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Limits of spatial branching populations

ANTON WAKOLBINGER
Fachbereich Mathemarik, Johann Wolfgang Goethe-Universitat, D-60034 Frankfurt am Main, Germany

In critical branching and migrating populations, mobility of the individuals counteracts, and the clumping
effect caused by the branching favours local extinction of the population in the large time limit. For example, d-
dimensional critical binary branching Brownian motion (d > 1) with a spatially inhomogeneous branching rate
V(x), when started off with a homogeneous Poisson population, persists if ¥(x) ~ ||x]|*(log|[x||)™"""*, and
suffers local extinction if F(x) ~ ||x|[*~*({log||x||)~" as ||x]| — =c; this can be derived from a probabilistic
persistence criterion (Theorem 2). Besides presenting this result, the paper reviews conditions on the parameters
of various other models which are necessary and sufficient for persistence, and discusses related results for
superprocesses. Common to the proofs is the method of analysing the backward tree of an individual
encountered in an old population, originally due to Kallenberg (1977) and Liemant (1981) in discrete time
seftings.
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1. Introduction

This paper focuses on two kinds of limits of spatial branching populations, namely ‘large time
limits’ and ‘superprocess limits’, and some of their interplay.

As to the former, it is well known that “there are no freely reproducing populations of stable sizes’
(Jagers 1991). Nevertheless, for a large class of models, ‘stabilization’ of (initially finite) supercritical
branching populations has been proved in the sense that the distribution of the pedigree of an
individual sampled among all those alive in the population at time ¢ converges as 1 — oo (Jagers and
Nerman 1984; Nerman and Jagers 1984). Taib (1992) gives a good account of this and also treats
applications to population genetics.

The situation is somewhat different in models of infinite spatially (or ‘geographically’) distributed
populations, whose individuals perform migration and branching: here, convergence to a non-trivial
equilibrivm may occur in situations of purely critical branching, provided that the mobility of the
individuals is strong enough to counteract the clumping effect caused by the critical branching. We
will illustrate this in the present paper with a series of examples. These were primarily motivated not
from the point of view of biological applications (though a point of contact might be the work of
Sawyer (e.g. Sawyer 1976; cf. also the discussion in Jagers 1991), but rather from the theoretical
interest in investigating by probabilistic methods the borderline between persistence and local
extinction of infinite critical branching populations, and sometimes also in obtaining nice analytic
corollaries, like that of Theorem 5 below.

All the examples presented in Section 2 are very simple ones within the general class of (Crump-
Mode-Jagers) branching processes, since the individuals are allowed to generate their offspring only
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at the end of their lifetimes (and develop independently in all other respects). Nevertheless, the
question for which model parameters these critical branching populations are persistent, in the sense
that they converge towards a locally non-extinct equilibrium, is not so simple, and will be attacked
by the method of ‘backward trees’ described in Section 2.2 below. There is a close connection
between these backward trees and the “stable pedigrees’ mentioned above: the backward tree roored
at site x arises as the pedigree of an individual sampled from all those in the old population which
are situated ai site x, given there is at least one.

In all the models described in Section 2, the expected number of individuals in a bounded region
{though not always its second moment) remains finite; in addition, all the branching equilibria
which occur are “of Poisson type’ in the sense that they consist of a Poisson system of clans or
Sfamilies of mutually related individuals (cf. Liemant er af. 1988, Section 2.7). The ‘backward tree
method’ also turns out to be helpful in answering the question whether these equilibrium clans
behave in a recurrent way in the sense that they come back to populate a bounded region again and
again (see Theorem 7).

When speaking of ‘convergence into equilibrium’ we will, for simplicity, have in mind a Poisson
initial population whose intensity measure is invariant for the migration process (cf. the remark at
the end of Section 2.2). Conditions on non-Poisson initial populations which also guarantee the
same convergence are established in Liemant et af. (1988), Cox (1994), and Gorostiza and
Wakolbinger (1992; 1994).

All the models we consider in Sections 2.3-2.6 have (apart from a possible rype dependence)
spatially homogeneous branching mechanisms. If one, instead, considers models with strong spatial
inhomogeneities in the branching mechanism, then also questions like that of spatial tail triviality of
the equilibrium populations, and of recurrence/transience of ancestral lines in equilibrium, gain a
new interest {Matthes er af, 1992; 1992-3),

There is one particular scaling limir of branching populations. namely that of measure-valued
branching processes or superprocesses. in which the individual branching rate has been speeded up to
infinity (whereas the individual mass has been scaled down to zero). Therefore one can observe
certain features, which in branching populations arise only in the large time limit. in superprocesses
— as it were, under the microscope — already after a finite time; one instance of this, as well as some
other links between superprocesses and branching populations, will be mentioned in Section 3. The
term ‘superprocess’, which has now more or less become a synonym for measure-valued branching
processes, was originally coined by Dynkin (1989) for a more general class of infinite-dimensional
processes ‘projecting down’ in a suitable way. In the case of measure-valued branching processes or
Dawson—Watanabe superprocesses, the branching dynamics is ‘superimposed’ over the motion
dynamics, and the superprocess projects down to the semigroup of the motion process by taking
expectations.

2. Large time limits of critical branching populations

In this part we will give, for various models of spatial critical branching populations, conditions on
the model parameters which are necessary and sufficient for persistence. All these examples display a
qualitative feature which could be formulated as follows: “The more branching, the higher the
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tendency towards extinction; the more mobility, the higher the tendency towards stabilization or
persistence’,

2.1. BRANCHING RANDOM WALKS

Recall that in a branching random walk on Z¢, an individual performs a motion step according to a
random walk and, at the site at which it arrives, is replaced by a random number of offspring, the
law of this random number remaining constant over space and time, and the offspring individuals
continuing independently in the same manner. The branching law is called critical if the mean
number of offspring is 1; let us speak of an ordinary branching random walk if the motion is a simple
(symmetric) random walk and the branching law is critical and binary.

