q) be a bundle with Q an n-
dimensional manifold and x € Q. Let Ry, C Jpm be a partial differential equation with
associated symbol Gy, and let pr, € Ry be such that m(py) = x. A basis {at, -, a"}

for T:Q is called quasi-regular if

n—1

(3) dim(Gk+1|Pk+1) = dim(lepk) + Z dim(Gk,jkIka))v

Jj=1

where
Gjl(zpr) = Grlpr N SkEj]a

and X; is the subspace of TiQ generated by {a/ ™!, .-+ am}.
The following theorem relates the concept of involutivity to the existence of a
quasi-regular basis; the proof of the theorem can be found in [32].
THEOREM 3.19 (Criterion of involutivity). Let Ry € Jpm be a partial differential
equation. If there exists a quasi-regular basis for T (m)Q’ the symbol Gy, is involutive
at pr € Ry, .
We now have the required machinery for the following central theorem for formal
integrability [19].
THEOREM 3.20 (Goldschmidt). Let (E,w, Q) be a fibered manifold and Ry, C Jpm
a partial differential equation. Assume the following hypotheses:
1. p1(Rg) is a fibered submanifold of Jgi17;
2. fr’,j"’l : p1(Rg) — Ry is an epimorphism of fibered manifolds;
8. Gg is 2-acyclic.

Then Ry is formally integrable.

Proof. [Sketch of the proof] Let ® be the local morphism associated to Ry and
recall the affine structure of p;(Ry) over Rg. Since p1(Ry) is a fibered submanifold of
Jit1m, we have Gr11 = p1(Gg) as a vector bundle over R, and so one can define a
vector bundle C = coker(p1(c(®))) such that the following sequence is exact:

o(P .
0 Grt1 Skr1T*Q® Vr %)ll'*Q @Vr' —=C——=0

where 7 is the canonical projection onto C. The essence of the proof is the construction

of a map kK : Ry — C as follows: Consider the following exact and commutative
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diagram where the upper row is a sequence of vector bundles on which the second

row of affine bundles are modeled:

0— — >Gpp1— — >S5, T*Q ®V7Tlil(z(q>>)ll'*Q @Vr' -—=>=C-—->0
| | |
| | |
v ¥ p1(P) v

0—— pl(Rl) EEE—— Jk+17T —_— Jlﬂ'l

| | !

0 R Jkm 2 '

Let p € Ry, with 7, (p) = ¢ € Q and let p’ € Ji417 projecting to p. By commutativity
of the diagram, p;(®)(p’) projects to ®(p). As a result

p1(®)(p') — 1 ®(p) € T'Q@ V'
Let
(4) #(p) = T(p1(®)(p') — 71 ®(p)).

One can show that this definition is independent of the choice of p’ [18]. This map

is called the curvature map. A diagram chase shows that the map k is zero with

respect to the zero section of the vector bundle C if and only if the map wf“ is an
epimorphism of affine bundles. Moreover 2-acyclicity implies that frlljﬂ is also an
epimorphism of affine bundles. O

If the symbol is involutive, condition 3 is automatically satisfied. We have the
following definition.
DEFINITION 3.21. A partial differential equation Ry is called involutive at a
point p if
1. its associated morphism is of constant rank,
2. there exists a quasi-reqular basis at p and
3. the map ﬁZJrl is surjective and is of constant rank in a neighborhood of p.

ExaMPLE 3.22. Consider the partial differential equation
grad(f) = X,

where f : R? = R and X is a vector field on R3.
One can easily check that the symbol of this partial differential equation is identity

and hence involutive. Since

0% f 0X?
6$J6xz 6$J 3 Z?] 6 { 3 73},
solutions for f exist if
). €A &
= i7]€{1,273},

dxrt  Oxd’
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i.e.
curl(X) =0.

3.2. The space of connections. In this section we fix a fibered manifold
(E, 7, Q). As before, we denote by Vr and J(7), the vertical bundle and the bundle
of k-jets of a fibered manifold 7 respectively [31]. We start by defining what we mean
by a connection. It is not hard to show that this definition is equivalent to the usual
construction of a connection as a splitting of the total space of a bundle on which the
connection is defined [30], [10].

DEFINITION 3.23. A connection on a fibered manifold (E,m, Q) is a section
S :E — Ji(7) of the bundle n} : J*(r) — E.

In a natural coordinates (¢, u®, u¢) for J* (), a connection has the form (¢*, u®) —

(¢, u®, 8¢) which defines the connection coefficients S¢, where a € {1,---,m} and
i,k € {1,--- ,n}. One can define the covariant derivative associated to a connection
as follows.

DEFINITION 3.24. Let S : E — JY(7) be a connection on a fibered manifold
(E,m, Q). If & is a smooth local section of E, then the S-covariant differential of ¢
is the smooth local section VS¢ of T*Q ® €*V(7) defined by

(5) V¢(q) = 1€(q) — S(&(q)).
In natural coordinates we have

vSe = (‘ZZZ_ _sg) e @

Oua’

If X is a vector field on Q, then the S-covariant derivative of & with respect to
X is the section of £*V(r) defined by V$¢& = VSE(X). A linear connection on a
vector bundle (E,m, Q) is a connection S : E — J1(r) that is also a vector bundle
morphism over idg. In adapted coordinates (z%,u®) on E and (2%, u®,u) on J'(r), a
linear connection has the form (2%, u®) — (2%, u®, 8% u’) which defines the connection
coefficients 8§ where a,b € {1,--- ,m} and i,k € {1,--- ,n}.

A linear connection S on the vector bundle (TQ,7q, Q) is sometimes called an
affine connection on Q. We have the following proposition which generalizes to vector
bundles.

PROPOSITION 3.25. The set of affine connections on a manifold Q is the set of
sections of an affine subbundle of the vector bundle T*Q ® J(mq) over Q modeled on
the vector bundle T*"QR T*Q ® TQ.

The following proposition clarifies the structure of the space of torsion-free affine
connections.

PROPOSITION 3.26. The set of torsion-free affine connections on a manifold Q is
an affine subbundle of the vector bundle T*Q ® J1(7TQ) over Q modeled on the vector
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bundle SeT*Q ® TQ given by

Affp(Q) =

(6)
{E€eTQ®J(mq) | my 0 E =idrq, (MY —EY)(X) — (1 X -

(1]

(X)) = [X, Y]},

where X, Y € T*(TQ) and we thought of = as a section TQ — JL(nq) for defining

g o Z.

3.3. Ricci identity. Let (E, 7w, Q) be a vector bundle. There is a bijective corre-
spondence between the set of linear connections S : E — J;7 and the type (1, 1)-tensor
fields PE on E, where P is a projection operator of constant rank, P& (X) = 0 for
every X € I'“(Vr) and Im(P%) @ Vr = TE. Such a projection is called the horizontal
projection associated to the connection S [31]. An integral section of a connection S is
an analytic local section & of 7 satisfying j1& = S(§). There is no guarantee that such
a section exists even locally. The existence of such an integral section is equivalent
to the vanishing of the Nijenhuis tensor of the (1,1)-tensor field P¥ ( see [31, 23]).
In other words, the Nijenhuis tensor measures the involutivity of the associated hori-
zontal subbundle, and as a result, the Nijenhuis tensor of S is directly related to the
curvature tensor R[S] associated to S. Let (¢*,u%) be an adapted local coordinates
on a neighborhood U of E with i € {1,--- ,n} and a € {1,--- ,m}. Also let {e,} be a
basis for the local sections of E. The curvature tensor, R[S] € T“(E* ® E ® A2T*Q),
can be written as

(7) R[S]E = 6:va ic jb_(axji +85.8i)s

where i,5 € {1,--- ,n} and a,b,c € {1,--- ,m}. One can naturally define an induced
connection on the fibered product as follows. Let (Ei,71,Q) and (Ea, m, Q) be two
vector bundles equipped with two connections S; and Sa, respectively. There is a

unique connection &1 ®q S2 that makes the following diagram commute:

®
Ei XQqEy —————= 11 ®q m2
lleQ$2 lsl(@QSz

Jymo XQ Jimg —— J1(7T1 ®Q 7T2)

For more information about the induced connection on a fibered product bundle
see [31]. One can use the same procedure to induce a connection &* on the dual
bundle 7*. For our purposes, we consider the tensor bundle (E ®qE, 7 ®q 7, Q) where
7 is a vector bundle. Let (z%) be local coordinates for Q and let (2, u®) be adapted
coordinates for E, where i € {1,--- ,n} and a € {1,--- ,m}. Denote an analytic

local section of E® E by & = £%, ® e, where {e,} is a basis for local sections of E
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and a,b € {1,--- ,;m}. Then the covariant derivative with respect to S ® S can be
represented by

VEESE = 1€ — (S © S)(¢).

