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Cox showed that the likelihood of regression models for discrete-time processes factors into a partial

likelihood and a product of conditional laws for the covariates, given the history. Jacod constructed a

partial likelihood for continuous-time regression models in terms of the predictable characteristics of

the response process. Here we prove a factorization of the likelihood, analogous to Cox's, assuming

both the response and the covariates to be semimartingales. The result is useful for counting process

regression modelling and inference, and also for regression involving continuous processes and

diffusions with jumps.
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1. Introduction

Suppose that we observe a response process X and a vector V of covariate processes. A

regression model speci®es how the history of X and V affects the evolution of the response.

In discrete time, one models the conditional densities pW
n(x) of X n given the past observations

X1, . . . , X nÿ1 and V1, . . . , Vnÿ1. Cox (1975) suggested basing inference about the parameter

W on the partial likelihood

�ZW �
YN
n�1

pW
n(X n), (1:1)

and showed that the full likelihood factors as

Z � �ZW Z�, Z� �
YN
n�1

p� n(X n, Vn), (1:2)

where p� n(x, v) is the conditional density of Vn given the observations before time n and

X n � x. The notation is chosen for consistency with later sections. It is natural to number the
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covariates V1, . . . , Vnÿ1 so that they are in the past of X n. The second factor may be

completely unspeci®ed, or it may depend on W and on further parameters. If the second factor

does not depend on W, the partial likelihood contains all the information about W. Note that

p� n varies independently of pW
n. Oakes (1981) reviews applications of the partial likelihood

in survival analysis. Wong (1986) gives an optimality result for estimators based on the

partial likelihood. Slud and Kedem (1994) and Mùller and Sùrensen (1994) analyse speci®c

models. We emphasize that the partial likelihood (1.1) is different from Cox's (1972) partial

likelihood for the proportional hazards model, which is a factor of the partial likelihood

considered here. The construction of partial likelihoods has been discussed extensively in

Kalb¯eisch and Prentice (1980) and Arjas (1989).

Does Cox's factorization have a version for continuous-time processes? Regression

models involving such processes have become prominent in statistics. For example,

survival regression models involving time-dependent covariates and censoring are

conveniently described by counting processes. Numerous applications have been discussed

in the monographs by Fleming and Harrington (1991) and Andersen et al. (1993). In

these applications, X t is a counting process with intensity ëWt depending on the history of

both X and a vector V of covariate processes. The ®rst example of such a counting

process regression model is Aalen's (1980) additive risk model, with intensity ë t � áT
t V tÿ.

Another example is Andersen and Gill's (1982) version of Cox's (1972) proportional

hazards model, with intensity ë t � Ctÿá t exp (âTVtÿ), where Vt together with the

censoring process Ct form the covariate process. Gill (1985) suggested using as a

partial likelihood

�ZW
t �

Y
Tn< t

ëWTn
exp ÿ

� t

0

ëWs ds

� �
,

where T n are the successive jump times of X. This continuous-time partial likelihood, like the

discrete-time partial likelihood above, has the form of the full likelihood of X except for the

dependence on V.

A partial likelihood for semimartingales X was de®ned by Jacod (1987). Again it has the

form of the full likelihood except for the dependence on V. For multivariate point processes

and diffusion processes, Slud (1992) approximates the partial likelihood by discrete-time

partial likelihoods.

When does the partial likelihood contain all the information about W? When and how can

one use additional information about the model? For discrete-time processes, both questions

are answered by Cox's factorization (1.2) of the likelihood. Gill (1985) has given a heuristic

derivation of the factorization for multivariate point processes in terms of product integrals

(Andersen et al. 1993, p. 107). We obtain such a factorization for continuous-time processes

in full generality, with X and V semimartingales. Our explicit description of the second

factor makes it possible to decide when optimal inference can be based on the partial

likelihood. Having the second factor explicitly, we can now also give a non-asymptotic

justi®cation for the ef®ciency concept which we introduced earlier (Greenwood and

Wefelmeyer 1990). A different (asymptotic) justi®cation was also given by us (Greenwood

and Wefelmeyer 1992).
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2. Factoring the likelihood

This section is organized as follows. First we recall some notation from the general theory of

processes, and give Jacod's construction of the partial likelihood for semimartingales and

Jacod and MeÂmin's representation of the full likelihood in terms of the predictable

characteristics. For a response process X and a vector V of covariate processes, we describe

the consistency relations between the characteristics of X and those of (X , V ). We ®nd a

`parametrization' of the full model in terms of the characteristics of X and of additional

predictable processes not involving them. The theorem expresses the second factor of the

likelihood in terms of these additional processes.

