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Kernel estimation of relative risk

JULIA E. KELSALL and PETER J. DIGGLE*
Department of Mathematics and Statistics, Lancaster University, Lancaster LAI 4YF, UK

Estimation of a relative risk function using a ratio of two kernel density estimates is considered, concentrating
on the problem of choosing the smoothing parameters. A cross-validation method is proposed. compared with
a range of other methods and found to be an improvement when the actual risk is close 10 constant. In
particular, theoretical and empirical comparisons demonstrate the advantage of choosing the smoothing
parameters jointly. The methodology was motivated by a class of problems in environmental epidemiology.
and an application in this area is described.
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1. Introduction

The work in this paper was motivated by the following class of problems arising in environmental
epidemiology. A map gives the locations of all cases of a particular disease within a designated
geographical region, and the locations of a set of controls chosen as a random sample from the
population at risk in the region. We wish to estimate spatial vanation in the disease risk (see, for
example, Bithell 1990; 1992). A closely related class of problems involves estimation of the spatial
variation in the relative risk of two diseases. Similar questions can be asked of disease distributions
in time, or space-time.

As an idealization of the one-dimensional version of this class of problems. we consider a set of
points x;, i = 1,... m, arising as a partial realization of a Poisson process on an interval | with
intensity A;(x). together with a set of points y;, j = 1,...,n,, arising as an independent realization of
a Poisson process on [ with intensity A;(x). Our objective is to obtain a nonparametric estimate of
the ratio A; (x)/A;(x). Our particular motivation has been a study of the spatial variation in relative
risk for two types of cancer, for which it is important to treat the two sets of points symmetrically.
We shall therefore consider estimation of the function

p(x) = log {M(x)/Xs(x)}.
which has the required symmetry.
Mote that if we condition on the values of n; and n,, the data can be treated as a pair of
independent random samples from two probability distributions with densities f(x) and g{x)

proportional to A (x) and As(x), respectively. We shall exploit this duality in the theoretical
development of our estimator for p{x).

* To whom correspondence should be addressed.
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Figure 1. The Chorley-Ribble data

The restriction to one-dimensional processes simplifies notation and various technical details
required in the theoretical development. However, our methodology can also be applied to spatial
or space-time data.

The map in Fig. 1 shows the residential locations of all cases of larynx and lung cancer diagnosed
in part of Lancashire, England, during 1974-83. A suspected focus of increased risk of cancer of the
larynx was a now disused industrial incinerator located in the centre of the region. An apparent
cluster of four cases near the incinerator prompted scrutiny of the data with a view to confirming or
refuting the suspicion of association. The locations of lung cancer cases can be viewed as controls
which reflect the spatial variation in population intensity, since no association between the
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incinerator and lung cancer was suspected. An estimate of relative risk as a function of distance
from the incinerator is therefore required. A subset of these data, from a smaller geographical
region, was analysed by Diggle (1990). He fitted a parametric model for the variation in relative risk
as a function of the squared distance from the incinerator, and found a significant relationship.
Elliott et al (1992) analysed data from a number of similar incinerators in the UK, using
methodology due to Stone (1988) in which the relative risk is modelled nonparametrically but is
assumed to be a monotone non-increasing function of distance from the incinerator. They found
that the apparent relationship between relative risk and distance in the Lancashire data was not
consistently reproducible at other sites. Qur immediate objective is to construct a nonparametric
estimate of relative risk without assuming that the relationship with distance from the incinerator is
monotone. The circle in Fig. | is of radius 20km, centred on the incinerator.

In Section 2 of the paper, we consider the use of kernel density estimators (Silverman 1986) for
the separate densities f(x) and g(x). and show how our interest in the log ratio. p(x), influences
our choice of smoothing parameters for f(x) and (x). Bithell (1990; 1992) suggested the use of
kernel estimators in this context. He did not suggest a method for choosing the smoothing
parameters, but noted that in one application better results were obtained by using the same
value of the smoothing constant for the numerator and denominator densities, despite the fact that
the two sample sizes differed by a factor of 3. Our results provide some theoretical support for
this under the assumption, often reasonable in the epidemiological setting, that the numerator
and denominator densities are approximately equal. In Section 3 we suggest a cross-validatory
prescription for the choice of smoothing parameters to estimate an arbitrary, smooth functional
of f and g. Estimation of p(-) follows as a special case. We also use simulations to compare the
performance of the ¢cross-validation prescription with a number of other methods, and in particular
demonstrate the advantage of choosing the smoothing parameters jointly when the numerator
and denominator densities are approximately equal. Section 4 discusses the construction of
pointwise tolerance intervals for 5 - ). Section 5 contains the results of applying our method to
the data of Fig. 1.