We have the following representation of the covariant derivative with respect to the

induced connection & ® S in local coordinates:

agab
oxt

(8) (VE@5g)eb = — 8Lt —Shee,

where ¢ € {1,--- ;m} and a,b,c € {1,--- ,m}. Using equation (7), one can show that
the associated curvature tensor for S ® S is
) RIS @ 8]k, € = RIS]i, 6% + RIS]L 6%
The vanishing of the curvature tensor is an obstruction for the involutivity of the
horizontal subspace of T(E ® E) associated with the induced connection S ® S. The
relation between the curvature tensor of a product bundle and the curvature of the
underlying bundles leads to the Ricci identity, [12]. In the literature this identity is
typically introduced through the following lemma:

LEMMA 3.27. Let (Q,G) be a Riemannian manifold equipped with a symmetric
affine connection S. Then the following identity holds and is called the Ricci identity:

(10)  (VxVyG —VyVxG — Vixy|G)(Z,W) = G(R(X,Y)Z,W) + G(Z, R(X,Y)W).

where X, Y, Z, W € I'*(TQ)
Proof. The proof follows from a direct computation using equation (8) to compute
the covariant derivative of G with respect to a vector field. 0
REMARK 3.28. We state the following remarks for future use.
1. Lemma 3.27 can be extended to any (0,2)-tensor on Q, but for our purposes
we state the lemma for G € S5 (T*Q).
2. The Ricci identity appears when one tries to find a set of necessary conditions

for a metric to be associated to a given symmetric affine connection; see [16],
[36].

4. Geometric formulation of partial differential equations in energy
shaping. We give a formulation of the partial differential equations of the energy
shaping problem using the theory of partial differential equations presented in the
previous section. This formulation is an integral part of our approach since it places
the energy shaping problem separately into the realm of the formal theory of partial

differential equations.

4.1. Kinetic energy shaping. We provide a jet bundle structure associated

to the kinetic energy shaping system of partial differential equations. This system of
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partial differential equations involves the affine subbundle description given for the
set of torsion free connection; see Section 3.2.

Let (S; T*Q, g, Q) be the bundle of Riemannian metrics on the configuration
manifold Q. One can generalize the definitions in this section by allowing metrics
with other signatures; see Remark 4.7. Let (B, 7g,Q) be the bundle of gyroscopic
tensor fields over Q where B = Gyr(TQ) Nker(Alt). We have the following definition.

DEFINITION 4.1. The kinetic energy shaping bundle is the fibered product
bundle (KS, 7 = ng xq 78, Q), where KS =S5 T*Q xqB. We denote by m and 2 the
projection on the first and second factors.

In local coordinates, a typical fiber over ¢ € Q is a pair (G(q),B(¢)) and a typical
point of J1(7) is given by (¢, Gyn, Bipg, Gjk.as Bipg.s) Where we denote the derivatives
of Gji and By,q, respectively, by Gji,q and Bjpg.p.

Define the “Levi-Civita” map ¢rc : Jimg — Affg(Q) by ¢rc(51G) = VC. Let
Yol = (Q, Gor, Vo1, 0, W,1) be a given open-loop simple mechanical control system and
let (KS, 7, Q) be the kinetic energy shaping bundle. The point py = (go, Gol,0) € KS,
where ¢p € Q, represents the open-loop simple mechanical control system Y,. We

define the following projection:
w:GHTQ®SIT'Q) — G5 (TQ® S T7Q)/GE (W © S3T°Q) = K,

where we used the extended definition of sharp map; see equation (1). We now have
the required tools for defining the kinetic energy shaping partial differential equation
as a submanifold of Ji.

DEFINITION 4.2. Let (KS, 7, Q) be the kinetic energy shaping bundle and let py =
(g0, Go1,0) € KS where go € Q. If my and ¢rc are, respectively, the projection and
the affine connection map defined above, the kinetic energy shaping submanifold
Riin(po) C Ji7 is defined by

Riin(po) ={p € Jim | ®uan(p) = 0},
where Py, is the kinetic energy shaping map given by

#

Prin(p) = 7w (Grc(1m1(p)) — drc(jimi(po))) — T (mi(p)) ma(p).

One can represent the governing system of partial differential equations for the

kinetic energy shaping problem by the following exact sequence:

0 — Ruin(po) — i Diin K,

where Ry, is the kernel of ®y;, with respect to the zero section of K.

4.2. The Amethod. In this section, we recall a differential geometric approach

to the kinetic energy shaping problem from [5, 3]. The main idea is to transform the
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set of quasi-linear partial differential equations from the previous section into a set of
linear partial differential equations in terms of a new variable. In the following defini-
tion we introduce a set of partial differential equations which is the main component
of this equivalent system.

The following theorem gives the desired transformation.

THEOREM 4.3. Let X0 = (Q, Go1, Vol, For, Wol) be an open-loop simple mechanical
control system. Let P € T¥(T*Q® TQ) be the Go-orthogonal projection as above. Let
Ga € T¥(S§T*Q) and let B be a quadratic gyroscopic tensor. If Gol = zl o\ for
AeT¥(T*Q® TQ), the following two conditions are equivalent:

1. P(VSX —VSIX — GY o B (X)) =0, VX € ¥(TQ);
2. (a) VEO‘ (GaN)(PX,PY) + %(IB%()\PX, APY)+ B(APY,\PX),Z) =0, and
(b) V52 Gal(Z, Z) + 2Ga(VE' \PX, Z) = 2Go (V3" PX, Z)
—2(\PX,B*(2)),
where X,Y, Z € I'“(TQ).

In order to prove this theorem we need the following lemma.

LEMMA 4.4. Let (Q,G) be a Riemannian manifold and let W be a codistribution
on Q. Let P e T¥(T*Q®TQ) be the G-orthogonal projection introduced above and let
Ga €T¥(S5T*Q). If

P(VS'X —V5X -G oB’ (X)) =0, VX eTl“(TQ),
then
1. for X, Y € I'“(TQ) we have
(11)  P(VRY - V§'Y) = —=3PG} 0 (B (X +Y) - B'(X) - B"(Y)),
and
2. for G=Ggo for \eT¥(T*Q® TQ) we have
(12) 2G(P(VSpxZ — VipxZ), X) = VZ(GN)(PX, PX),

where X, Z € T¥(TQ).
Proof. We begin with the first statement. Note that since the connections are

torsion free,
VY - VY = VEX - Vi X,
We have

P(VEY - V51Y) = 1P(VEY - VEY + VEX — VI X)
P(V$ iy (X 4Y) = Vi (X +Y))
— %P(VG( ) — VGCI( X)) - P(VG (V) — VGCI( Y))

= —3PGf o (B(X +Y) - B’ (X) - B'(Y)),

1
2
1
2
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where X, Y € T¥(TQ).
For the second part, recall that for the Levi-Civita connection V¢ associated to

G one can write
2G(VSY, Z) = LxG(Y, Z) + LyG(Z,X) — LzG(X,Y)
(13) +G([X,Y],2) + G([Z,X],Y) - G([Y, Z], X).
Moreover, we have
(14) Lx(G(Y, 2)) = G(VSY, Z) + G(Y, V$ 2).
Thus
2G(P(V(§'PXZ - VE;XZ)VX) = 2G(V§PX27 PX)— 2G(V§$Xzﬂ PX)
=2G(VSpxZ, PX) — 2Gu(V53 Z, APX).
We use equation (13) to get
2G(P(VSpx Z — VS’;‘XZ),X) =\PXG(Z,PX)—-PXG(\PX,Z)
+ G([PX, \PX],Z) - G([Z,PX],\PX) + G([Z, \PX], PX).