We need the following notation from the theory of semimartingales. A more detailed

description and associated results have been given in the monograph of Jacod and Shiryaev

(1987). Let P denote the predictable ó-®eld on Ù 3 [0, 1). If X is a semimartingale and b

a predictable process, we write b . X t for the stochastic integral
� t

0
bs dX s, and X c for the

continuous martingale part of X. If í is a random measure on [0, 1) 3 Rd and Y a P 
B d

measurable function, we write Y � í t for the stochastic integral
� t

0

�
Y (s, x)í(ds, dx).

We observe a real-valued cadlag response process X and a d-dimensional cadlag

covariate process V on a ®nite time interval in [0, 1). They generate the ®ltration (F t) t>0.

The random jump measure of X is

ìX (dt, dx) �
X

s:ÄX s 6�0

E(s,ÄX s)(dt, dx):

Similarly, the random jump measure of (X , V ) is

ì(dt, dx, dv) �
X

s:(ÄX s,ÄVs) 6�0

E(s,ÄX s,ÄVs)(dt, dx, dv):

Likelihoods of continuous-time processes are conveniently written with respect to a base

measure in the model. We ®x W and W9 and introduce the corresponding partial and full

likelihoods (likelihood ratios). The labels W and W9 are dropped. First we recall how the

characteristics of X change under an absolutely continuous change of measure. Consider

two probability measures P and P9 under which X is a semimartingale, with characteristics

(�B, �C, í) and �B9, �C9, í9), respectively, with respect to a truncation function, say �h. Assume

that P9t ! Pt for t 2 [0, 1), where Pt � PjF t. To keep the notation simpler, we assume

that P90 � P0. Write

at � í(ftg3 R), a9t � í9(ftg3 R):

Choose an increasing predictable process �F such that �C � c . �F with c a non-negative pre-

dictable process. By a Girsanov theorem (Jacod and Shiryaev 1987, p. 159, Theorem 3.24),

there exist a P 3 R-measurable function �Y (t, x) and a predictable process �â such that P9 a.s.,

�B9 � �B� c�â . �F � �h(x)(�Y ÿ 1) � í,

�C9 � �C,

í9(dt, dx) � �Y (t, x)í(dt, dx):
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We recall Jacod's (1987; 1990b) construction of the partial likelihood. Introduce

�Óc � ft: c�â . �Ft ,1g,

�Ód � ft: (1ÿ �Y 1=2)2 � í t �
X
s< t

[(1ÿ a9s)
1=2 ÿ (1ÿ as)

1=2]2 ,1g:

On �Ó � �Óc \ �Ód, de®ne the local P-martingale �N � �N c � �Nd with

�N c � �â . X c, (2:1)

�Nd � �Y ÿ 1ÿ aÿ a9

1ÿ a
1fa , 1g

� �
� (ìX ÿ í): (2:2)

The partial likelihood process is de®ned on �Ó as the DoleÂans exponential

�Z t � E ( �N ) t � exp ( �Nt ÿ 1
2
c�â2 . �Ft)

Y
s< t

(1� Ä �Ns) eÿÄ �Ns : (2:3)

The partial likelihood is described through the pairs of `parameters' �B, í and �B9, í9. The

change from �B to �B9 and from í to í9 is given through �â and �Y . These would play the role of

local parameters in asymptotic theory. We shall describe the full model in such a way that the

second factor of the likelihood does not involve the parameters �â, �Y of the partial likelihood.

We assume that P9t is dominated by Pt for t 2 [0, 1) and have introduced the partial

likelihood with reference to P and P9. However, a partial likelihood can also be constructed

when P9t is not dominated by Pt. Jacod (1990b) gives a de®nition which is free from P and

P9 except for the formal dependence of the stochastic integrals on P.