Why does a branching random walk (with a uniform initial population) in two dimensions go to
extinction, while in three dimensions it persists? A rough heuristic argument rendering at least the
‘eritical dimension” would be the following: after n generations, approximately every mth ancestor
has given rise to an offspring of size about n, whereas the other families have died out. So, loosely
speaking, in order to guarantee persistence, in the long run each of these surviving clusters of size
has the responsibility of spreading over a cube of side (at least) n'/. Since the mean square
displacement of a symmetric random walker in n time steps is #'/%, dimension d = 2 will play the role
of a boundary case. The following more general result (Kallenberg 1977; Matthes er al. 1978,
Theorem 12.6.4) implies local extinction also in dimension d = 2:

Proposition 1 A branching random walk with critical branching law having finite second moment
is persistent if and only if the symmetrized motion is transient.

A word concerning the terminology. We call a branching population persistent (with respect to a
locally finite invariant measure g for the particle motion) if the system, starting off with a Poisson
distribution with intensity p, converges in the large time limit to an equilibrium distribution with
intensity g, This, by the way, is equivalent to the existence of some equilibrium distribution with
intensity p. If there is, up to a constant factor, just one locally finite invariant measure p for the
particle motion, then the following dichotomy holds: either the system is persistent, or it is unstable,
i.e. suffers local extinction when starting off with some initial distribution whose intensity is
majorized by p (see Liemant et al., 1988, Sections 2.3 and 2.6).

Let us revert to the two-dimensional random walk and drastically reduce the branching, by
allowing critical branching only at one ‘catalyst site’, say the origin, and let us see what the simple
heuristics from above tells now: a simple random walk path’s nth visit at the origin occurs at
random times R, such that .'?E,,,-"n'2 converges in distribution towards a non-trivial limit. Thus,
roughly speaking, in n time steps, a path gets about n'/* opportunities to branch. This would
produce clusters of size n"ﬂ, which may well spread out for a distance of at least n'*, thus yielding
persistence. Of course, an argument like this is somewhat sloppy, but indeed the following
proposition holds,

Proposition 2 (Wakolbinger 1991) A simple random walk on Z* with a critical binary branching at
the origin is persistent,
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This is an easy consequence of a second-order persistence due to Liemant (see Liemant et al. 1988,
Theorem 2.5.4), which is related to the analvtic persistence criterion (P) described below.

2.2. BRANCHING BROWNIAN MOTION WITH AN INHOMOGENEOUS BRANCHING RATE

Now consider a critical binary branching Brownian motion in ®* with a (possibly spatially
inhomogeneous) branching rate (x); by this we mean that every individual migrates, indepen-
dently of the others, according to a Brownian motion, dies at a rate ¥(x) depending on its actual
position x, and gives rise to 0 or 2 offspring, each with probability % at its death position.
Proposition 1 suggests that a branching population of this kind should be persistent if ¥ 1s bounded
and has a bounded support. As the following proposition says, there also is persistence if the
branching rate ¥(x) has a suitable decay (say O((log (|| x||)™"™) as || x || — oc:

Proposition 3 For d > 2, critical binary branching Brownian motion in B¢ is persistent provided
its branching rate obeys

L F(x)dx < oo (2.1)
and
V(x)
J‘Rd'.B || x ||3{d’—“ dx < o, {22}

where B denotes the unit ball in 29,

Proof

There are at least two ways of proving this: one is basically analyric, exploiting the fact that the
Laplace transform of the limiting population (modelled by a random counting measure N, on R
has the form

Ee~ /) = exp|- (3,1 —e7) +] AV O = we(,0))) drf,
" :
where u; solves the nonlinear partial differential equation

guf{x, ) = Adug(., ))(x) = V(x}{l —ue(, )}, u(x,0) = e,

A= .ﬁ is the ecneramr of the particle motion, the function f is non-negative and continuous with
compact support, A is Lebesgue measure on R, and the symbol (N, f) denotes the integral
Jre f(x) Noo(dx).

The persistence requirement’ that the random population N, has intensity X, ie. E{N ., f})=
(X%, f), is guaranteed by the criterion

j: J_J V{x]{rzg}{leﬁdlidx:l di < co, (P)
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where m, denotes the transition semigroup of Brownian motion, and g is non-negative and
continuous with compact support. For more details, we refer to Gorostiza and Wakolbinger
(1994), where the corresponding version of criterion (P) is derived for a much larger class of particle
motions and branching mechanisms, and also a proof of Proposition 3 is included for the case d = 2.
In fact, it was Ted Cox who realized (first for the case d = 2) in joint discussions in autumn 1992 that
criterion (P) for critical binary branching Brownian motion boils down to the assertion of
Proposition 3.

Another more probabilistic way of proving Proposition 3 relies on the so called *backward tree’
method originally developed by Kallenberg (1977) and Liemant (1981) for discrete-time models and
adapted to continuous-time settings in Gorostiza and Wakolbinger (1991), Gorostiza et al. (1992)
and Chauvin et al. (1991). The basic intuitive idea is the following: persistence holds if and only if the
random population of relatives of an individual encountered at a certain site = in a population of age
i remains a.s. locally finite as t — oc. (In other, still more descriptive, words: instability in a critical
branching population goes along with the phenomenon that an individual alive at a late time is
surrounded by a host of relatives.) The random population of relatives of an individual, &,
encountered in the limit population at site = arises as follows:

1. First construct the random ancestral path W = (W,), which in our setting follows the same
dynamics as the forward particle motion, namely Brownian motion starting at z, due to the
fact that the invariant measure \? is reversible. Note that the event {W,=x} has the
interpretation that the ancestral path passed through site x ‘at time ¢ before present time’,

2. Next, generate the time points f < #; < ... at which the ancestors died, or equivalently, at
which a branching happened along the ancestral line. This is a Poisson point process on [0, o)
with intensity V(W) dr.