Expanding the terms along with equation (14), and after some simplifications, we

have
2G(P(VSpxZ — V5. 7), X) = G(VS(A\PX), PX) — G(VSPX,A\PX).
Note that
Lz(A(X)) = VZ(A(X) + AMVZX).
As a result,
2G(P(VipxZ = VipxZ): X) = G((VEN(PX) + A(VZPX), PX)
~ G(V$PX,\PX)
=G((VEN(PX), PX) 4+ GV PX), PX)
—G(VSPX,\PX)
=G((VENPX, PX).
Since VEG = 0, one can write
(15) 2G(P(VSpxZ — Vipx Z). X) = VE(GN)(PX, PX),

which is the desired result. O
Proof. [Proof of Theorem 4.3 (1) = (2) | We first assume that G¢ and B satisfy

the kinetic energy shaping equation

PV X — VS X —Gf o B (X)) =0, VX € I*(TQ).
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Using the second part of lemma 4.4 we have
(16) 2G(P(VS2 Z — VS Z), X) = V2(Go M) (PX, PX).
By the first part of lemma 4.4 we have
P(ViaxZ - V584 Z) = —1PG o (B°(\PX + Z) — B"(\PX) — B"(Z)).
Substituting equation (16) we get
2Go1(— 1 PG o (B (\PX + Z) - B’ (\PX) — B’(2)), X) = V2(Ga\)(PX, PX),
which can be written as
V2(Goa\)(PX,PX) + (B°(APX + Z) — B’ (\PX) — B’(Z), \PX) = 0.

From the definition of the flat operation we have (B*(Y), X) = B(X,Y,Y). Also recall
that the gyroscopic tensor is antisymmetric in the first two elements. We can then

expand the right hand side of the previous equation to get
Vz(Ga\)(PX,PX)=B(A\PX,Z,A\PX) = —(B(A\PX,\PX), Z).
Notice that GoiA and Vz(GoA) are both symmetric (0,2) tensors. Thus we have
V2z(GoA)(PX,PY) + £(B(APX,A\PY) + B(APY,APX), Z) =0,
for all X,Y € I'’(TQ) as claimed. Now, for the second part of the proof, we have
LarxGa(Z.2) = Ga(V§x 2, Z) + Ga(Z, Vi Z)
=2Ga(V APXZ Z)
=2Ga(VS'\PX — [Z,\PX], Z)
=2Ga(VSIA\PX, Z) — 2Ga([Z,\PX], Z).
As a result
LapxGa(Z, Z) + 2Ga([Z, \PX], Z) = 2Ga(VSI A\PX, Z)
=2L,Go(PX,Z) — 2Go(PX, V5 Z)
=20,Go(PX, Z) — 2Gu(X, PV5 Z).
Now, from the kinetic energy shaping system of partial differential equations, we have
PVSiZ = PV Z + PGB’ (2).
Therefore,
LapxGa(Z,2) +2Ga([Z, \PX], Z)
=2L;Go(PX, Z) — 2Go(X, PVS'Z + PGEB"(Z))
= 2Goi (VS PX, Z) 4+ 2Go(PX, V5" Z) — 2G (X, PVS' Z + PG B’ (2)).
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This gives
LapxGa(Z, Z) + 2Ga([Z,A\PX), Z) = 2Go(VS' PX, Z) — 2(\PX, B’ (Z)).

A simple computation gives the desired conclusion.

(2) = (1): We have to prove that if A = Ggl 0 G’ and if G and B satisfy the
set of extended A\ equations and the closed-loop metric equation given in part 2 of
the theorem, then (G, B) is a solution to the kinetic energy shaping problem. We

compute

Ga(P(VE'X — VX + GEB’ (X)), Z)
= Gu(VE' X — VX + G B°(X), PZ)
=Go(V¥'X,PZ) — Gu(VS' X, \PZ) + (B’(X), \PZ)
= LxGo(X,PZ) — Gu(X, V' PZ)
— LxGu(X,\PZ) + Gu(X, V' APZ) + (B’ (X), \PZ)
= —Gu(X, VS PZ) + Gu(X,VSIAPZ) + (B’ (X), \PZ)
Goi(X, VS PZ) + Gu(X, VS, X) + Gu(X, [X, \PZ]) + (B*(X), \PZ)
~Gol(X, V' PZ) + L L\pzGa(X, X) + Ga(X, [X,\PZ]) + (B’ (X),\PZ)
Col(X, V' PZ) + Coi(VS' PZ, X) — (\PZ,B° (X)) + (B*(X), \PZ)
= 0,

As a result,
P(VY'X - VX +GEB (X)) = 0,

as desired. 0

From part 2 of the previous theorem we see that the kinetic energy shaping partial
differential equation is equivalent to two partial differential equations, one for A and
one for obtaining G from A. We will study these partial differential equations in
detail later in the paper, but for now let us define them.

DEFINITION 4.5. Let Q be an n-dimensional manifold and let G € F“’(S;‘T*Q) be
a metric on Q. Let W C T*Q be a subbundle and let P be the associated G-orthogonal
projection map as in Section 2. The following set of partial differential equations with
AeT¥(T*Q®TQ) and B a gyroscopic (0,3)-tensor field as dependent variables is
called the (extended) A-equation:

(17) VZ(GN)(PX,PY) + 1(B(APX,\PY) + B(A\PY,\PX), Z) = 0,

where X, Y € T¥(TQ).
DEFINITION 4.6. Let Q be an n-dimensional manifold and let G € F“’(S;T*Q)
be a metric on Q. Let W C T*Q be a subbundle and P € T(T*Q ® TQ) be the
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associated projection map as above. Also let X € T“(T*Q ® TQ) and let B be a
gyroscopic (0,3)-tensor field on Q. The following set of partial differential equations
with G € T¥(S2T*Q) as unknown is called the (extended) closed-loop metric

equation:
(18)  V5pxGa(Z, Z) +2Ga(VEAPX, Z) = 2G(VEPX, Z) — 2(\PX,B’(2)),

for XY, Z e T*(TQ).

It is clear that the A-equation is a first-order linear systems of partial differential
equations. The word extended is due to the presence of gyroscopic forces. Theorem
4.3 is an intrinsic version of what has been presented in [4]. Different versions of the
proof have been given in [5, 3] and modified with presence of gyroscopic forces in [13].
One should note that, by solving the A-equations, we only obtain the restriction of
A to T¥(W+ @ T*Q), but only this restriction of A\ appears in the statement of the
extended closed-loop metric equation.

REMARK 4.7. Note that there is no assumption on the positive definiteness of the
closed-loop metric. In other words, one may very well achieve a closed-loop metric
which is not positive definite, but which could possibly lead to a stabilizing energy
shaping feedback.