2. Kernel estimation of a log density ratio

2.1. KERNEL ESTIMATION

Suppose that X, i =1,...,n, are mutually independent with common, but unknown, density f,
defined on R. The kernel density estimate of f is given by

fulx)=n [ih Ve Ty -~ X303
i=]

where K - ) is the kernel function and 4 is the smoothing parameter, or bandwidth. It is generally
accepted that the choice of kernel function is not critical (e.g. Silverman 1986, Chapter 3). We shall
use the standard Gaussian density, K(r) = (2r) "? exp(—1?/2). The bandwidth must be chosen
more carefully since its value can have a large effect on the resulting estimate of 1. It can be shown
(see, for example, Silverman 1986, Chapter 3), that the mean and variance of the estimate f;,l{x]l are
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given by

E{ filx)} =f(x) + kol f"(x) /2 + 0(1*), (2.1)

var{ f,(%)} = kyn 'RV (x) +o(n 'R, (2.2)

where k, = [K(f)*dr and ky = [+*K(r)dr. From (2.1) and (2.2) we can derive an asymptotic
approximation for the mean integrated square error (MISE), which leads by standard calculus to an
‘optimal’ smoothing parameter, k. given by

1

o= k.kf{ [ dr} i (23)

Unfortunately, this expression depends on the unknown density. /. Silverman (1986) gives a good
general discussion of various practical methods of choosing h. Bowman (1985). in a comparative
study, concludes that the method of least-squares cross-validation (Rudemo 1982; Bowman 1984)
often gives good results.

2.2, APPROXIMATE MISE

Suppose that X;, i=1,...,n;, are mutually independent with common density /. and that
Ypni=1,..., ns, are also mutually independent (of each other and of the X;) with common density
g. We wish to estimate p(x) = log{ f(x)/g(x)} on the interval /, using the estimator

P () = log{ fo, (x) /&, (x)}.

For our asymptotic approximations to be valid, we must assume that »; and n; are large and that A,
and h, are small, decreasing as the sample sizes increase. We also assume that / and g are both
bounded away from zero and twice differentiable on the interval /.

We shall derive an approximation for the MISE,

MISE (s, 4,) = _L E[{pn, 4,(x) — p(x)}?] dx. (2.4)

Although this criterion is not directly relevant to the epidemiological applications which motivated
us, it is a conventional measure which is widely used in comparisons of automatic procedures for
bandwidth choice. We define the relarive error term for f; (x] as

er(x:h) = { fo, (x) = F ()M (), (25)

for x € I, and similarly e (x; h;) for ;. (x). According to our assumptions, these error terms will be
small. Rearranging (2.5) gives

S (x) = £ + e(x: 1)},
and similarly for g, (x). This leads. via a first-order Taylor expansion of the log function, to

Py i (X) = p(X) + € (x:hy) = eg(x:h2) + O(€Y), (2.6)
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where ¢ denotes either ec(x:h;) or € (x;h;). The following approximations for the mean and
variance of p;, 4 (x) on / can now be derived. using equations (2.1), (2.2), (2.5) and (2.6):

E{pn, 4 (%)} = plx) + ka{l} £"(x)/f (x) — B3 g"(x)/g(x)}/2.
var{gy, », (X)} = k;{nflhf'f(x}'l +n7 by tg(x) t}.