In order to produce an explicit factoring, we assume that the likelihood of (X , V ) admits

a representation in terms of its characteristics. This is not a serious restriction. Let (X , V )

be a semimartingale under P and P9, with characteristics (B, C, í) and (B9, C9, í9),
respectively, with respect to a truncation function h. Write

at � í(ftg3 R 3 Rd), a9t � í9(ftg3 R 3 Rd):

As before, the Girsanov theorem allows us to write C � c . F with a c a non-negative de®nite

predictable (d � 1) 3 (d � 1) matrix, and we can write P9 a.s.,

B9 � B� câ . F � h(x, v)(Y ÿ 1) � í,

C9 � C,

í9(dt, dx, dv) � Y (t, x, v)í(dt, dx, dv):

De®ne the random time intervals Óc, Ód and Ó in the same way as before, and on Ó de®ne the

local P-martingale N � N c � N d with

N c � â . (X c, V c), (2:4)

N d � Y ÿ 1ÿ aÿ a9

1ÿ a
1fa , 1g

� �
� (ìÿ í): (2:5)
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If all P-martingales have the representation property relative to (X , V ), the density process

Z t � dP9t=dPt can be represented on Ó as the DoleÂans exponential

Z t � E (N ) t � exp (Nt ÿ 1
2
âTcâ . Ft)

Y
s< t

(1� ÄNs) eÿÄNs : (2:6)

The result is due to Jacod and MeÂmin (1976) and Kabanov et al. (1979; 1980) (see Jacod and

Shiryaev (1987, p. 180, Theorem 5.19)). One sees from the representation that the full

likelihood is described through the pairs of parameters B, í and B9, í9.
The characteristics of (X , V ) must be consistent with the characteristics of X. We may

choose �F � F and �h � h1, the ®rst component of the truncation function h. For the

quadratic characteristics, we have

c911 � c11 � c: (2:7)

The ®rst component of the `drift' characteristic of (X , V ) is the speci®ed characteristic of X:

B1 � �B, B91 � �B9: (2:8)

To describe consistency of í with í, we partition the state space as

R 3 Rd � ((Rnf0g) 3 Rd)� (f0g3 Rd)

and write í as its sum on these two sets:

í(dt, dx, dv) � íÿ0(dt, dx, dv)� í0(dt, dv)E0(dx):

For consistency, the marginal of íÿ0 must be í,

íÿ0(dt, dx, dv) � í(dt, dx)íÿ�(t, x, dv), (2:9)

and similarly for í9. Here íÿ�(t, x, dv) is the regular conditional jump size distribution of V

given that X has a jump of size x at time t and varies independently of í just as p� n varies

independently of pW
n. In particular, íÿ�(t, x, Rd) � 1, and the total mass of ì at each ®xed t

is a(t) � a0(t)� a(t), where a0(t) � í0(ftg3 Rd).

We reparametrize the full model by the parameters �B, í of the partial speci®cation and

additional parameters which vary independently of them. Let B(1) denote the vector

consisting of all components of B except the ®rst. Note that B(1) and íÿ� vary

independently of �B and í. De®ne í� by

í0(dt, dv) � (1ÿ at)í�(dt, dv), (2:10)

and similarly for í9. In particular, a0 � (1ÿ a)a�. Note that í� equals í0 unless both X and

V have a positive probability of jumping at time t, at . 0 and a0 t . 0. Then

í�(ftg, dv) � í0(ftg, dv)

a0 t

a0 t

1ÿ at

,

where í0(ftg, dv)=a0 t is the jump size distribution of Vt1fÄX t�0g, and a0=(1ÿ a) � a� is the

conditional probability that V jumps given ÄX � 0. Because both these factors vary

independently of �B and í, so does í�. The model is now described by �B, í, B(1), íÿ� and í�.
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The consistency relation (2.8) for B translates into a consistency relation for the change

from B to B9:

c�â � (câ)1: (2:11)

Since í9 ! í, also í9ÿ0 ! íÿ0, í90 ! í0 and í9ÿ� ! íÿ�, í9� ! í�. Write Yÿ0, Y0 and Yÿ�, Y�
for the corresponding relative densities. Then

