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Branching processes as population dynamics
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Branching processes were once born out of a question from (human) population dynamics. Lately the driving
forces have been, and continue to be, more of pure mathematical nature. Nevertheless, the resulting theory
turns out to solve many classical problems from general, usually deterministic, population dynamics. These will
be reviewed, with an emphasis on basic structure and on problems of the rate of population growth and the
ensuing population composition. Special attention will be paid to possible interaction between individuals. or
between the environment or population as a whole and individual reproduction behaviour. But the framework
will remain the general model without explicit special assumptions about the form of interactions, lifespan
distribution or reproduction,

Keywords: branching processes; dependence: population dynamics; renewal theory

Population dvnamics, and even a concern for the destiny of human populations, is certainly what
once gave birth to branching processes, and did so on repeated occasions. Bienayvmé (1845)
formulated what later became known as the Galton—Watson process with the purpose of studying
the ‘fate [of extinction] that allegedly hangs over the aristocracy and middle classes’. Galton’s own
formulation, in terms of the possible survival of the family names of N adult males who colonize a
district, has become more than famous (Galton 1873).

Still half a century later, when Andrei Nikolaevich Kolmogorov (1903—87) worked on branching
processes, population dynamical questions seemed very much in focus. His works have titles like
‘The solution of a biological problem’ and ‘The transition of branching processes into diffusion
processes and related genetic problems” (Kolmogorov 1938; 1959).

Among them vou may also notice a short work with the astounding title *On a new confirmation
of Mendel's laws’ (Kolmogorov 1940). The point is the vear. during the Hitler—Stalin pact, when
Lysenko's grip over Soviet genetics was firm. [ have included it to honour Kolmogorov as a scientist
in the widest sense of the word. It certainly deals with population dynamics but lies far from
branching processes: it presents a statistical analysis of what fluctuations to expect in Mendelian
schemes. The conclusion reached is that a paper by one of Lysenko’s followers {Ermolova). claiming
to refute Mendel, on a closer examination turns into a confirmation of his theories. There are also
openly disdainful comments upon another anti-Mendelian paper by a then quite illustrious Marxist
philosopher, Kolman. For such matters people — at that time, in that country — were indeed, at the
very least, risking their jobs.

Since Kolmogorov, branching processes have certainly changed their focus. They have grown
into fully-fledged mathematical theories. well integrated into probability theory, and with some
connections to statistical inference. In their turn, they have given rise to still more theoretical
mathematics, such as measure-valued or so called superprocesses. But relations to the outside world
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are often only weak. This is the usual development, from relevance to sophistication, from
answering questions posed from a general point of view to dealing with the intricate details of
elaborate theories (or. from another perspective, from models with broad ambitions to conceptually
simpler frameworks, which, however, vield a rich mathematical theory). In happy cases, the sadness
of this evolution is alleviated by the advent of new, more or less unexpected applications. And
indeed. after maybe too long in mathematical celibacy, branching processes today find fascinating
use in as disparate areas as the analysis of computer algorithms and the fractal descriptions of
complicated geophysical phenomena.

And the roots still offer much of interest. To the mathematically inclined 1 hope to show that there
are challenging tasks in general population dynamics. Those primarily interested in the dvnamics of
populations per se, biology or demography and the statistics that goes with it, will find contri-
butions, and perhaps even insight. hard to obtain except by using the impressive power of modern
probability theory. In that sense, this paper provides a defence of some mathematical art pour 'art :
it would be hard. if not impossible. to understand more general population schemes without access
to detailed and mathematically sophisticated knowledge of conceptually simplistic artefacts, like the
Galton—-Watson process, studied merely for mathematical curiosity.

It is to the basic and general problems of population dynamics that we shall address ourselves, If a
population does not die out, can its size stabilize? If not. how guickly must it grow? Will its
compaosition then stabilize? To what? And if it has a stable composition, what was its path towards
it; what is the history of a stable population? In this manner, can we even hope to say something
about how populations on earth mayv have evolved to what they are today?

In parts, these are matters that have a long scientific tradition, in parts they are prompted by
recent advances in evolutionary theory, molecular biology, or cell kinetics. Trying to answer them
we shall have the general pattern in mind all the time, rather than specific populations. In this
respect we differ both from reallv applied population biclogy, and from the rich deterministic
mathematical population dynamics. based on partial differential equations and analogies with
classical physical reasoning of the fluid dynamics type. These both tend to concentrate upon specific
natural, or quasi-natural, populations. And we also deviate from what is possibly the mainstream of
present-day applied probability, the analysis of quite special distributional structures. Here there
will be no particular distributions. no Poissonian births, exponential lifespans, or normally
distributed weights.