Note in particular that if £ = g on J and we fix h; = h;, then to this order of magnitude the estimator
for p(x) is unbiased. To the same degree of approximation, the MISE in (2.4) is

MISE(fy, 5.) = ky(ny 'y Ay + 03 'hy ' A4,)
+ k(i By — 2k By + HiBy,) /4, (2.7)

where A = [; f(x)7'dx, By = [;{f"(x)/f(x)}{g"(x)/g(x)} dx and A,, By, B,, are similarly
defined. Note that on our interval I, the closer to zero f and g become, the larger 4, and 4,, so

the larger the MISE: the more rapidly fluctuating f and g. especially at low densities, the Iargcr By,
so the larger the MISE; the more the fluctuations of f and g are out of phase, especially when rapidly
fluctuating at low densities, the more negative the By term. and so the larger the MISE. These
observations are all intuitively reasonable.

Consider now the estimation of log f. Following similar steps to those in the derivation of (2.7)
we obtain

MISE(log f;, ) == kyny 'hy' Ay + k3hi By /4. (2.8)
Thus
MISE(j, 5.) =~ MISE(log f, ) + MISE(log g,.) — kahih3i B, /2.

This shows the importance of the B, term. If By, 5 0. then the jointly optimal bandwidths, A; and
fy, for estimating p(x), are different from the separately optimal bandwidths, hs and hs, for
estimating log f(x) and log g(x). From equation (2.8). it is straightforward to show that hs and hg,
satisfy
hs, = kiky*ABy'ny -
- 29
B, = kiks AgBems!.
Similarly, by straightforward calculus and substitution into (2.9), we can show that the jointly
optimal bandwidths, h; and A; , which minimize the MISE approximation in (2.7), satisfy
hj =W + BBz hi.hi
1 JeEar _: 1 {21{}]
hJﬁ: = Jl’%z £ Bfgﬂg;hju 'ﬁ%:'
Although these are not explicit formulae for A, and 4;,, they do give some useful insight into their

values compared with hs and hs . From inspection of equations (2.7}, (2.8) and (2.10), and the
definitions of By, By and B,,, we obtain the following results:

(i) If By > 0 then hy, > hs and by, > hg,.
(ii) If By = 0 then h; = hs and hJ- = hs
(iii) If By < 0 then h_gl < hs, and hy, < hs,.
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A consequence of (ii) is that if / or g is linear on [, then /i;, and h;, are the same as hg_and hs,.
respectively. Another result derived from expressions (2.10) is as follows.

Theorem If B, >0and 0 < ;. Ay, < oc then

hy, > (1 - By BBy )™'Phs,  fori=12. (2.11)

Proof
Rearrange the first expression in (2.10) to give

Ry, = k3, (1 — BBy ki i)~

The expression in parentheses must be strictly positive, so hflh[ﬁ} B By'. Similarly,
i hi* > By, B, and this gives

J2EE
=152 ¢ =2 -1 p2 p-1
I_Bfgﬁ_ﬂ' h']l'h:l "—: ]. —Bﬂr B_.I"QBSS‘

which leads to the result. O

The above theory confirms that there is scope to obtain improved estimates of p{x) by choosing
the two bandwidths jointly. However, as in (2.3) all our formulae involve the unknown densities, f
and g, so they are of limited use in practice. In the next section we consider some practical methods
for choosing the bandwidths.

3. Choice of bandwidths

3.1. EDGE CORRECTIONS

In Section 2.2, our theory was based on the assumption that we have observations from the
distributions f and g both in the interval J and also outside J, but that we are only interested in the
ratio of /" and g in the interval. In practice, it is usually the case that we only have observations lying
in our interval of interest, although the densities are positive outside /. Density estimates, and hence
relative risk estimates, constructed from such data tend to be distorted by edge effects. The edge
correction we shall use, introduced by Diggle (1985), gives an adjusted estimator

fulx) = falx)/qu(x),

where g;(x) = [; A K{h™(x — u)} du. This is equivalent to using a position-dependent kernel X,
such that [; h 'K {h'(x — u)} du = 1 for all x € I, which eliminates the bias of order 1. The kernel
could be further constrained to remove the bias of order A, but this is not at all straightforward
compared with the relatively simple first-order correction given above. Other suggestions for
reducing boundary bias are contained in Marron and Ruppert (1994). The edge-corrected density
estimate will not strictly integrate to unity on 7, although the discrepancy is usually small enough to
ignore. When the sample size is small or h is large, the size of the discrepancy can be noticeable. In all
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our examples we apply the edge-correction followed by a rescaling of the density estimate so that it
integrates to unity.