Y (t, x, v) � Yÿ0(t, x, v)1fx 6�0g � Y0(t, v)1fx�0g,

and the consistency relations (2.9) and (2.10) translate into

Yÿ0(t, x, v) � �Y (t, x)Yÿ�(t, x, v), (2:12)

Y0(t, v) � 1ÿ a9t
1ÿ at

Y�(t, v): (2:13)

Partition c and â as

c � c cT
(1)1

c(1)1 c(11)

� �
, â � â1

â(1)

� �
:

Here â(1) is the vector consisting of all components of â except the ®rst. Similarly, c(11) is

obtained from c by deleting the ®rst row and column, and c(1)1 from the ®rst column by

deleting its ®rst element.

The factorization is expressed in terms of the processes

N c� � â(1)
. (ÿcÿ1c(1)1

. X c � V c), (2:14)

N d
ÿ� � (Yÿ� ÿ 1)1fx 6�0g � ì, (2:15)

N d� � Y� ÿ 1ÿ a� ÿ a9�
1ÿ a� 1fa�, 1g

� �
1fx�0g � (ìÿ í0), (2:16)

using the DoleÂans exponential (2.6) with ÄN de®ned by (2.23).

Theorem. On the random time interval Ó \ �Ó, the likelihood process Z factors as �Z Z�,
where �Z is the partial likelihood, and

Z� � E (N c�)E (Nd
ÿ�)E (Nd�):

Here N c� is a continuous local P-martingale, Nd
ÿ� and Nd� are purely discontinuous local P-

martingales, and E (N d�) depends on í0 only through í�.

A more explicit description of the factorization Z � �Z Z� is

�Z � E ( �N c)E ( �Nd)

with factors given by (2.18) and the limit in t of (2.26), and

Z� � E (N c�)E (N d
ÿ�)E (N d�),
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with the ®rst two factors given by (2.19) and (2.27), and the last by the limit of (2.28). Here

we have

E (Nd
ÿ� � Nd�) � E (N d

ÿ�)E (N d�),
because N d

ÿ� and Nd� jump on different times sets, ÄX 6� 0 and ÄX � 0.

Proof. By (2.6), the full likelihood on Ó is

Z � E (N ) � E (N c)E (N d),

with N c and N d the continuous and purely discontinuous martingale parts of N, (2.4) and

(2.5). We factor E (N c) ®rst.

The consistency conditions (2.7) and (2.11) give

â �
�â

0

0@ 1A� â1 ÿ �â

â(1)

0@ 1A

�
�â

0

0@ 1A� ÿcÿ1cT
(1)1â(1)

â(1)

0@ 1A

�
�â

0

0@ 1A� cÿ1
0

(c(11) ÿ cÿ1c(1)1cT
(1)1)â(1)

0@ 1A,

a sum of two vectors orthogonal with respect to the inner product xcy. This implies that

âTcâ � c�â2 � âT
(1)(c(11) ÿ cÿ1c(1)1cT

(1)1)â(1):

Hence c�â2 ,1 and âT
(1)(c(11) ÿ cÿ1c(1)1cT

(1)1)â(1) ,1 on Óc. Also

â . (X c, V c) � �â . X c � â(1)
. (ÿcÿ1c(1)1

. X c � V c):

We obtain on Óc

E (N c) � exp fâ . (X c, V c)ÿ 1
2
âTcâ . Fg � E ( �N c)E (N c�), (2:17)

with

E ( �N c) � exp (�â . X c ÿ 1
2
c�â2 . F) (2:18)

and

E (N c�) � exp fâ(1)
. (ÿcÿ1c(1)1

. X c � V c)ÿ 1
2
âT

(1)(c(11) ÿ cÿ1c(1)1cT
(1)1)â(1)

. Fg: (2:19)

Now we factor E (N d). Assume ®rst that the jumps of X and V are bounded away from 0

by E. Then

E (N d) t � exp fÿ(Y ÿ 1) � íc
tg

Y
s< t

(ÄX s,ÄVs) 6�0

(1� ÄN d
s):
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By the consistency relations (2.12) and (2.13),

Y (s, x, v) � �Y (s, x)Yÿ�(s, x, v)1fx 6�0g � 1ÿ a9s
1ÿ as

Y�(s, v)1fx�0g: (2:20)