3. Finally, superpose all the independent side trees, one originating at each site W, and
developing over a time horizon t,, thus giving rise to the population of nth-degree cousins
of the individual §..

Mote that, conditioned on the ancestral path W, due to criticality of the branching, the expected
number of relatives of the individual 8. in 2 ball K is

Lx (W, K)V(W,) dr. (2.3)

Now the a.s. finiteness of (2.3) certainly is sufficiens for the a.s. local finiteness of the cluster of
relatives, and thus for persistence. But (2.1) and (2.2) actually even render the finiteness of the
expectation of (2.3), as the following computation shows:

" - o o e _II«‘CQI2
E“ﬂ T (W, K)V(W,) dr} _L# L‘ V{x]lxli}]L n)? exp( =T )

X ExXp (—%) drdy dx
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where 1 denotes the indicator function of the set K. The first summand is finite due to (2.1). and the
second is majorized by

Vi i | s o 12
| e d|.r||*“'“exp(—@)maxmm.

=g || x|| 0 (2mr) 2t

This, however, is finite due to (2.2), since the time integral is finite and independent of x. and that
completes the proof of Proposition 3. O

The following result (which is based on Theorem 2 below) is due to Ted Cox:

Theorem 1 In dimension 2, for a radially symmetric branching rate VF{x) = v{|| x||) which is finite
and non-increasing in || x ||, condition (2.2) is not only sufficient but also necessary for persistence of
critical binary branching Brownian motion.

Proof

Sufficiency of (2.2) has been stated in Proposition 3. Conversely. assume that a system of Brownian
particles performing a critical binary branching at rate V{x) is persistent. Let (W) be a random
Browmian path starting at the onigin. By Theorem 2, by the fact that || W, || < 1 for all large r a5,
and since »(1) is non-increasing, we obtain

x
j w (W, B)u(f) dit < oo a.s.
1

By the same reasoning as in part 4 of the proof of Proposition 4.4 of Gorostiza and Wakolbinger
(1991) this implies the finiteness of [™ =,(0,B)v(r) dr, and therefore also the finiteness of

[ ¢ (1) de. O

Theorem 2 For a locally bounded branching rate ¥, almost sure finiteness of (2.3) is not onl
sufficient, but also necessary for persistence of critical binary branching Brownian motion on R,

Proof

For the sufficiency part, see the remark after (2.3), Let us now turn to the necessity part, assuming
that critical binary branching Brownian motion on RY with branching rate V' = V{x) is persistent.
Let i be a probability measure having a continuous density n(x) which is constant on B and outside
B equals const. | x|~ for some & > 0.

Forall - € RY and 7 > 0, let X7, denote the random offspring of a single ancestor in =, which has
developed over a time horizon ¢ according to critical binary branching Brownian motion with
branching rate V', and whose final positions have been ‘shifted independently’ according to the
distribution 1. Let A(1, z) denote the probability that X7, populates the ball K.

It follows from the assumed persistence of ¢ that, for almost all W,

e
Z.&[:m. W, )< as..
m=]

where t = (1;.05....), 4 = 1y < ... is the random point configuration of a Poisson process on R.
with intensity measure V[ W,) di. (See Gorostiza and Wakolbinger 1991, Section 3: the arguments —
given in detail there for constant I — essentially remain unchanged.)
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Let g:[0. 2c[— [1.2c| be continuous and such that for all ¢ > 0
g(r) z sup{¥(x)[| x| < 1}.

For all n € N, let u, be such that [ g(r) d¢ = n; note that (u,) increases strictly towards infinity.
For all n, put 7, := max {s,|m > 0.1, <n} (where we set 1, :=0). Then (cf. Gorostiza and
Wakolbinger 1991, Lemma 5.5) we have that, for almost all paths W and almost all Poisson
configurationst = (1), 43,...),f; < 1; < ..., there exists a constant ¢ = ¢( W', t) such that for all large
enough n one has

ch(Ty, W) 2 7, (W, K).

Let 5 = s(t) = (51,82,...),5 < 52 < ..., denote the point configuration obtained from r by
deleting all those 1, for which there exists an n such that u, | <, | Sl 4, OF Uy =

by = fey = U, Obviously, 5 is a subsequence of (), and thus there holds for large enough k:
chisg, W,,) = 7, (W, K).

On the other hand, s is a subsequence of 1, and therefore 32, A5, W, ) < oc. Consequently,

[~]#

Ty (W K) <o a.s.
1

=
]

Put Z, :=m, (W, K) if there is an 5, between u, ; and u,. and Z, := 0 otherwise. Writing

= |- V(W,) dr, we obtain that EZ, =e ""L'IH{W K)V(W,) dt. Since the sequence
of random variables Z, is independent, uniformly bounded and a.s. has a finite sum, the
strong law of large numbers yields ¥ 2, EZ, < cc. For large enough ¢, |W,| <t holds,
and therefore V(W,) <g(f), implying @, <1 for n large enough. This ensures that
Yomet o, m (W, K) V(W) dt < co. O

Obviously, condition (2.2) is violated for constant ¥ > 0 if d = 2, revealing once again the
well-known instability of two-dimensional binary critical Brownian motion. It should be noted
at this point that Bramson er al. (1993) proved by analytic methods that two-dimensional
critical binary branching Brownian motion not only is unstable in the sense that it has no
equilibrium distribution with Lebesgue intensity, but also has no non-trivial equilibrium distribu-
tion at all.