3.2. A CROSS-VALIDATION PRESCRIPTION

Suppose that f and g are probability density functions defined within an interval / C R. Also
suppose that _f,h and g, are estimates constructed from samples x;, i=1..... n., and y;,
¥ i (e n,, using smoothing parameters h; and h;, respectively. To choose /iy and h, for
estimation of a smooth functional ~( f.g) of f and g on I, a reasonable procedure is to choose
the values which minimize the integrated square error (I1SE):

ISE{Y( fy,-8,)} = Lh{ﬁ,{xn.m:cx}} — A {f (%), g0} dx.

This is equivalent to minimizing

Chy, hg) = J[—v{ fin (6), 84, (¥} dx

=2 2 (- (OIS (). 000} (1)

since the omitted term does not depend on &y or on h,. A first-order Taylor approximation to
(S, 8) gives
V(Sf+8) = V(S &n) + (F =i )7 Uiy B1,)
+ (8 — &)Y (i E,)1 (3.2)
where +"(a,b) = &v(a, b)/8a and -~ La b) = &~(a, b)/db. Substituting equation (3.2) into (3.1), we
obtain

Cllnsh) > = | U (0.8 x4 2 | QAo (30,8000} i, ()
2L 0 fo, (x). 84, (x)} &, (x) dx — 2 L Qo fi, (%), £, ()} (x) dx

= 2L Qs{ fi, (%), &, (x)} g(x) dx, (3.3)

where Q,(a,b) = ~v(a, b)v*(a.b) and similarly Qs(a, b) = v(a, b}y’ (a, b).

The last two terms in (3.3) are expectations with respect to the unknown densities f and g. We
therefore estimate these two expectations by the usual method of ‘leave-one-out’ averaging. The
method then reduces to choosing h; and h, to minimize C(/;, h,) which is the same as the
approximation of C(hy, ;) in (3.3) except that the last two terms are replaced by

—EHT‘ZQQ{,Q (%), &n, {x}}—Em’ZQs{h (37): 8 ()}

im]
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where _ﬁ,l is a density estimate of f constructed from all the data points except x;, and similarly g,r
is a density estimate of g mnstruﬂed fmm all the data points except y;.
When +{ f(x),g(x)} = log{ f(x)/g(x)} = p(x), this reduces to

Cly,hy) = —J{m, ) dr—zn]lzmgm. (30) /8, e Y )

20" S log{ o, (/85 ()57 ().
J=1
A special case of this method results if we fix i; = h; = h a priori. We have seen that this restriction
has some theoretical justification when /' = g, and will show that it works well in practice when

[ = g. Note also that when +{ f(x).g{x)} = f(x) the method reduces to ordinary least-squares
cross-validation as proposed independently by Rudemo (1982) and Bowman (1984).

3.3. OTHER METHODS

In order to assess the performance of the cross-validation prescription introduced in Section 3.2, we
need to compare it with other possible methods. One such method is to choose smoothing
parameters, hs and hg,, which separately optimize the estimates of f(x) and g(x) on the interval
1, using standard least-squares cross-validation. Another is to choose ks, and ks, to optimize the
estimates of log f(x) and log g(x) on J. This can be accomplished by lettmg ~+(f.g)=log f, and
[ f.g) = log g, to obtain hs, and ks, . respectively, using the cross-validation method described in
Section 3.2, Adjusted versions of these methods make direct use of the theoretically derived
equations (2.10), by estimating the values of By, B, and B,, from the density estimates _.ﬁ and
gy, and substituting these values into (2.10) to obtain ad_lusted bandwidths & and A, . Another
method for choosing a bandwidth is likelihood cross-validation (Habbema et al. 1974; Duin 1976),
which usually performs well except that it tends to be very sensitive to outliers, creating over-
smoothed density estimates. In our case, this may be an advantage since we assume that our
underlying densities are bounded away from zero on the interval of interest, and we require the
density estimates to have the same property in order to give a sensible ratio estimate. As before, the
resulting bandwidths As and hg, can be adjusted via (2.10) to give bandwidths h; and Aj,.