The one important restriction will be the one historically defining the theory: that individuals,
once born into the population, live and reproduce independently of one another. Though
conceptually clean. and methodologically fundamental for the hundred vyears during which
branching processes have been studied, this presumption certainly limits the theory. If there is
one thing we know about life, it is that it is full of interaction. Sull independence remains a natural
idealization: indeed. populations change by their members changing. Individual dynamics comes
first, population dynamics later. But once the theory is established, it is important to proceed
beyond it and investigate what kinds of dependence it can accommodate, between individuals,
between the population as a whole and its members, or between a varying environment and the
populations it can support. We shall end by saying some words about the complications of such
interaction.

But first the established theory. In this, as we have seen, your mother is the only person to depend
upon. She is the one to make the choice whether you will be born into life or not, and then also at
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what time this will happen. And in giving birth, she passes on to vou the genetic imprint that
constitutes vour rype and determines the probability measure over all your possible life careers.
Thus, the process marches on, Markovian in the pedigree, though certainly not generally so in real
time. Allow me to stress this last point: Markovianness of population growth in real time either
requires biologically unreasonable assumptions on the individual level, essentially the absence of
ageing effects, or else it leads to strange, untreatable state spaces. Much pain in theoretical
demography has resulted from the stubborn reluctance to realize that if there is a Markov structure
at all in population growth, then it resides in the tree structure of the pedigree rather than in real
time.

On the population level, the Markov tree property manifests itself in regeneration at so called
lines or cuts. These are sets of individuals, which are thin in the sense that no member of a set may be
a descendant of any other member. A generation thus constitutes a typical line. Another is the
Nerman line at a time 1, the set of individuals not vet born at 1, whose mothers have, however, been
born then (Nerman 1981). For any line, once the types (and birth times) of the individuals in it are
given, their progeny will be independent of the rest of the population. This is one of the two
properties heavily used in the analysis of population evolution. the other — actually a consequence of
the Markovianness — is that the population must also be branching in the sense we have referred to
as almost defining the subject, that disjoint daughter populations are conditionally independent of
one another, given the initiator’s types and birth times.

Now, start the population, at the dawn of time, from an Eve of some given type, and henceforth
measure it by some measure that is additive over individuals, i.e. at each time point we measure all
individuals one by one — perhaps just count them — and add the measures together. Let the measure
of an individual possibly depend on the individual’s tvpe. and at each time point also on her age
then. Assume that the measure — at this stage — is otherwise independent of the individual's past and
indeed identically distributed. Such a measure is called a characteristic, and at any point in time the
process, as measured by that characteristic, is obtained by summing over the values of all
characteristics then. We assume that the measure vanishes at negative ages, i.e. vou make no
contribution until you are born.

It is now well known that such processes, and indeed much more general populations, either die
out or grow to infinity. In order to get interesting models for persisting populations, it seems
necessary to think of infinite populations in some grand macrocanonical space, and then possibly
focus on the finite population that dwells in some bounded subset of the space. This is an active area
of research (cf. Wakolbinger 1995) which I shall not go into. Actually, I am not at all convinced that
the extinction—explosion dichotomy renders branching-stvle processes as unsuitable as long-range
biological models, as many. among them Kolmogorov, have argued. Indeed. in a recent book, with
the quite suitable title Extinction, the palasontologist David Raup (1991) argues that 99.9% of all
species that ever existed are now extinct,

If populations do not die out, then it has been the established truth - since Thomas Malthus’s
famous essay of 1798 — that, under broad conditions, growth must occur at an exponential rate, The
fact that in this growth the population composition must stabilize, is a more recent insight. But one
aspect of it, the so called srable age distribution, has a rich history. It was basically known already to
Euler — who also knew about exponential growth well before Malthus (see Euler 1767). Since then it
has been rediscovered over and over again, by demographers, actuarians, population biologists, and
maost recently cell researchers.
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Generally, the stable population composition is best described in terms of a typical individual, i.e.
one chosen at random. What is her age distribution? What is the probability that she was first-born,
that she is pregnant or, say. in mitosis? However, the sampling frame should not be the population
of those alive right now, but rather the (admittedly somewhat theoretical but none the less well-
defined) total population of all those born, dead or alive, since the inception of the population. This
may seem strange. But logically it is being born into the population that is the primary concept.
Then you may display various other properties, like belonging to a certain age group, being of a
certain type, or for that matter remaining alive. The probability of these will follow through simple
conditioning.