According to Definition 2.2, the energy shaping problem can proceed in two steps:
first, kinetic energy shaping and then potential energy shaping. As in [4], we assume
that one solves the energy shaping problem in the following steps:

1. Find the set of pairs (A, B) which satisfy the extended A-equations.

2. The system of partial differential equations (2b) form Theorem 4.3 with G
as unknown is called the (extended) closed-loop metric system of equations.
So we use the set of solutions to the A-equations to find a closed-loop metric
G as a solution to the extended closed-loop metric system of equations. This
closed-loop metric will be a solution to the kinetic energy shaping problem
by the statement of the theorem. Moreover, all the solutions to the kinetic
energy shaping problem can be produced by this procedure.

3. Check if the set of G, or equivalently the set of solutions to the A-equations
satisfies the sufficient condition of potential energy shaping problem, equa-
tion (21). If so, one can find a formal solution to the potential energy shaping
partial differential equation.

One of our main goals in this paper is to show that a bad choice for the closed-loop
metric can make it impossible to find a solution for the energy shaping problem. In
order to identify the space of solutions to the energy shaping problem, one should con-
sider together the compatibility conditions of the kinetic energy shaping and potential
energy shaping problem. In the coming sections we use the language of geometric par-
tial differential equations to analyze the integrability of the complete set of partial

differential equations.
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4.3. The A-method partial differential equations. In this section, we for-
mulate the two partial differential equations for the A-method in the language of jet
bundles. We make the simplifying assumption in this section that B = 0. Assume
that W is an (n—m)-dimensional integrable subbundle of T*Q where m is the number

of unactuated directions.
4.3.1. The equation Ry. With the assumptions above, the set of A\-equations
we consider in this section is

VS(GN(PX,PX)=0, X,ZcT*TQ),

where A € T¥(T*Q ® TQ), G is a metric on Q and P € I'“(T*Q ® TQ) is the G-
orthogonal projection as before. We denote by W+ the G-orthogonal complement of
W and by A|p the restriction of A to WL ®TQ. Consider the bundle 7 : WL TQ — Q
and let (¢, A|p(q)) be a typical fiber element over ¢ € Q. We define the bundle map

d:Jir - T'QaWwtowt

(19) 71Alp = VE(GA)limpez,
In an adapted coordinate system (¢*, i) on Wt @ TQ and (¢, A%, /\lak) on Jir,
(20) (g, Xy X i) = (0, Gaidi g + Gaik Ny — SpaGsidy — SipGaidy),

where § is the coefficient of the Levi-Civita connection associated to G, and k €
{1,---,n}, a,be {1,--- ,;m}. Thus we define

R = {p € Ji(m) | ®(p) = O}
to be the submanifold of J;7m corresponding to the A-equation.
4.3.2. The equation Rg. With the assumptions above, the closed-loop metric
equation is

V$oxGa(Z,Z) +2Ga(VEAPX, Z) = 2G(VS PX, Z),

for X,Y,Z € T¥(TQ). Consider the bundle (S2T*Q, 7, Q) and let W and P be,
respectively, the integrable control codistribution and the G-orthogonal projection,
respectively, as in Section 2. Let A be an automorphism of TQ and denote a section
of Wt @ TQ by Ap. In adapted local coordinates, A\|p = Me® ® e;, where a €
{1,---,m} and j € {1,--- ,n}. Define the bundle map Y7 : J1m — T*Q ® S2T*Q by
T1(j1Ga) = VEG,. Also define a bundle map

To:ST"Q —» W ®S,T*Q,
by

Yo(X,Z,Z) = 2Ga(VEA\PX, Z) — 2G(VSPX, Z),
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Let Ug: T*Q®S2T*Q — W ®S,T*Q be the bundle map given in local coordinates
by

Ve(6®A) = N, fie* @A,

where a € {1,---,m}, j € {1,---,n}, B € T¥(T*Q) and A € T¥(S;T*Q). Observe
that the map U is surjective. Finally, define &5 = Vg oY) + Y. Thus Rg = ker g

gives the extended closed-loop metric system of partial differential equations.

4.4. Potential energy shaping. In this section, we explore aspects of potential
energy shaping. Firstly, we recall the result of Lewis [25] regarding potential shap-
ing after kinetic shaping has been done. Then, we couple the sufficient conditions
of Lewis [25] with the A-equations from the previous section. In this way, we can

understand how kinetic energy shaping can influence potential energy shaping.

4.4.1. Sufficient conditions for potential energy shaping. We recall the
results for potential energy shaping after kinetic energy shaping from [25]. Denote
the bundle automorphism GZI o Ggl by A¢1. Define an integrable codistribution W, =
AL Wo1). Let (PS = Q x R,7,Q) be the trivial vector bundle over Q, so that a
section of 7 corresponds to a potential function via the formula ¢ — (¢, V(q)). We
define a T*Q-valued differential operator ©4(V') = dV which induces a vector bundle
map Py : J1m — T*Q such that Dgq(V)(q) = Ppot(§1V(¢g)). Similar to what we did

for kinetic energy shaping we denote by
Twe = T°Q — T*Q/ W,

as the canonical projection.
DEFINITION 4.8. Let Y1 = (Q, Gol, Vo, Fol, Wo1) be an open-loop simple mechan-
ical control system. The submanifold Ryor C Jim defined by

Rpot = {p € hm | W, © (I)pot(p) = TTw, © Aald%l}

is called the potential energy shaping submanifold.

Let 71 : Jym — Q be the canonical projection. Lewis [25] gives a set of sufficient
conditions under which the potential shaping problem has a solution. The proof
follows from the integrability theory of partial differential equations; in particular,
the potential energy shaping partial differential equation has an involutive symbol.
We recall the definition of (Go1-Ge)-potential energy shaping feedback from [25].

DEFINITION 4.9. A section F of W is called a (Go1-G.1)-potential energy
shaping feedback if there exists a function Ve on Q such that

F(q) = AadVe — dVy, q€Q.

The following results implies when one can construct a Taylor series solution to

the potential energy shaping partial differential equation order-by-order.
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THEOREM 4.10. Let X = (Q, Gor, Vor, For, Wal) be an analytic open-loop simple
mechanical control system. Let G be a closed-loop analytic metric. Let py € Rpor and
let qo = m1(po). Assume that qo is a reqular point for Woy and that We = A;llwol 18
integrable in a neighborhood of qo. Then the following statements are equivalent:

1. there exists a neighborhood U of qo and an analytic (Go1-Ge) -potential energy
shaping feedback F € T (W) defined on U which satisfies

(I)pot (pO) = AcldV(QO) - dVol(qo) + AaldVol((Jo%

for a solution V' to Rpots
2. there exists a neighborhood U of qo such that d(A'dVo)(q) € la(Welq), where
we denote la(Weilq) = 1(Walq) N A2(T;Q) where the algebraic ideal 1(Weilq)
of A(T;Q) is generated by elements of the form v Aw where v € Wei|q.
The theorem gives a set of compatibility conditions for the existence of a (G-
Ge1)-potential energy shaping feedback. Moreover, one can give a full description of
the set of achievable potential energy shaping feedbacks. Let o = Ac_lldVol. Let us

use a coordinate system (¢!,---,¢") on U a neighborhood of g such that
Wheilge = Span(dg™*, -+ dg™).

In these local coordinate we write the one form ay; as aq = «; dg’ and compatibility
conditions become:

8aj 6041'
ot O¢

(21) =0, i,j€{1,---,m}.

REMARK 4.11. One can make the following observations from the potential energy
shaping problem.