Recent research in bandwidth choice for kernel density estimates suggests that cross-validation
can be outperformed by various ‘plug-in’ methods, which essentially seek to estimate the term
[£"(x)? dx in equation (2.3) (see, for example, Park and Marron 1990; or Sheather and Jones 1991).
However, these methods are not obviously adaptable to the situation in which observations are
made only on a finite interval, nor do they take account of the edge corrections which are necessary
in most epidemiological applications.

3.4. A COMPARATIVE SIMULATION STUDY

We now present the results of a simulation study to compare the performances of different methods
for choosing the bandwidths. In the tabulation of the results, the methods are identified as
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follows:

new cross-validation method;

new cross-validation method with constraint h; = h:
least-squares cross-validation;

least-squares cross-validation with adjustment;
likelihood cross-validation;

likelihood cross-validation with adjustment;
logarithmic cross-validation;

logarithmic cross-validation with adjustment.

90 =] O Lh B Lok bl e

Note that in the above list, the phrase ‘with adjustment’ refers to the use of equations (2.10) as
described in Section 3.3

We consider the unit interval, I = (0, 1), three ‘denominator’ densities, g,(x) = 1. g2(x) =1+
0.5sin(2nx), gi(x) =1+ 0.75sin(4nx), and three relative risk functions, r/(x) =1, rix) =
1.46¢(x:0.5,0.5), ri(x) = 0,919 + 0.081{x; 0.5, 0.05), where ¢{x; i, 7) denotes the normal density
with mean u and variance o~. Thus r; represents uniform risk, r; a slow global variation in risk, and
ry a local ‘blip” of increased risk. Combinations of these give nine *numerator’ densities, fi;(x) =
ri(x) g(x). f57(x) = ra(x) g (x). etc. For each numerator density f and its associated denominator
density g, we generated pseudo-random samples of sizes n; = n, = 200, which we then used to
estimate p(x) = log{ f(x)/g(x)} using each of the eight methods for choosing the bandwidths.
In each case, we simulated 20 replicates and calculated the median integrated square errors (ISEs)
for each method. The median, rather than the mean. was used because all eight methods
occasionally gave rise to an extremely high ISE - in applications, this would be identified as a
breakdown of the method and it would then be more sensible to choose the bandwidth subjectively,
but this option is not available in a simulation study. We then repeated the whole procedure
with sample sizes n; = 50 and n, = 400. The results are given in Table 1, including the value of By,
for each case. the importance of which was discussed in Section 2.2. For all cross-validation
methods, there is a possibility that an infinite smoothing parameter will be chosen, corresponding to
a uniform density on the interval f. This explains why we sometimes obtain zero ISE in the case
where f = g.

The results suggest that the new cross-validation method is an improvement on the other methods
where the denominator density is either g1 or g5 but has similar, or worse, performance when it is g;,
the uniform density. This is consistent with the theory given in Section 2.2, When either [ or g is
uniform, the By, term in equations (2.10) is zero, implying that jointly chosen bandwidths confer no
advantage. In practice it is unlikely that we shall be dealing with near-uniform densites /" or g, so
this should not be a serious problem. Note also that in these cases, the median ISE is very small for
all eight methods of bandwidth choice,

Methods 3, 5 and 7 have similar overall performances in our examples, although we found that
the logarithmic method 7 more often gave extremely high ISEs. The adjustment formulae (methods
4, 6 and 8) nearly always improve the estimates, but a greater improvement is usually obtained by
using the joint cross-validation procedure (method 1). The best results of all are obtained by using
the joint cross-validation method with bandwidths constrained to be equal (method 2). This last
remark applies to cases with unequal sample sizes. n; = 50 and n, = 400, as well as when
my = n» = 200. However, and as would be expected on theoretical grounds, we have found that
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Table 1. Median integrated squared errors of estimates of log { f{x)/g{x)} (20 simulations), for various
I, g n and ny