By exponential growth, the typical individual will have an exponentially distributed age, with the
Malthusian growth rate o as its parameter. [f she was sampled only from those alive, the classical
stable age distribution of the population will appear. by the conditioning argument: it is the age
distribution. when sampling from the total population, but conditioning upon the individual
sampled being alive.

And her history, her mother’s tvpe and age when she was born. her grandmother’s and so forth,
constitute a Markov renewal process, as time rolls back. Its parameters are determined in a beautiful
way by the entity that turns out to govern most of population growth, the individual reproduction
kernel, which is the expected number of children of various types, to be obtained at various ages by a
mother of a given type,

ji(s. A x B) = E[#A4-type children from an s-type mother of age € B].

Thus, first the Malthusian parameter is chosen as the discount factor to render the reproduction
kernel integrated over all ages,

o
fils, ) == L e “uls, A x di),

a transition operator with Perron root 1. What this actually is (cf. Shurenkov 1989; or 1984), may be
of less importance to readers of this paper. What matters is that it is well determined. Usually we
shall have the so called supercritical case in mind, where o > 0, by definition. Under suitable
recurrence and communication conditions — basically it should be possible for individuals of any
type to have descendants of any other type. sooner or later, and this is important to bear in mind, as
we shall see when we turn to cases with dependence — if the type space is not too unwieldy in this
sense, then the transition operator can further be shown to have an eigenfunction & and an eigen
probability measure =,

j h(s)i(r, ds) = h(r),
LY

L;l(ﬁ,fi}rr[ds} =w(4).

These are the reproductive value function and stable population measure, respectively: h indicating
the relative reproductive efficiency — or fitness — of the genotype 5, whereas ., as the name implies,
gives the asvmptotic stable distribution over types in the population.
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In summary:

1. We have a strict mathematical definition of the otherwise somewhat vague biclogical concept
of fitness.

2. The Malthusian growth is e, It is independent of the starting type and of the particular way
of measuring the population.

3. While growing, the population’s composition settles down to the stable population composi-
tion determined by the reproduction kernel. In particular, the type and age distributions
stabilize.

4. Looking backwards, the typical ancestry of an individual in the asymptotic stable population
is a Markov renewal process, again determined by the reproduction kernel. The probability of
an r-individual having a mother with type € ds, who gave birth to that individual at age € du,
is

w{ds) e ™™ ulr, ds x du)/=x(dr).

5. The long run average age at childbearing is the proper time-scale of growth, the generation
time.

The renewal structure of a typical ancestry is not only a picturesque piece of information for the
amateur genealogist, wanting to know where in the archives to search for her forebears. It may shed
light upon virtually any aspect of population history, e.g. the much debated questions of the role of
neutral mutations in evolution. and their establishing a possible molecular clock of the evolution of
species (Taib 1992).

To this end, interpret a mutation, in a gene or protein, say haemoglobin or mitochondrial DNA,
as initiating a new super or macro individual, as it were. In this manner we obtain a pruned
population tree, which is the realization of a new branching process. In the latter births occur only
with mutations, and tracing ancestry backwards in it is preciselv investigating the stream of
mutations in evolution.

We conclude at once that this is a renewal process. Not really a Poisson process, in the strict sense
of the word, and as the proponents of the molecular clock hyvpothesis might express themsealves, but
close enough. It is also easy to see that the stream should be independent of vaniations in population
size, and actually it is determined by the mutation rate, two important but debated tenets of modern
evolutionary theory. Thus we obtain a sort of checklist for the molecular clock hyvpothesis in terms
of an alternative, branching model. and we may conclude that it basically fares well.

Turning back to the general resuits about growth, asymptotic composition, and history of old
branching populations, they are typically derived in two steps. First, expected populations are
considered, then results are extended to the processes themselves. The mean analysis boils down to
the application of either functional analysis, or better, of Markov renewal theory in the strong
formulations now available, again thanks to the development of quite abstract probability theory.