1. The choice of G affects the set of solutions that one might get for poten-
tial energy shaping. A bad choice of G, might make it impossible to find
any potential energy shaping feedback. As a result, if one is able to have
an understanding of the set of closed-loop energy shaping metrics, then the
condition given by equation (21) is an obstruction that detects the closed-
loop energy shaping metrics for which their exists a potential energy shaping
feedback. We give a complete description of this problem in Section 7.

2. Following [24], if we denote the set of all solutions for the potential shaping
problem by

PSg = {Va ® Fa € C(Q) T Wer) | Ve = Fa+ AL 'dVer , Valgo) = 0},

one can describe the whole set of solutions as an affine subspace of C*(Q) ®
'Y (W,) modeled on the subspace

L(PSq) ={f© B eC(Q&T*Wa) | df = 5}
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4.4.2. The equation Rt. The sufficient condition for integrability of the partial
differential equation in potential energy shaping, given in equation (21), is a nonlinear
partial differential equation with the dependent variable A = Gf)l ) Gﬁl. The following

commutative diagram shows the relation between A and A:

T"Q —>T*Q

l«sgl lagl

TQ—2-TQ
Any condition on A imposes conditions on A and vice versa. Through these conditions,
we can find the obstruction that the potential energy shaping integrability condition
imposes on the set of solutions to the A-equations. For more information about the
procedure we propose for energy shaping, see Section 8. We make some algebraic
constructions before moving to the potential energy shaping problem.

An algebraic construction Let V be a finite-dimensional R-vector space and
denote the dual vector space by V*. Let D be a subspace of V*. The algebraic ideal
[(D) of A(V*) is generated by elements of the form v A w where v € D. For k € Z we
denote Ix(D) = (D) N Ag(V*). For © € Aut(V*), we wish to understand l2(©(D)).

LEMMA 4.12. We have 12(0(D)) = (0 ® ©)(l2(D)).

Proof. Let {v',--- v™} be a basis for V, and suppose that

D = Span{v™ 1 ™2 ... 4}
One can identify I3(©(D)) by
12(6(D)) = Span{O(v/) AO(v') [m+1<j<n, 1<i<n},
If one extends © to © ® © on V* ® V* in the usual way we have
O ®0O(l3(D)) = Span{O(W ) AOW") | m+1<j<n, 1<i<n},

as desired. n
LEMMA 4.13. Let a be an analytic local section of (T*Q, 7, Q) in a neighborhood
U of Q and let D C T*Q be a subbundle. Then da € 15(©(D)) if and only if

07! ® 07 (da) € I(D).

Proof. Note that (60 ® ©)~! = ©7! @ ©~! and so the proof follows from the
previous lemma. n
PROPOSITION 4.14. Let Q be an n-dimensional manifold and let § # 0 and o be
analytic local sections of T*Q such that « = O(8), where © € Aut(T*Q). Let U be a
neighborhood of p € Q. Given D, an integrable subbundle of T*Q, with adapted local
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coordinates {dg™*, .-, dq"} as above, we have da € 12(©(D)) in this neighborhood
if and only if

l
(atag - akar) (Fa+ 022 o,

P OxP

where i,j,k € {1,--- ,m} and we denoted the ©~1 by A.
Proof. Using Lemma 4.13 we have

006 96 ; ;
_ Ak k l i
da = A7AY <(9x1’ B+ @k—axp) dg' Ndg’.
The proof follows since Ao T*Q = I3(D) @ Ay(D). 0

Partial differential equation We consider the system of partial differential
equations of Proposition 4.14 with the automorphism © as unknown. One can easily
observe that this system of partial differential equation is equivalent to the system of
partial differential equations one would obtain by assuming equation (21) as a partial
differential equation with unknown A~!'. We consider nonlinear partial differential
equations as described briefly in Section 3.1. More details on the formal integrability
of nonlinear systems of partial differential equations can be found in [19].

Let (Q,G) be an n-dimensional Riemannian manifold and let W C T*Q be a
subbundle. Consider the vector bundle (7, ( W+ ®q TQ) @ (W ®q TQ), Q) with a
typical fiber (¢,©(q) ® A(q)) and denote its first jet bundle by Jiw. We define the
following system of partial differential equations in a neighborhood U of ¢y € Q:

Rt = {]1(9 D A) e hm | (I)T(jl(@ D A)) = 0},

where &1 can be written in adapted local coordinates

b0 8) = (af - atay) (S2ks + 0,22,
q dq
where i,5,k € {1,---,m} and 8 € I'“(T*Q). This system of partial differential
equations is quasi-linear and so we need to use Definition 3.7 to find the symbol. We
look at the linearization of the partial differential equation about a given reference
point. Let (q,0(q) ® A(q)) be a typical fiber of 7. If we linearize the system about

this point we have

d A AT A AT
%l (((AFt+ A7) (APt + AT) — (At + AF)(ATt + AY))
o(ett + 6! _
X {7( k@qT k)ﬁl + (Ot + @2)51))
_ - - . TeY
— (AFA7+ A7AY - AFAT - ATAS) SR

dq
l
T (AFAT - ARAT) (%’fﬁl ey 351) |

aqr kdqr
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The effect on the reference point of the linearization should be investigated carefully.
For now, we consider the linearization of the system about a point p € Jym with
m5(p) = (idltqeqw+ ® idltqeqw=). The reason for this choice is that the identity
solution for © refers to the open-loop system which is always a solution to the energy
shaping problem. Thus we study the linearization of the nonlinear system about the
open-loop solution. We have the following linearization of &1 about p:

l
(22) Vp(®1)(j1(© @ A)) = <8®é 99; ) i (@l% _ o908

g7 L oq’ ! tOgi 7 0qt )
where we utilized the fact that VJim = J1Vr [27].

5. Formal integrability of Ry,. In this section, we apply the theorem of Gold-
schmidt, Theorem 3.20, to the A-equations. The main result in this section is The-
orem 5.6 which gives sufficient conditions for formal integrability of the A-equations.
The proof of this theorem requires the machinery of Section 3.1. However, the main

result can be understood without understanding the details of the proof.

5.1. The symbol of Ry. The symbol map o(Rp) : T*Qa@a W+ @ TQ — T*Q®
WL @ W+ is defined by

o(RL)(A)(X, PY,PZ) = A(X, PY,G*(PZ)), AeT*(T'QaW:aTQ),

where X,Y,Z € I'Y(TQ). This can be shown using the affine structure of Ji7 as
follows. Take p1,pa € Jim such that 7}(p1) = 7i(p2). Then p; —p2 € T¥(T*Q ®
W+ ® TQ) by the affine structure of J;7. Now one can define the symbol map to be
®(py — p1). Using equation (20), one can observe in local coordinates that ®(p; — p2)
is the highest order term of the partial differential equations since i (p1) = 7 (p2).
Let us determine the symbol G (Ry,) and its prolongation.

LEMMA 5.1. The following sequence is short exact:

o(R
(23) 0—>G1(RL)—>T*Q®WL®TQ¥1T*Q®WL®WL—>o

Proof. The symbol map is surjective since o(RL,) = idr-qewt @ (G” o P). 0

Let {e!,---,e"} be a basis for T5,Q for g0 € Q and let X; be the subspace of
T Q generated by {e/*!,... e"}. Then we have the following lemma, similar to
Lemma 5.1.

LEMMA 5.2. The following sequence is short exact:

a(R
0—>G1,j(RL)—>Ej®W¢®TQ¥32J®W¢®W¢—>O

where G17j(RL) = Gl(RL) n Ej.