Densities S and g, fiz and g; Jiz and g5

By 358.78 35708.38

n 200 50 200 50 200 50

My 200 400 200 400 200 400
Method 1 0.00203 000447 0.00225 0.00785 0.00459 0.00460
2 0.00038 0.00105 0 0 0 0

3 0.00032 0.00221 0.02403 00808 0.08039 0.12473
4 0.00023 0.00221 0.01725 008605 0.06459 0.09567
3 0.00031 0.00223 002443 0.09070 0.09026 0.18570
6 0.00023 0.00223 0.0161% 0.08825 0.07732 0.12312
7 0.00031 0.00217 0.03006 0.07907 0.11467 0.33954
8 0.00023 0.00217 001648 0.07636 0.07909 (.28846
Densities Sy and g faz and g, Sy and gy

By 314.25 35076.71

ny 200 30 200 i 200 50

iz 200 400 200 400 200 400
Method 1 0.02196 0.02532 0.02850 0.03434 0.02472 0.02458
2 0.02236 0.02393 0.02236 0.02236 0.02236 002244
3 0.01744 0.02410 0.03679 0.07322 008254 0.11708
4 0.01793 0.02265 0.02888 0.06777 0.06983 008191
5 0.01804 0.02425 0.03559 0.07730 0.08874 0.14522
6 0.01804 0.02272 0.02684 0.07133 0.07051 0.10954
7 001838 0.02309 0.03253 0.07005 007430 0.22937
B 001838 0.02284 0.02721 006167 0.05704 0.20112
Densities 3y and g f3z and g4 Siy and g4

By 473.31 40156.17

" 200 50 200 50 200 50

s 200 400 200 400 200 400
Method | 0.02267 0.03520 0.02605 0.02634 0.06013 0.03665
2 0.02260 0.02709 0.02262 0.02267 0.03769 0.02277
3 0.02473 0.04151 004129 (0.08480 0.09677 0.18956
4 0.02473 0.04151 0.03236 0.07790 007717 0.14582
5 0.02314 0.03058 0.03838 0.09514 0.11708 0.185366
6 002314 0.03058 0.03358 0.08827 0.10548 0.16073
7 0.02263 002748 0.03362 0. 10464 0.11809 0.40143
8 0.02263 0.02645 0.02654 0.0936% 0.10223 0.38350
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method 2 can give poor results when the sample sizes are very different. Note also that the relative
benefit of choosing the bandwidths jointly tends to be larger when the sample sizes are different,
since all of the available data are then used in choosing both /) and /,. The relative benefits also tend
to be large when the densities f and g are rapidly fluctuating, as is the case with g5, since the value of
By, is then relatively large.

3.5. RECOMMENDATIONS

The simulation results indicate that the new method of cross-validation is the preferred method for
bandwidth choice in kernel estimation of p{x). If we expect the underlying densities to be nearly
equal, as is often the case in epidemiological applications, we also recommend constraining the
bandwidths to be equal, so as to reduce bias.

4. Tolerance intervals

Suppose that we have obtained an estimate, jp(x) say, using data x,,...,x, from a density f and
data x, 4 q,-- -5 Xy, +n, from a density g, both on an interval /. A pointwise tolerance interval can be
constructed to indicate, for each x, the range of values of 5(x) which are consistent with a hypothesis
H: p{x) = pylx). say. Under H, the data can be viewed as a single sample from a density
{nyf +ng)/(n +ny) followed by independent, random allocations of points to the *f group’
and ‘g group’ with position-dependent probabilities p{x) and 1 — p{x). respectively, where
plx) = n exp{pg(x)}/[n exp{pm(x)} + n;). A log density ratio estimate which is consistent with
H can therefore be created by combining the data, randomly allocating them with these
probabilities into two groups of approximate sizes n; and #, and calculating an estimate, j(x)
say, using the same smoothing parameters as for the original estimate j;(x). For a 95% tolerance
interval, we repeat the random allocation procedure, say s times, at each point x in [/, calculate the
2.5 and 97.5 percentiles of the estimates p(x),..., g;(x). and plot these on the same graph as the
original estimate jy(x).