It would be nice to have an appropriate version of Theorem 1 also in the non-radially symmetric
case and in higher dimensions; at present I can only prove that for 4 > 3 local extinction holds if the
branching rate F(x) has a suitable growth as || x|| — =c:

Proposition 4 Let > 2, and assume that
V(x) = ¢|lx||“(log ||x||)"" for suitably large x (2.4)

and that for d = 2 in addition V is locally bounded away from zero. Then critical binary branching
Brownian motion with branching rate I suffers local extinction.
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Proof
For d = 2, first apply Theorem 1 to

if [l %11 < ro
v(llx]]) = L
eyllog||x[)™ if %] > ro

(for appropriate constants e, ry, ¢; such that ¥(x) > v(|| x||) and ©(r) is non-increasing in r) to
conclude that the branching rate v( || x||) leads to local extinction. Now apply the backward tree
persistence criterion as a ‘comparison criterion’ to infer that, a fortiori, V(x) leads to local
extinction.

For d = 3, we have, for almost all W and suitably large ¢, by the law of iterated logarithms:
|| W,|| = +/1/log t. This implies by means of (2.4) the existence of a non-negative, locally bounded
function f{1) such that

for almost all paths B and sufficiently large ¢, V(W,) = f(1) (2.5)

and

LI 1721 (1) di = o0. (2.6)

Proceeding as in part 4 of the proof of Proposition 4.4 in Gorostiza and Wakolbinger (1991), one
infers from (2.6) that

LM (W, B)f(1#) dt = oc with positive probability,
and thus by (2.5) also
-I:ﬂ (W, B) V(W,) dt = co with positive probability.
This, however, violates the necessary condition for persistence in Theorem 2. O

Remark

Theorem 2 can also be used to obtain a simple proof of the fact that one-dimensional branching
Brownian motion with a branching rate bounded away from zero on some interval is unstable. In
fact, even if the branching rate of the individuals is governed by their local time spent at the origin of
R (which then can be viewed as a ‘one-point branching catalyst’), a suitable modification of
Theorem 2 easily shows that the branching population, starting off with a homogeneous Poisson
configuration, suffers local extinction. For the corresponding superprocess limit of the latter svstem,
this local extinction result was obtained by Dawson and Fleischmann (1994).

2.3. AN INTERPLAY OF MOTION, OFFSPRING DISTRIBUTION, DIMENSION AND LIFETIME
DISTRIBUTION

Let us revert to spatially homogeneous models in R“, and first review the main result of Gorostiza
and Wakolbinger (1991). As motion processes, we consider spherically symmetric c-stable motion of
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particles (0 < o < 2), having as generator the fractional power A, = —(—A)*? of the Laplacian,
and thus rendering Brownian motion in the case & = 2. Note that for o < 2 this motion process is a
pure jump process with independent increments, the increment distribution density having a decay
of order || x|~ . Let p, be the probability of n offspring at the mother’s death; the critical
offspring law (p,) we consider has generating function w(¢) = Ep,¢" = {+1(1 = )" (where
0 < 3 < 1), rendering critical binary branching for = 1. For 3 < 1, the probability weights p, of
this offspring law have a decay of order n™ >, We will refer to o and 3 as mobility and clustering
parameters, respectively. For the moment, we consider a constant branching rate V. i.e. exponen-
tially (with parameter }') distributed particle lifetimes.

Theorem 3 (Gorostiza and Wakolbinger 1991)  The (above-described) critical branching particle system
in R? with mobility parameter o and clustering parameter 3 is persistent if and only if d > a/8.

This is proved in the quoted paper by means of the backward technique; here, we will once again
repeat the rough (but intuitive) argument (already encountered in Section 2.1) which balances
‘clusters versus holes: after time ¢, a surviving cluster is typically of size +'/?, and thus, to guarantee
persistence, ‘must fill a hole’ of diameter :'/%". But in time r, particles travel typically a distance 1 '/,
revealing that o = d3 is the ‘border case’,

Next let us consider another case in which particle motion and offspring distribution are as in
Theorem 3. As there, particles are supposed to give rise to their offspring at the end of their lifetime;
the latter, however, is now assumed to have a long-tailed distribution. To be specific, we assume that
each particle’s lifetime has a stable distribution with parameter - € (0, 1). Initially, the system is
started off with a population of individuals with i.i.d. ages, the positions forming a Poisson process
with Lebesgue intensity, and the initial ages and positions being independent.

Theorem 4 (Stockl and Wakolbinger 1993) In the model with mobility parameter o, clustering
parameter 3 and lifetime parameter ~ (as described above), the particles’ positions converge, as
t — oo, to a Poisson process with Lebesgue intensity, provided that 4 > ay/3.

Intuitively. this ‘asymptotic Poisson property’ means that, as ¢ — oo, an individual encountered
at time 7 has, asymptotically with probability 1, no relative in its surroundings. (Actually we derived
Theorem 4 by first proving this latter statement.) Of course the ‘tendency to long individual life’
favours this: an individual sampled at a late time then has a high probability of being verv old, and
50 its brothers and sisters (and even more its cousins) have had a good chance of moving far out.

It is an open question whether the converse of Theorem 4 is true, i.e. whether the system suffers
local extinction if d < ay/3.