The approach towards it starts from the — more than trivial - observation that each individual x
divides the population in two parts, those stemming from it. the daughter process as it might
suitably be termed, and the rest. In the classical branching framework the daughter process
constitutes a new population, which 15 indeed independent of the rest, given x's type. Further-
more, the expected population size is the expectation of the sum of individual sizes. But the
expectation of a sum is the sum of expectations, and for each individual we can replace her size by a
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conditional size, given all information not in her daughter process. And in the classical set-up, by
independence the expected size will have the simple form that it is a function of the individual's type
and age. But certainly, conditional independence is an exorbitant price for such a cheap property.
Why not just assume the property itself, that there exists a function ¢ such that the conditional
expectation can be thus written?

Thus, define the ancestry and daughter process of any individual x to be A, := o (the lives of all ¥
ancestors) and D, := o (the lives of all x"s progeny, including herself’), respectively. Write &, for x's
type and 7, for the time of her birth, and yx, for the characteristic measuring her size. The
characteristic may depend upon x's type and age, but otherwise it must be measurable with respect
to x's daughter process. Thus, by definition the population size, as measured by y at time 1, is

o= ZX:(*—"::: [=Tg).

The sum here is over all possible individuals, and the y . may be taken as non-negative and bounded,
so as to avoid complications. Recall that they vanish if r, > 1.
Refraining from classical independence requirements, we make the following assumptions:

Assumption 1
There exist a historical o-algebra H, such that

A, CH, C olthe lives of all those nor stemming from x),
and a function ¢ such that

E{x;{ax' TIHH.!} = G{am = T:'I:}'

Assumption 2
There is a reproduction kernel u satisfving

E{# A-children from x of age € B|/H,} = u(s,, 4 % B).

Then we will be able to step backwards along x’s ancestry, to regain the renewal expression that may
yield the expected asymptotics. Indeed, repeating the verbal argument above in terms of formulae,

E:'::H =E, (z Xx(0xs t — Tx})

xef

=Y EJ[E{x:(00,t — 7:)[H:}]

xef

— Z E{¢(ox,1 — 7)}.
xef

In this E,[¢(s,. 1 — 7.)] = ¢(s,7) for x being the ancestor, born at time 0 and of type s. Then the
conditioning can be repeated for the first generation, and these arguments finally lead to the Markov
renewal tvpe expression looked for (Jagers 1995).

Now, the requirements made are strange in the sense that they turn vacuous if you can choose the
type space freely, so that it can carry all the relevant information contained in the conditioning. The
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proper question becomes whether the type space can be chosen neat enough. so that some Markov
renewal theory can be brought to bear on it. And this is precisely what may not be the case, if the
individual's behaviour is influenced by too many factors, if there is interaction, and we have chosen
the historical o-algebras to be maximal, ie. equal to the complement of the daughter process.
Therefore, it is important to be able to choose the historical o-algebras to be smaller. Then, we
would average many dependencies out. and have a greater chance that a nice little compact type
space could channel all appropriate information. The reason for giving some leeway in the choice of
historical g-algebras, and not simply always choosing it to equal the ancestry, is that it might be
smoother to include some information into the conditioning that is not contained in the latter, e.g. a
total population size dependence.

The abstract form of the assumptions may well seem abominable, and the precise meaning
elusive. But the substance is straightforward: we can forget about dependencies between the
individual considered and individuals not in the historical o-algebra. Hopefully we can choose
the latter so that the way it affects the future is easily expressed through a type.

Three obvious examples, or test cases, spring readily to mind, the first a local form of dependence,
the second and third more global forms:

1. Dependencies that are local in the family tree, and simply disappear in averaging when
H,. = A, as in interaction between siblings, cousins, eic.

2. A random environment, so that each individual obtains a type that is influenced by the
environment prevailing (at her time of birth). For the ordinary theory such an environment
should then vary in a nice recurrent fashion.

3. The tvpe may be influenced by the total population size at that time, or earlier.

In all of them, and certainly much more generally, the approach sketched yields the expected
evolution of populations even with some dependence between individuals. This is important —
results about means tend to be underestimated by probabilists, even though they are the core of
much classical applied mathematics. Nevertheless, the real pride and glory of branching process
theory remains the fact that supercritical processes themselves behave like their expectations.
Unfortunately, this is harder to prove and indeed, for some cases with dependence, as in a random
environment, it will not even be true. The reasons for this become clear if we recall the type of law-
of-large-numbers reasoning that establishes the asymptotics of population processes.

At any given time, the population can be viewed as essentially consisting of disjoint subpopu-
lations, stemming from some line long ago. In the classical branching case these will be conditionally
independent and suitable forms of the law of large numbers apply, to yield the desired stabilization
of the process around its mean.