Two hypotheses about p{x) are of particular interest. The first is Hy: p{x) =0, ie. a null
hypothesis of constant risk. A formal Monte Carlo test of Hy (Barnard 1963) can be performed
using the statistics

4 =J plxfdx  j=0,....5
I
The p value of the testis p = (k + 1)/(s + 1), where & is the number of t; > 1.
The second hypothesis of particular interest is H: p(x) = jp(x), since the resulting interval
estimates the sampling variability in gg{x).

5. Application

To analyse the data from Fig. 1, we convert the locations to squared distances (up to a distance of
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20km) from the incinerator, and use the resulting samples of size 387 (larynx cancers) and 7672
(lung cancers) to obtain an estimate of p( - ). Use of squared distances avoids the problem of trying
to estimate p(x) near x = () when both f{x) — 0 and g{x) — 0 as x — 0. For ease of interpretation,
we then present the relative risk estimate as a function of distance from the incinerator. rather
than squared distance, If there 15 no association between risk and distance we would expect the
cases and controls to behave as a random sample from a common underlying distribution, and
the relative risk estimate to be approximately constant. Note that although the circle of radius
20 km centred on the incinerator does not lie entirely within the study region, this does not bias
the estimation provided that the relative risk is solely attributable to distance from the incinerator.
For bandwidth choice. we use the cross-validation procedure constrained to have equal bandwidths.
The resulting estimate p{x) is shown in Fig. 2, with pointwise 93% tolerance intervals for 5(x) both
when p(x) =0 (Fig. 2a) and when p(x) = a(x) (Fig. 2b). in each case based on 1000 random
reallocations. A Monte Carlo test of constant risk gave a p value of 0.075. Note that although there
is an apparent local increase in relative risk close to the incinerator, this is not significant. whereas
there does appear to be some genuine and unexpected fluctuation in risk between 13km and 18km
away,

Once we accept the idea that the spatial variation in relative risk cannot be attributed exclusively
to the incinerator, it no longer makes sense to analyse the data solely in terms of distances from the
incinerator. We are developing analogous methodology for estimating two-dimensional spatial
variation in relative risk, and will report the results in due course.

6. Discussion

A natural extension of this approach is to the estimation of spatial variation in relative risk when
there is no prior hypothesis of association with a specific location. The spatial method is a direct
analogue of the one-dimensional method described in the present paper. The kernel estimator uses a
radially symmetric kernel, and the cross-validation calculations involve double integrals over a
target region 4. In principle, A may be any spatial region, but the computations are eased if 4 is
rectangular,

A completely different approach to the problem of risk estimation is to use nonparametric binary
regression. As our starting point, we again consider a set of points x;, i = 1,....n;. arising as a
partial realization of a Poisson process on an interval [, with intensity A;(x). and a second set of
pointsy;,. j=1..... 1, arising as an independent realization of a Poisson process on [ with intensity
Aa(x). We wish to estimate the relative risk, #(x) = A;(x)/Az(x). with a view to detecting and
describing departures from constant risk. If we now think of the data as a single set of locations, x;,
i — n, where n = n| + n,, together with a binary label for each point. then conditional on the
points x;, the labels z;, i=1..... n. are mutually independent Bernoulli random variables with
P(Z, = 1) = p(x;). where

p(%) = M(x)/{M (%) + Ma(¥)} = r(x) /{1 + ()}

Then, p(x) and hence r{x) can be estimated by a binary regression of the z; on the x; (Hastie and
Tibshirani 1990, Section 4.5). In effect, this is equivalent to transforming the functional parameter
space from A;(x) and A:z(x) to r(x) and s{x) = A (x) + A:(x}. and conditioning on the x; which are
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Figure 2. Pointwise 95% tolerance intervals for the estimate of relative risk computed from the Chorley-
Ribble data, as a function of distance from the incinerator. (a) Tolerance interval when plx) = 0; (b)
tolerance interval when p(x) = 5(x)

sufficient statistics for the nuisance parameter s(x). The same idea was used in a parametric setting in
Diggle and Rowlingson (1994).

Results for the spatial extension. and for the binary regression formulation, will be reported in
due course.
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