2.4, A MULTITYPE MODEL

The model discussed in this subsection is of the same type as that described at the beginning of the
previous subsection, except that we now have not one, but k different types of particle. and a particle
at its death may branch into an offspring of a different type. To be precise, the model is as follows:

The particles are of types i=1,..., k, and (m;;)1<; j<x is an irreducible stochastic matnix. A
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particlt of type i moves in RY according to a spherically symmetric stable process with index

€ (0, 2] during a random amount of time exponentially distributed with parameter V,. At the end
of this time a type j is chosen with probability m;;, j = 1,... &, and then the particle is replaced at its
own sne by n particles of type j with probability pi m=0.1,2,...,such that the generating function

wiy(€) = Lo pa'C", € € [0,1], is of the form
Y Cif ¢y ml48y
ru{f;]—i‘i'm |:1 (:]' 2

if
where 3;; € (0.1] and ¢;; € [0,m;;/(1 + 3,,)] (this condition is enforced by /;(0) = p;’ & [0, 1]).
Nme that the case ¢;; > 0 corresponds to a ‘non-trivial’ critical branching law. whereas the case
; = 0 represents a selection of t};pe J without branching.
L&t the initial population on B x {1,...,k} be Poisson distributed with intensity A* x p, where
A is Lebesgue measure on B? and p is an arbitrary distribution on the type space {1..... k}.

Theorem 5 (Gorostiza and Wakolbinger 1993) The system just described converges towards an
equilibrium distribution with intensity measure i ® Yy (Where =, denotes the invariant
distribution for the stochastic matrix (m;;)) if d > mina;/min{3;;|¢; > 0}, and suffers local
extinction otherwise.

Theorem 5 thus says that the most mobile type (smallest «;) and the most clumping branching
mechanism (smallest 3;;) account for survival or extinction. A reason for this is that all the types
i=1,... k are interconnected in a recurrent way due to the assumed irreducibility of the matrix
(m;;).

IJll'I the case ¢;; = 0 for { # j (corresponding to *mutation and monotype branching’), and p = ;..
Theorem 35 was proved by Gorostiza er al. (1992). The more general case of ‘branching into different
types’ then required another non-trivial extension of the backward tree method.

Theorem 5 has a purely analvtic corollary, which deals with the asymptotic behaviour of
the following system of nonlinear partial differential equations for w;x,1).i=1...., kxR,
1 =0

i & s 145,
;= Ay b+ V;Z'[mu = &) u; — V:Z f:‘f“;'+ :
=l =l (2.7)

w(x,0) = fi(x)

where the parameters o, 8, ¢;; are as above, A, is the o;/2 power of the Laplacian, (m;;)
is an irreducible matrix with non-negative entries and maximum eigenvalue 1. and the initial
conditions f; : BY — R, are continuous with compact support. Note that (2.7) has a unique global
solution (see, for example, Pazy 1983) which is non-negative for all 7. In fact, if (m;;) is a stochastic
matrix and all the f; are bounded by 1, then the solution u; of (2.7) has the probabilistic
representation

t;(x,1) =1 - Efexp {—(Nlog(1 = f )} [Ny =8.)],  i=1,....k

where N, is the (multitype) branching population on B x {1...., k} and f(y.7) =fi(»). This
probabilistic representation is the key to the following corollary:
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Corollary 6 (Gorostiza and Wakolbinger 1993) Let () be the solution of (2.7). If at least one f; is
not identically zero, then foreachi=1,... .k,

>0 ifd>d,

lim || (.. 1) |
l_xl ( Jlf_1{=ﬂ ifd<d,

where d, := min a;/min {3;;| ¢;; > 0}.

2.5. TWO-LEVEL BRANCHING BROWNIAN MOTION

Consider the following system, which belongs to a class of models introduced and investigated by
Dawson and Hochberg (1991) and Wu (1994):

Initially there is a homogeneous Poisson system of particles in B¢, which is now, in addition,
interpreted as a system of ‘singleton clans’. The particles undergo independent Brownian motions;
each individual carries an ‘exponential clock’ with parameter V|, and each clan carries an
exponential clock with parameter 775, all the clocks being independent. When an ‘individual
clock’ rings, this individual either branches into two (which then belong to the same clan as their
predecessor) or vanishes, each with probability % When a ‘clan clock’ rings, this clan either is
‘doubled’ or vanishes as a whole, each with probability {.

From a result of Wu (1994) on the corresponding superprocess limit (cf. Section 3) there is strong
evidence that the following holds true:

The above-described ‘two-level branching population’ converges, as t — 2g, to a non-trivial
limit if d = 5, and suffers local extinction if d < 4. (C)

A modification of this two-level particle model is the following. First put V; := 0, i.e. let the
system develop according to branching Brownian motion, keeping track, however, of the clans
which arise out of the original singletons. In dimension d > 3, this system converges to a non-trivial
equilibrium (cf. Section 2.3). The equilibrium system can also be partitioned by collecting all those
individuals into one clan whose ancestral paths eventually coalesce. Now start the system afresh
from this equilibrium, this time not only with the individual, but also with the clan branching
mechanism switched on. The two-level superprocess corresponding to this particle system is
considered in Gorostiza ef al. (1993), where persistence is proved for dimensions 4 > 5, thus
complementing the local extinction result of Wu (1994).

Conceptually replacing individuals by clans, we now have (just ‘one level higher’) exactly the
situation described in Section 2.2: initially there is a Poisson system of clans. The ‘clan migration’
(caused by the individual branching Brownian motion) would leave this system in equilibrium, but
now there is the additional ‘clan splitting’. As it turns out (Theorem 7), this clan migration is
recurrent for d < 4, and transient for d > 5 (if one uses on the space of clans a metric defined in
Matthes et al. 1978, Proposition 3.3.2.) If a result such as Proposition 1 were now to hold in suitably
greater generality, then this would give both a proof and a new explanation of (C). (Notably, there is
a recent result of Etheridge 1993, proved by analytic methods, which states that under certain
additional assumptions a superprocess over a recurrent migration suffers local extinction. This
result can easily be translated from superprocesses to particle systems, cf. Section 3, but at the
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moment it is not clear to me whether its additional assumptions are met by the clan migration
process.)
The above-mentioned result on clan migration is the following.