In the present situation, matters are more complicated. It is not clear how to transfer properties of
conditioning per individual, as it were, to a situation where you want to condition upon a whole,
say, generation of individuals. And. anyvhow, the covariances between daughter processes need no
longer vanish. But, in cases of only local dependencies most of them nevertheless will. (For a strict
analysis of this case, in somewhat different terms, see Olofsson 1994.) And in cases of competition -
for example. if there are limited resources — the correlations between daughter population sizes will
be negative. and thus just enhance the stabilization of actual population composition. For these
reasons, classical results, about exponential growth as well as about the ensuing stable composition,
will remain true in many cases with complicated dependence.
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For an illustration, let us look at a straightforward, but much studied tumour model, which aims
at describing the fact that as a tumour grows bigger, its rate of increase tends to slow down. Tumour
cells either become quiescent, with a probability that depends upon the tumour size, or else they
enter a cell cycle, which ends by division. And so the history repeats itself. Assume that the cell cycle
has a distribution function, G. For the time perspective that we have in mind, we may safely think of
quiescent cells as relishing eternal life.

Write m{s) for the expected number of daughter cells of a cell that is born into a tumour of size 5,
so that mis) is twice the probability of entering the cell cycle. While the cell then cycles, the
population will grow. It is tempting to presume that if the cell cycle is of length ., then the
population size, when the cycle ends, will equal, say, r, with some probability p,(s. r). However, this
would lead us into the pitfall of assuming that the population size is Markov in real time, and even
homogeneously so. And this may have unwanted consequences on the individual level, as we have
already pointed out. However, that can rather easily be avoided by a slightly more general
approach, where one considers the more complicated state space § of non-increasing positive but
ultimately vanishing functions on the positive half-line, with the interpretation that s(¢) is the size ¢
time units ago. Then, the existence of a transition probability kernel p, (s, dr) should not seem so
threatening.

Forgetting about such complications we would arnve at a reproduction kernel and expected
weight function

pir,ds » du) == 2p(r) p,(r, ds)G{du),
als,a) == 1 = p(5)Glu),

seemingly well suited for our analysis.

But there is more to be beware of. Biologically we should consider means mi(s) that decrease, the
bigger the tumour the greater the necrosis, and other complications to wild growth. Thus m(s) |
some number m > 1, as s — oc. But there is no extinction in this model, and then the population size
must tend to infinity. The situation lacks all recurrence properties necessary for Markov renewal
theory!

We need some transient renewal theory, catching cases where the type in some sense tends to
infinity, while reproduction stabilizes.

Indeed, endow the type space with some topological structure and some element of infinity.
Furthermore, assume that the reproduction kernel converges, as the mother’s type approaches
infinity, and that individuals of type infinity can bear children only of that same type. Define
the Malthusian parameter to be the proper discount factor for the infinity type reproduction
kernel, and assume that the types must tend to the infinity element, unless the population dies out.
Then, a Markov renewal theory can be established, vielding the desired Malthusian growth and
composition stabilization under certain, unfortunately rather strong, conditions (Thorisson,
personal communication, 1994).

It might not be worthwhile formulating those in the general case. But in special cases, suchas a
Galton—Watson version of our tumour model, quite an elegant characterization follows directly.
Provided the expected number of children settles down quickly enough, as the population grows,

Z{m[.ﬁ:} —m} < =0,

k
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the tumour grows at the same Malthusian rate as one without tumour size dependence, m being the
expected number of children per cell. This should be compared to Klebaner's (1984) corresponding,
essentially necessary and sufficient. condition for L'-growth, 3", {m(k) — m}/k < .

This little example was chosen in order to illustrate what is new in this paper, the possibility of
including certain interdependencies in general branching structures. But it has another, more far-
reaching message, that could have been conveyed by any of the many applications of branching
processes. And that is that the general is not all that far from precise special models, in spite of all
seemingly verbose and formula-ridden abstraction. Indeed, the basic message of this paper is that
the essence of population growth, the individual branching off into new individuals, is a strong
pattern, tending to pervade structures where it is present, and dominate whatever other properties
there may be, be it the special qualities of cells, fish, moose. elementary particles or search
algorithms. And of course the message is that this essence can be studied in an astonishing
generality. Thus, I dare hope that I have made a plausible case that the general stochastic theory
of population dynamics, based on branching processes. is important for our understanding the
dynamics of real populations.
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