The following lemma characterizes the prolonged symbol p;(Gy(Ry)).
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LEMMA 5.3. The following sequence is short exact:

r1(a(Ry)) T
0 —> p1(G1(RL)) —> s5T*e@ Wt @Tq — = T*Q@ T*Qea wlt e wt —=c—>0

where C = A’T*Q @ WL @ W and 7 is given by
(24) T(A)(X15X27}/1;}/2) = A(X17X25Y15}/2) - A(X25X17}/17}/2)-

Proof. Note that 7 is the alternation map up to a constant coefficient and so is

surjective. Moreover, we have
p1(GL(RL))(A) (X1, X2, Y1, Y2) = A(X1, X2, Y1, G"Y2),

as a consequence of the fact that 7o p1(G1(Ry)) is zero since A is symmetric in the
first two elements. O
LEMMA 5.4. The symbol G1(Ry) is involutive.
Proof. We will show that the basis {e!,---,e"} is a quasi-regular basis. This is

just a dimension count. From Lemmata 5.1 and 5.2 we have

dim(G1(Ry)) = nm(n —m),
dim(G1,;(RL)) = (n — j)m(n —m).

We compute

n—1
dim(G1(RL)) + Z dim(G1j(Ry)) = snm(n+1)(n — m),
j=1
which is precisely dimension of p;(G1(Rr)) using Lemma 5.3. 0

5.2. Involutivity of Ry,.
THEOREM 5.5. The set of A-equations Ry, is involutive if, for p € RL, we have

7(p1(®)(p2) —0) =0,

where pg is any point in Jo(w) that projects to p.

Proof. Note that p;(Gy1(Ry)) is isomorphic to SeT*Q ® W+ ® G*W. Therefore,
it is a vector bundle on the open subset for which G*W is a vector bundle. Let C
be the cokernel of p;(o(®))). Then G(Ry) is involutive and so the system of partial
differential equations Ry, is involutive if the curvature map « : R, — C, defined as in

equation (4), is zero. We have the following exact commutative diagram:

p1(a(®))
0 ——> p1(G1(R)) ——>s,T*Q@ Wt @ TQq ——=> T*Q@ T*Qo wt @ wt L s c——>0
l \L p1(®) l
0 p1(RL) Jg () Ji(=")

l | |

0 RL J1(m) Qe wl @ wt
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Let p € Ry, so that 7w(p) = ¢ for ¢ € Q. Therefore, ®(p) = 0. Take py € Jo(m)
projecting to p and define £ = p1(®)(p2) € J1(7'). By commutativity of the diagram,
¢ projects to 0 € T*Q@ WL @ W, so we take k(p) = 7(£ —0). It is easy to show that
the definition of x is independent of the choice of py [27, 28]. By the discussion in
Section 3.1, p is in the image of the projection of p;(Ry) to Ry, if and only if x(p) = 0.
O

Using Theorem 5.5 and the map defined by equation (24), we can write the

following intrinsic formula for :

K(IA(Z, W, PX, PY) =
(25) V[VZ(GN(PX, PX)] = VZ[Vi (GN)(PX, PX)] = Vi, 2/ (GA)(PX, PX).
This leads to the following theorem which gives an explicit expression for the com-
patibility conditions of the A-equations.
THEOREM 5.6. Let (Q,G) be an analytic Riemannian manifold of dimension n
and let S be the Levi-Civita connection on Q with the associated curvature tensor

R. Let W C T*Q be a given analytic subbundle and let P € T*(T*Q ® TQ) be the

associated G-orthogonal projection as above. If the partial differential equation

(GN(R(PX,PX)W,Z)+ (GX)(W,R(PX,PX)Z)+
(26) 2V (GN)(VE, PX, PX) — 2V5, (GA)(VSPX, PX)) =0
is satisfied in a neighborhood of Ao € T¥(T*Q ® TQ), then the set of A-equations has
a solution in a neighborhood of \g. Moreover, any solution to the A-equations will
satisfy equation (26).
Proof. From Theorem 5.5 and involutivity of the symbol of Ry, a sufficient con-

dition for the existence of solutions to the A-equations is that the curvature map be

zero. We have
VZ(GN)(PX, PX) = G((VZA)(PX), PX),
for all X, Z € I'“(TQ). Thus

Viv[VZ(GA)(PX, PX)] = Vip [G((VZN)(PX), PX)]
G(VS(VEANPX)), PX) + G(VEANPX), VS PX),

where X, Z, W € I'Y(TQ). Therefore,
VS VS (GA)(PX, PX)] = G(VE (VEAPX)), PX) + G(VEANPX), Ve PX).
As a result,

VS [VS(GN)(PX, PX))
(27) =G(VEVEANPX), PX) +2VS(GA)(VE PX, PX).
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We conclude that

Viv[VZ(GN)(PX, PX)] = VZ [V, (GA)(PX, PX)] = Vi, 5 (GN)(PX, PX)
= G(Viy VEAPX), PX) = G(VEVA(PX), PX) — G(Viy 1 MPX), PX)+
+2VS(GN)(VE, PX, PX) — 2V, (G (VS PX, PX).

Finally, using the Ricci identity and Theorem 5.5, we have the following sufficient

condition for the existence of solutions:

(GN)(R(PX, PX)W, Z) + (G\)(W,R(PX, PX)Z)
+2VS(GN)(VS, PX, PX) — 2V% (GN) (VS PX, PX) = 0.

The necessity of this condition is clear since any solution of the A-equation satisfies

equation (25) by definition. 0

6. Formal integrability of Rg. We prove that the system of partial differ-
ential equations for the closed-loop metric has an involutive symbol and is formally
integrable under a certain surjectivity condition. An additional assumption is that
MNTQ/ (GgIW)) is integrable. Recall that a similar assumption has been used in Theo-
rem 4.10. The main result here is Theorem 6.6. Again, this result can be understood

separately from the details of its proof.
6.1. The symbol of Rg. We have the symbol map o(Rg) : T*Q ® S2T*Q —
W+ @ SoT*Q for the partial differential equation Rg given by
o(Re)(B ® A) = N, fje" ® A

in local coordinates.

LEMMA 6.1. We have G(Rg) = ker(c(Rg)) 2 W ® SaT*Q.

Proof. Note that A is an isomorphism, so ker(c(Rg)) is of dimension (n —m) x
(n x (n+41)/2) and so is isomorphic to W ® S T*Q as claimed. 0

Let {e',e?---,e"} be a basis for T Q such that {e',---,e"~™} spans W and
let 3; be the subspace of T} Q generated by {ed*1 ... e"}. Consider the restriction

o(Re)ls, : £ ® S2T*Q - W © S, T*Q,

of the symbol map to 3; ® SoT*Q. We have the following lemma:
LEMMA 6.2. We have

G(RE)l,j = ker(a(RE)|gj®s2T*Q) = (Ej n W) ® SQT*Q

Proof. The proof follows along the same lines as that of Lemma 6.1. 0

In local coordinates, the prolongation of the symbol map

P1 (U(RE)) ST QRS TQ—-T'Q® WJ‘ & S2T*Q7
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is given by
p1(o(Re))(IT® A) = NI, ® A,
where IT € T% (S, T*Q).
LEMMA 6.3. The following sequence is short exact:
5. T'Q® 5, TQ 5 q e W 95,7°Q T AW @ 5, T°Q —> 0

where T is the canonical projection onto cokernel of p1(o(Rg)).
Proof. Recall that

SoT*Q = SaW @ SoW & (W @ W),

By using the definition of p1(c(Rg)), the kernel of p1(o(Rg)) is isomorphic to SeW &

S>T*Q. Moreover, we have
Im(p1(c(Rr))) = (S2WH @ (W o W) @ S, T*Q.