Theorem 7 (Stickl and Wakolbinger 1992) In a time-stationary critical binary branching Brownian
population in R in dimensions 3 and 4 with probability 1 each clan populates a fixed ball B C R? at
arbitrarily late and early times, whereas for 4 > 5 with probability | each clan populates B only over
some bounded horizon of time. (In this sense, the time-stationary clan migration process of
branching Brownian particles in B is recurrent if d = 3 or 4 and transient if d = 5.)

The proof of Theorem 7, which again employs the backward tree representation described in
subsection 2.2, also reveals the following corollary:

Corollary 8 (Stickl and Wakolbinger 1992) Critical binary branching Brownian motion in B
starting from one individual and conditioned to survive comes back to populate a ball B C R at
arbitrarily late times if and only if 4 < 4.

3. Some links to superprocesses

A — by now very prominent — scaling limit of branching populations has its origins in Feller's
diffusion limit of Galton—Watson processes: a large number, n. of particles (each of mass 1/n) start
to perform ii.d. critical Galton—-Watson processes with branching rate Vn and finite offspring
variance . Then the process counting the total mass at time ¢ converges as n — oc to a diffusion
process X, with diffusion coefficient o x and drift zero; a non-zero drift occurs in this limit if the
difference between the mean number of offspring and unity (i.e. the defect of criticality) is of order
1/n. By allowing the particles not only to branch, but also to migrate in a certain space § of
positions, and counting the total mass of all particles situated at time r in the measurable subseis
B C 5, one obtains in the limit # — o¢ a ‘measure-valued diffusion’ process X,(B).

Pioneering work on measure-valued branching processes is due to Jifina (1964), Watanabe (1968)
and Dawson (1977), and during the last two decades — particularly, however, in the last few vears —
a wealth of both models and results have emerged around what is now known as ‘Dawson-
Watanabe processes’ or ‘superprocesses’. The latter terminology follows a suggestion by Dynkin
and refers to the branching mechanism being built “above’ the migration process, or viewing the
migration process as a ‘projection’ of the superprocess (cf. Dynkin 1989).

A major impetus in the development of measure-valued branching processes came with the work
of Dawson and Perkins (1991) on hisrorical processes: there they studied not only the continuum
limit of populations of branching individuals, but also that of the population of their ancestral
paths. One of the advantages of this historical picture is that it leads to a much better probabilistic
understanding of certain features of the measure-valued branching process X,. As an example I
would like to mention the method applied by Dawson (1992, Theorem 7.3.1) to obtain the lower
estimate «/ 3 for the ‘carrying Hausdorff-Besicovitch dimension” of an (o, d, 3) superprocess X,
{(which is a scaling limit of the branching population described before Theorem 3): this relies on
proving that the random cluster of relatives of an individual encountered at site v € R at time 1
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{which, in mathematical terms, follows the Palm distribution of the canonical measure of X, and
again is represented in terms of a backward tree) a.s. integrates the function x — || x — y|| ~/*/#+
locally around y for all e > 0, which then gives the appropriate lower bound on the local clumping of
X,. In fact, o/ 3 equals the carrying dimension of X, (cf. Dawson 1992, Theorem 7.3.4). On the other
hand, when started off with d-dimensional Lebesgue measure, X, suffers local extinction if and only
if d < o/ 3 (Gorostiza er al. 1990): this follows from Theorem 3 and the fact that branching particle
systems can be restored from their corresponding superprocess limits through ‘Poissonization’. For
d > a3, Dawson and Perkins (1991, Theorems 6.6 and 6.7) prove (again by the backward tree
representation) that the (equilibrium) clans of X are ‘a/d-self-similar’. In the case, o =2, 3 =1,
W (1994) exploits this self-similarity in his (mainly analytic) proof of local extinction of two-level
super-Brownian motion (this is a superprocess built over super-Brownian motion, and it arises asa
scaling limit of the two-level branching population described at the beginning of Section 2.6) for
d <4,

The above-mentioned equivalence of local extinction for branching populations and their
superprocess limits might raise the question whether one should not focus from the beginning
only on the study of superprocesses, if, say, one is interested in analvtic results such as Corollary 6.
But the point is here that it seems (though further research is required) that particle systems with
non-local branching (such as that of Section 2.4, where the particles may change type at the instant of
branching) in general do not have a superprocess limit, at least not in the ‘classical sense’ — some
evidence for this is given in Gorostiza and Wakolbinger (1994).

Certainly, however, the subject of superprocesses per se is a fascinating and topical one. As
particular instances, | want to mention Le Gall’s (1991; 1993) approach to superprocesses in terms
of Brownian excursions, and recent work by Evans and Perkins (1994) on superprocesses with
interactions. Aldous’s (1991, 1993) work on continuum random trees {which may be considered as
fundamental also for superprocesses), is highly original and important in its own right. Dynkin
(1993) gives a comprehensive treatment of links between superprocesses and partial differential
equations, and an excellent account of much of the recent development in measure-valued
branching processes and also in neighbouring topics is provided by Dawson (1993).
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Discussion

PETER JAGERS

School of Mathemarical and Computing Sciences, Chalmers University of Technology and Gorthenburg University,
S-412 98 Giveborg. Sweden

Professor Wakolbinger’s starting point is the insight that no freely reproducing finite population can
persist for ever. They either die out or they grow beyond all limits. And, in our biclogical - and
evervday physical — world of finite resources the latter alternative leads to a collapse that brings it to
nought. How can we then explain the stabilities that we seem to observe around us? (As an
intriguing aside, one might speculate whether the not-so-everyday worlds of quantum and
relativistic physics offer a way out, for the populations of very small splitting particles or of huge
separating galaxies.)

It might appear that the most obvious solution would be to ascribe stability to dependencies,
environmental inhomogeneities and feedback, outside the realm of population dynamics proper.
Maybe individuals reproduce more whenever their population is threatened? Maybe the environ-
ment can recover after a period of not so heavy exploitation? However, to accomplish stability such
feedback etc. would have to be complicated, indeed: the very slightest Markovian tendency
establishes the dichotomy of extinction or explosion.

This is well described by the following straightforward but quite general fact. Consider a sequence
of random variables X, X, ... defined on some probability space and taking values in & . Assume
0 absorbing in the sense that X, =0= X, =0 and suppose that there is always a risk of
extinction in the following way. For any x there is a & > 0 such that

P(Em X, =0|X,,....X;) 2 6,
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if only X} < x. Then, with probability 1, either

e thereis an n such thatall X, =0fork = nor
o Y, —ocask— oo,

Thus, there seems to be no easy way out, and we are brought back to the possibility of trying to
grasp stabilities through the fundamentally unstable branching populations of free population
growth. A classical approach, underlying much of my own work in the area, is to accept the
dichotomy between extinction and explosion, and then conclude, as it were, from the observed non-
extinction yet that we are observing essentially supercritical populations, long since on their route of
exponential growth. Hence, they should be well described by the theory of stable composition of old
supercritical branching populations. Their age distribution should be the classical stable age
distribution, dating back to Euler, and the composition in other respects, the family structure in
particular, obtained from the stable, doubly infinite pedigree measures (Jagers 1993).

This is a mathematically rich and quite general theory, and I believe that it sheds light on the
composition of actual physical and biological populations. But here the time-scale is important. For
quickly reproducing unrestrained populations, the theory of supercritical branching processes is
much more relevant than for a slowly evolving population, in an environment that can hardly be
thought of as stable and sustaining an exponential growth for, say, millions of years, as is the case
with the evolution of species. Thus, one might turn to critical populations conditioned not to die
out, or since these constitute a very special class, to ‘near-critical’ processes. Interesting work in that
direction, which is relevant to problems of genealogy — When did our last common ancestor, the
famed ‘mitochondrial Eve’, live? — is due to Zubkov (1975), Durrett (1977) and others, most recently
to O'Connell (1993). There is much work about critical branching processes by the Moscow school,
besides Zubkov, that deserves to be better known: Sagitov, Topcii and Vatutin, to mention some
authors,

In a famous lecture at Oberwolfach, a quarter century ago, Kolmogorov pointed at the instability
of branching processes as their main drawback as models for population dynamics. He made two
suggestions: to replace branching by diffusions for big populations, or to study branching processes
with immigration. However, the usual branching-with-immigration models are far from satisfac-
tory, immigration just appearing as another dews ex maching at mathematically tractable renewal
points, in order 1o salvage stability, or possibly to give us some more theorems to prove.

How much more interesting, then. is the statistical physical tradition of considering a specified
subset of an infinite (macrocanonical) space, which can sustain a persistent population, and send
immigrants into the (microcanonical) population in the subset? In that way we are led to at least
three important questions:

1. What kind of (infinite) populations can persist in what kind of (infinite) spaces?
2. What kind of immigration patterns into specified bounded subsets would they result in?
3. What kind of stable populations would arise on the micro level of such sets?

This is the general framework in which I would like to view Wakolbinger's paper. It may well be that
there are other motivations for work on spatial branching — in my first paragraph I speculated about
relations to quantum relativistic physics. And my first question to Professor Wakolbinger is
certainly: This is a thriving mathematical area. To some this may be sufficient reason to pursue
it. To others, like me, it is important to see it in a wider context. What are your views?
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Turning back to my perspective of finite, non-spatial branching, it is certainly easy (but not
unimportant!) to pose questions of vague generality, like my triple above. It is much harder to give
answers that are both general and precise. As Professor Wakolbinger — somewhat apologetically —
points out, he has chosen preciseness before generality. In cases where you cannot have both, T agree
this is good mathematical tradition. However, the important question of generalization then
remains.

In the present case, the persistence question is given a precise answer in terms of critical binary
splitting Brownian motion, and a beautiful condition on its branching rate in Proposition 3.

Binary splitting is, of course, a very special form of reproduction. Brownian motion is also a
special type of motion, albeit archetvpical in several ways. To what extent are they just symbols of
more general natural reproductions and motions? Note that they appear essentially only in
conditions and not in the conclusions of the proposition. Are all ‘physically or biologically
natural’ processes in some sense covered by Proposition 37 What is the most general form in
which vou believe some form of it to be true?

The closest Professor Wakolbinger comes to my third guestion, that of characterizing the stable
micropopulations is his fifth theorem (with Luis Gorostiza). Here a somewhat different, but again
rather special framework is considered. Particles move in spherically symmetric stable processes
(including the case of Brownian motion). They have exponentially distributed lifespans, so the
possibility of state dependence has disappeared. On the other hand, the assumed critical binomial
offspring distribution is more general than the binary. The process is also multitype, but again in a
somewhat specialized sense. For such sysiems the theorem yields an equilibrium distribution over
types and states. Again, the natural questions are: Do the particular forms of lifespans and
reproduction play a role in the theorem? What is the role of the motion law?