Therefore, the cokernel of p;(o(Rg)) is isomorphic to AWt @ SoT*Q. 0
PROPOSITION 6.4. The symbol of Rg s involutive.
Proof. Let {e',--- ,e"} be a basis for T5,Q for go € Q and let 3; be the subspace
of T} Q generated by {1 ... [e"}. We show that this yields a quasi-linear basis
for T:;DQ Rg. Using Lemmata 6.1 and 6.2 we have

dim(G =1i(n- (n+1),
lin—m— 1 1< —
dim(G(Rs)1;) — 2(n J) (n+1), sj<n-m
n—m<j<O0.
We compute
dim(G Z dim(G(Rg)1,;) = tn(n —m)(n —m +1)(n + 1),
which is equal to dim(p1(G(Rg))) by Lemma 6.3, as required. 0

6.2. Involutivity of Rg. The following theorem applies Goldschmidt’s theorem
to RE
THEOREM 6.5. The partial differential equation Rg is involutive if, for p € Rg,

we have

7(p1(p2) —0) =0,

where py is any point in Jo(w) that projects to p.
Proof. Since the symbol is involutive, the proof follows along the same lines as
that of Theorem 5.5. 0
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One can construct the curvature map similar to the one for Ry :

k(1Ga)(APX,\PY, Z,Z) =
(28) Vipy[Vipx(Ga)(Z, 2)] = Vipx[Vipy (Ga)(Z, Z)] = Viipyapx)(Ga)(Z, Z).

Note that since A(TQ/ (GgIW)) is integrable by assumption, there exists a ¢ € IT'“(TQ)
such that [APY,APX]| = AP(. We state the following theorem which implies the
obstruction to finding a closed-loop metric.

THEOREM 6.6. Let (Q,G) be an analytic Riemannian manifold of dimension n
and let S be the Levi-Civita connection on Q with associated curvature tensor R. Let
W C T*Q be an analytic integrable subbundle and let P € T*(T*Q ® TQ) be the
associated G-orthogonal projection as above. Let A be an automorphism on TQ so
that \(TQ/(G*W)) is integrable. If the first-order partial differential equations

(29) 2V3py (Ga)([Z,APX], Z) = 2V3px (Ga)([Z, APY], Z)
+2Ga(Vipy (VZAPX) = Vipx (VZAPY), Z)
+2G(V5py (VZPX) = V5px (VZPY), Z)
+2Ga(VSpy Z, VEAPX) — 2G (VS px Z, VEAPY) + 2G(VSp Z, VEAPY)
— 2Ga(VSpy Z, VEAPX) + 2Ga(VEX(, Z) — 2G(V5(, Z) =0

are satisfied in a neighborhood of G € T¥(SeT*Q) for X, Y, Z € T¥(TQ) and ¢ €
I“(TQ) as above, then the set of closed-loop metric equations has a solution in a
neighborhood of G.. Moreover, any solution to the closed-loop metric equations will
satisfy equation (29).

Proof. The proof follows from a direct computation using equation (28) and the

Ricei identity (similar to Theorem 5.6). One also uses the following identity

(Ga)(R(Z, Z)APY,APX) + (Ga)(\PY,R(Z, Z)APX) =
(G)(R(Z, Z)APY,PX) + (G)(PY,R(Z, Z)A\PX) = 0,

which holds since G is associated to S. 0O

7. Formal integrability of Rt . We prove that the system of partial differ-
ential equations relating the A-equations to the potential energy shaping equations
is formally integrable under a surjectivity condition. The main result here is Theo-
rem 7.8. As with the previous two sections, this result can be understood separately

from the details of its proof.

7.1. The symbol of Ry. The symbol map for Ry can be written precisely as

the following morphism of vector bundles:

o(Rr) : i T*Q ® (my)*Vr — Va',
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where 7/ denotes the bundle (7/, A;W*, Q). If we evaluate the morphism o at a given
point p, we obtain the following exact sequence, which characterizes the symbol,
G(RT)7 at p:

* o(®)
00— G(RT)|p _— T7r1(p)Q & Vfré(p) (7‘1’) _— Vq)(p)ﬂ/.

Note that the linearization V@ about a point p € J;m with
75(p) = (id|rQeew: © id|rqeew);

can be reduced to a map on J;V7|y1g,Tq)@o since there is no A involved in the
linearization (see equation (22)). If we identify V x(,) (7) and Vg (7') with Wt ®q

TQ)|x1(p) and Ay(WH)|a(p), respectively, we can write the symbol map as
Rl : Tiy Q@ W 2 TQ) 1) = A2V ) o)

We usually drop the points of evaluation for simplicity of notation. Consider the
alternation map Alt acting on the (0, 2)-tensors and denote the restriction of 2Alt to
Wt e T*Q)lxi(p) by 7. Explicitly, if we have b € W#l(p) and c € T7 .\ Q, then

F(b® c)(ur ® ug,v1 B v2) = b(ur)c(vr & va) — b(vr)c(ur B us).

LEMMA 7.1. We have ker(5) = SoW+ and Im(5) = lo(W4).

Proof. Since & is the restriction of the alternation map, one can easily observe that
ker(5) = ker(Alt) N (W* @ T*Q). Clearly SoW+ C SoT*QN (W @ T*Q). Moreover,
for any © € T'“(S,T*Q N (W ® T*Q)), we have

@(ul D U2, U1 D ’UQ) = @(0 D V2, U1 D UQ) = @(0 D UQ,O D ’02).

Thus © € I'“(SaW+) and as a result we have SaT*QN(WERT*Q) = SeW. Recalling
that Aa(T*Q) = Aa(W) @ Ay(W) @ (W @ W) and using the definition of &, one
can observe that Im(2Alt) = Im(5) U Ao(W). 0

The symbol map o(Rr)]|, can be characterized as the following composition map:
T*Q® (W ©q TQ) ———= lL(W') ——= AW+,
where p is the canonical projection of I;(W+) onto AsW+ and
Fb@c®v)=pBw)s(b:c),

with 3 € T; Q. b€ W#l(p), ceT: ,Qandve Tr () Q.
LEMMA 7.2. The following sequence is short exact:

(30) 0—= G(Rr) —= T*Q & W g TQJ s A, (W)
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where
G(Rr) = (SoWH @ TQ) & (We W) @ TQ) & (AW @ ann(B)) .

Proof. Clearly T*Q ® (W= ® ann(3)) C ker(o(Rt)). Lemma 7.2 yields SoW* ®
TQ C kero(Rr). Finally 6(W @ W) ® TQ) C kerp. The claim follows since the
image of AoW+ ® v under o(R) is AW+, where v € T, (,yQ/ann(f). 0
Let {el, --+,e"} be a basis for T:l(p)Q. Let 3; be the subspace of T:l(p)Q generated
by {e/*1,---  e"} and define M*; = W NS, and M*; = WE N E1. Let 1(M¥)) =
I(M*;) N A2(W™). The following two lemmata can be proved along the same lines as
Lemma 7.2.

LEMMA 7.3. The following sequence is short exact:

o(R
(31) 0—> G(Ro)1; — 5, ® W ©q TQ) s 15 (M*,)

GRr)1,; = (S2MF @ TQ) @ (WNE) e Wh) @ TQ) @
(W N5 @ W) /SaM; @ ann(3))

One can identify the prolongation map p;(c(Rt)) as
p1(c(R))(c-d®@b®v) = 1B(v)(c®5(d®b)+d®@&(c®b)),

where ﬁ S T::'1(p)Q’ be WTJr_l(p)v Cud € T::_l(p)Q and v € TWI(ZD)Q'

LEMMA 7.4. The following sequence is short exact:

1(o(RT
(32) 00— pi(G(Ry)) —= S3T*Q® W 00 TQ) “ELTQ & Ayt

where
p1(G(RT)) 2 (SsWHRTQ) & (W Wt eWwh) e TQ)
@ (S eWhH @TQ) @ ((SaW @ W) /Sswh) @ ann()) .

PROPOSITION 7.5. The symbol of Rt is involutive.
Proof. We will show that the basis {e!,---,e"} above is a quasi-regular basis.

Using Lemmata 7.2 and 7.3 we have

dim(G(Rp)) = wn +mn(n—m) + W(n _1),
dim(G(Rr)1 ;) = Gl +21>(m —J) mn(n —m)
= jym = DT Dy gy,

2
dim(G(Rt)1,;) = mn(n — j), ji>m.
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As a result we compute

m—1 . .
Zdlm (Rr)1,5) +dim(G(Rr)) = Z (n (m —j —|—21)(m —J) + mn(n — m)

j=1

O )
+ 5 (o - i) + n 0t D
oty P
= %mn(m +1)(m+2)+ tmn(n+m+1)(n —m)
+ gmm — 1)(m+ 1)(n - 1),
which is precisely dimension of dim(p; (G(Rr))) by Lemma 7.4. 0

7.2. Involutivity of Rr. To compute the curvature map for Ry we use the
following lemma.

LEMMA 7.6. The following sequence is exact:

1

S2T*Q @ W 90 T D TeQ @ AW T AW & (W ® AgW) — 0
where T is the projection to the coker(pi(o(Rt))) given by

7(b)(v1 & v, u, w) =
(b(vy, u, w) + b(u, w,v1) + b(w,v1,u)) + b(ve, u, w), v, u,w € WL, vy € W,

Proof. Recall that SoT*Q = SoW @ SoW+ @ (W @ W), Using Lemma 7.4 and

since
(SsWtRTQ)® (W Wt eWh) @ TQ) C ker(pi(o(Rr))),
we observe that
W @ AW C coker(p (o(R))).

Moreover, by definition the image of p1(o(Rt)) is symmetric in the first two elements,

so one can conclude that
A3WJ' - coker(p1 (O'(RT)))

Finally, a direct computation shows that, for any & € I'“(T*Q ® A;W1), there exists
an analytic section of T*Q ® AsWW- which projects to & under 7. 0

As a consequence of the previous computations, we have the following theorem.
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THEOREM 7.7. The partial differential equation Ry is involutive if, for p € Ry,

we have

7(p1(®)(p2) — 0) =0,

where ps2 is any point in Jomw that projects to p.

Proof. The proof follows similarly to Theorem 5.5. Notice that p1(G1(Ryp)) is a
vector bundle on the open subset on which W is a vector bundle. Since G(Rt) is an
involutive symbol, the system of partial differential equations Rt is involutive if the

curvature map k defined as following is zero:
(33) k1R — AW o (W e AaWh),

with k(p) = 7(p1(®)(p2)), where ps is any point in Jo(7) that projects to p.

Consider the bundle 7' : AW+ — Q and let p € Ry be such that m(p) = ¢
for ¢ € Q. Therefore, ®(p) = 0. Take pa € Jo(m) projecting to p and define £ =
p1(®)(p2) € Ji(7’). One can show that ¢ projects to 0 € T¥(AW1), so we take
k(p) = 7(€—0). It is easy to show that the definition of  is independent of the choice
of po [27, 28]. By the discussion we had in Section 3.1, p is in the projection of p1(Rt)
to Ry if and only if k(p) = 0. 0

Recall the definition of R, from Section 4. We have the following theorem.

THEOREM 7.8. Let Yo = (Q, Gor, Vor, Foi, Wol) be an analytic open-loop simple
mechanical control system. Let py € Rpoy and let g9 = mi(po). Assume that go
is a regular point for Wy and that there exists a bundle automorphism © on T*Q
defined on a neighborhood U of qo such that © satisfies the following equation in the
neighborhood U :

(O = (2O Wer _ 005 OVor) | (06} 0%Wer 9O, 0%V
i "\ 9grogi Ogl dq"0q* Oq 0¢7 0qrdqt  Oqt Dqmdq!

((%)ﬁ Vo 00 52%1) ( L PVl o *Vol )—0

dq" 9gidg  dq" 9gidg! ‘997 9¢idq 7 dqrdqidg

where 1,7 € {1,--- ,m}, 1l € {1,---,n} andr € {m+1,--- ,n}. Then there exists
an analytic closed-loop energy shaping metric G prescribed by Ggl =0o Gzl and an
analytic (Go1-Ge)-potential energy shaping feedback F € T (W) defined on U which
satisfies Ppot(po) = O71dV (o) — dVor(qo) + OdVoi(qo) for a solution V' to Rpot.

Proof. Observe that the system of partial differential equations Rt, with © =
A

Cll and § = dV,, prescribes the sufficient conditions for existence of a (Go-Ge)-

potential energy shaping feedback; see equation (21). Using Theorem 7.7, this partial

differential equation is integrable if the curvature map given by equation (33) is zero.
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A direct computation shows that the curvature map is given in local coordinates by:

n(©)] = 00} Vo 96; Vo | 00} PV 0O 9Vy
\0qrogr 0¢t  0qroqgt O¢t T O¢F DqmOqt  Oqi DqTOq!

00; Vo 005 PVa o1 PVa o 8V .
Oq" O¢idqt  Oq" 0q*dq! £ 9q" g7 D¢ 3 8¢ dq'dq q
®dq* Adg’,
where i,j € {1,--- ,m},l€{l,--- ,n}andr € {m+1,--- ,n}, as desired. 0

As an example, we discuss systems with one degree of underactuation.

EXAMPLE 7.9 (Systems with one degree of underactuation). Numerous systems
considered in the literature on energy shaping have one degree of underactuation.
In [4], the authors introduce a coordinate system that transforms the system of partial
differential equations into a homogenous equation. Using the results of this section,
one can give a complete description of the system of partial differential equations with
one degree of underactuation. The following theorem shows that in this case it is
enough to find the set of bundle automorphisms which satisfy the sufficient conditions
of Theorem 5.6.

THEOREM 7.10. If ¥ is a simple mechanical control system with one degree of
underactuation, for each bundle automorphism which satisfies the set of A-equations,
there exists a closed-loop metric and a closed-loop potential function which satisfies
the energy shaping system of partial differential equations.

Proof. Note that the projection map T in Lemma 7.6 is a zero map for m =
1 and so the closed-loop metric equation is involutive by Theorem 6.6. Moreover,

equation (21) always holds for m = 1. 0

8. Summary. In this section we give a summary of the theorems we have ob-
tained in the previous sections. Moreover, we state a procedure that clarifies how one
should perform the energy shaping method so that certain problems—such as having
a closed-loop energy shaping metric for which no potential energy shaping is possi-
ble—will not happen. This procedure reveals some of the fundamental properties of
energy shaping partial differential equations that have not been addressed before.

1. Kinetic energy shaping: Find the set of bundle automorphisms A on TQ
which satisfy the sufficient conditions of Theorem 5.6 and denote it by Sk.
Use the sufficient conditions of Theorem 6.6 to find the set of \ € gK for
which there exists a closed-loop energy shaping metric G¢ and denote it by
Sk.

2. Potential energy shaping: Find the set of bundle automorphisms © on
T*Q which satisfy the sufficient conditions of Theorem 7.8 and denote it by
gp and let

L={0"110¢eSp}.
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The set of bundle automorphisms Sp induces a set of bundle automorphisms
on TQ by

Sp = {GEAGY | A € Sp).

Note that by Theorem 4.10, for each A € Sp there exists a V) which satisfies
the potential energy shaping partial differential equations.
3. Total energy shaping: The intersection Sp N Sk yields the set of A such
that
(a) there exists a closed-loop metric which is a solution to the kinetic energy
shaping problem and
(b) more importantly, potential energy shaping is possible, and as a result
energy shaping is possible.
4. Determine the set of closed-loop potential functions V; with positive definite
Hessian at the desired point. It would be interesting to have a geometric

characterization of this.
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