This concludes my comments and questions. As should be clear, I have found this to be a thought-
provoking paper full of beautiful mathematical results, which I believe are of great potential
relevance for our understanding of the fundamentals of population dynamics in its widest sense.
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Author’s reply

Let me first focus on Professor Jagers® Question 1. It is a classical result due to Kallenberg (1977)
that for a random walk with a spatially homogeneous critical branching, transience of the motion is
necessary for persistence of the infinite population. One might conjecture (I am not aware of a
proof) that this also holds for Markovian migrations in general. Conversely. transience of the
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motion does not yet imply persistence of a (finite-variance, critical and spatially homogeneous)
branching population with invariant intensity, as the simple example of one-dimensional critical
branching Brownian motion with constant drift shows: in that case the clumping travels with the
drift and finally leads to local extinction. Possibly this implication does hold if the migration process
is reversible.

If the branching rate is space-dependent, things look different: a suitable decay of the branching
rate ¥'(x) as || x || increases leads to persistence of branching Brownian motion in R*, and a suitable
increase of the branching rate ¥(x) as || x|| increases enforces its local extinction in B*. In this
context, Professor Jagers raises the question of possible generalizations of Proposition 3. Indeed. in
Gorostiza and Wakolbinger (1993), the persistence criterion (P) is proved for all critical branching
mechanisms with uniformly bounded second moments and arbitrary Markovian migration
processes. (By the way, the same generalization can be made for Theorem 2.) Therefore the
conclusion of Proposition 3 remains true for all such branching mechanisms and all Markovian
migration processes whose transition probabilities m, satisfy, for all bounded subsets K of B“,

J 7 (x, K P di = 0(]| x||"2¥")  as||x|| — oc.
o

In this sense, binary splitting and Brownian motion are indeed just symbols for a larger class of
dynamics.

If the offspring does not have finite second moments, then more mobility than just transience of
the migration seems to be necessary to keep the system persistent, and in the case of a system with
finitely many types, the most mobile type and the most clumping type are responsible for the long-
time behaviour. This can be seen in the examples in Sections 2.3 and 2.4. Indeed, as Professor Jagers
points out, the offspring distribution in Theorem 5 is only multitype in a somewhat specialized sense;
the individuals randomly mutate, and at the instant of mutation perform monotype branching in the
mutant type. Current work with J.A. Lopez Mimbela, however, proves that the assertion of
Theorem 3 extends to genuine multitype offspring laws in which the total number of offspring of a
type i individual is in the normal domain of attraction of a stable law with exponent 3;. Extensions
to more general migrations, and to the interesting case of infinitely many types, are still open.

In his Question 2 concerning the immigration patterns of persistent populations into a specified
bounded subset, Professor Jagers addresses the space-time picture of equilibrium branching
populations. A satisfactory answer to this interesting question seems quite difficult. At least one
specific feature, however, is touched upon in the paper. Consider, in an equilibrium binary
branching Brownian motion in R, the individuals presently in a compact set B with positive
volume. By time stationarity there must occur infinitely many future B-immigrants (where we call an
individual in B a B-immigrant if its ancestral path has not visited B before.) Does every present
individual in B have relatives among these immigrants almost surely? Theorem 7 tells that this is the
case if and only if < 4. In the case of stationary inhomogenecus branching mechanisms, there are
also examples of equilibrium populations with infinitely many future immigrants into a bounded set
B, each of which is a relative of all individuals presently in B, simply because the whole population
consists of one infinite clan sustaining itself in equilibrium (see Liemant ef @/, 1988, Example 2.8.4;
Matthes er al. 1994).

In connection with Professor Jagers” Question 3 one could ask about the spatial pattern on the
micro level, i.e. certain features of the equilibrium peopulation restricted to a bounded set B, but also
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about the genealogical relationships of individuals sampled in B, e.g. for the probability that two
such individuals have a common ancestor. For all these questions, the analysis of backward trees
SEEMSs Very appropriate, as it is also for the study of the *macro pattern’ of equilibrium clusters such
as the number of individuals in large balls.

It is these large-scale patterns of equilibrium clusters which display close analogies to the small-
scale patterns of the superprocess clusters (as [ pointed out in Section 3). Much is known here in the
case of homogeneous branching, and less in the inhomogeneous case. Recent work by Fleischmann
and Le Gall (1994) is an example of exploiting the superprocess genealogy for investigating
superprocess ‘micro patterns’ in the case of branching only at a single point in R”.

Professor Jagers also discusses, as a possible model for certain phenomena, critical branching
populations starting from one ancestor and conditioned to non-extinction. These indeed come close
to the equilibrium clusters mentioned above. In fact, the equilibrium populations considered in the
paper always consist of the few (but still infinitely many) clans which managed to survive in the long
run. For this reason, Theorem 7 gives as a corollary that a binary branching Brownian population in
R starting off from one ancestor and conditioned to non-extinction visits a ball only over a finite
time horizon if and only if d > 5. answering a conjecture raised by §. Evans in 1992,

It would certainly be of interest to explore the geometry of equilibrium clusters in the case of an
inhomogeneous branching such as that in Section 2.2, to pursue the study of superprocesses with
spatially inhomogeneous branching. and to see which parallels or dissimilarities turn up to the
corresponding Fleming—Viot processes with selection (cf. Ethier and Kurtz 1993; Dawson 1993).

Finally, let me turn to Professor Jagers's basic question about the context in which one should see
the subject of spatial branching systems. To begin with, I am sceptical that the rather idealized
assumptions (such as independence of branching) will permit direct applications in physics. On the
other hand, a proper context is certainly that of population genetics. Indeed, there are certain
general ideas about spatial branching populations which are well reflected in contemporary
population genetics. One of them is that migration counteracts local extinction in critical branching
systems, just as migration counteracts ‘local fixation’ in genetics. Another, more methodological
connection, is that for the study of certain features of the system it is more convenient to ‘look into
the past’ (i.e. to study the genealogy) than to ‘look into the future' (i.e. to study the forward
evolution of the system) (cf. Ewens 1990),
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