Since íÿ�(t, x, R) � í9ÿ�(t, x, R) � 1,�
fYÿ�(t, x, v)ÿ 1gíÿ�(t, x, dv) � 0: (2:21)

Furthermore, 1=(1ÿ a) � 1 a.s. under íc
0. Using (2.20), (2.21) and íc

ÿ0(dt, dx, dv) �
íÿ�(t, x, dv)í c(dt, dx), we can compute

(Y ÿ 1) � íc � (�Y Yÿ� ÿ 1)1fx 6�0g � íc
ÿ0 � (Y� ÿ 1) � íc

0

� (�Y ÿ 1) � íc � (Y� ÿ 1) � íc�: (2:22)

As in the work of Jacod and Shiryaev (1987, p. 180, (5.13)),

ÄNs � fY (s, ÄX s, ÄVs)ÿ 1g1f(ÄX s,ÄVs) 6�0g � as ÿ a9s
1ÿ as

1f(ÄX s,ÄVs)�0g: (2:23)

By the consistency relation (2.10), integrated on v,

1ÿ a � 1ÿ aÿ a0 � (1ÿ a) 1ÿ a0

1ÿ a

� �
� (1ÿ a)(1ÿ a�), (2:24)

and similarly for a9. With (2.20) and (2.22)±(2.24), we can write E (Nd) as

E (N d) t � exp fÿ(Y ÿ 1) � íc
tg

Y
s< t

(ÄX s,ÄVs) 6�0

Y (s, ÄX s, ÄVs)
Y
s< t

(ÄX s,ÄVs)�0

1ÿ a9s
1ÿ as

� exp fÿ(�Y ÿ 1) � íc
t ÿ (Y� ÿ 1) � íc� tg

Y
s< t

ÄX s 6�0

�Y (s, ÄX s)Yÿ�(s, ÄX s, ÄVs)

3
Y
s< t

ÄVs 6�0,ÄX s�0

1ÿ a9s
1ÿ as

Y�(s, ÄVs)
Y
s< t

(ÄX s,ÄVs)�0

1ÿ a9s
1ÿ as

1ÿ a9� s

1ÿ a� s

: (2:25)

From (2.23) with N replaced by �N, we have

E ( �N d) t � exp fÿ(�Y ÿ 1) � íc
tg

Y
s< t

ÄX s 6�0

�Y (s, ÄX s)
Y
s< t

ÄX s�0

1ÿ a9s
1ÿ as

: (2:26)

By relation (2.21),

Nd
ÿ� � (Yÿ� ÿ 1)1fx 6�0g � ì
� (Yÿ� ÿ 1)1fx 6�0g � (ìÿ í)
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is seen to be a purely discontinuous local P-martingale, and

E (N d
ÿ�) t �

Y
s< t

ÄX s 6�0

Yÿ�(s, ÄX s, ÄVs): (2:27)

Further, from (2.23) with N replaced by N� we have

E (N d�) t � exp fÿ(Y� ÿ 1) � íc� tg
Y
s< t

ÄVs 6�0,ÄX s�0

Y�(s, ÄVs)
Y
s< t

ÄVs�0,ÄX s�0

1ÿ a9� s

1ÿ a� s

: (2:28)

Applying (2.26)±(2.28) to (2.25), we obtain

E (Nd) � E ( �Nd)E (Nd
ÿ�)E (Nd�): (2:29)

Relations (2.17) and (2.29) give us the asserted factorization for E. 0.

The assertion that the jumps of X and V are of size greater than E can be removed since

the limit of each factor in (2.29) as E! 0 is the corresponding factor with E � 0. In

particular, the limit of E (Nd�) in (2.28) depends on í0 only through í�. u

3. Discussion

The theorem in Section 2 allows us to evaluate the relative ef®ciency of statistial procedures

based on certain factors of the likelihood. Here we discuss some aspects of the factorization.

(i) Ef®ciency of the partial likelihood

The partial likelihood �Z depends only on the partial speci®cation (�B, í). The second factor

depends on B(1), íÿ� and í�, and through the continuous martingale part X c in E (N c�) it

depends also on �B, but not on �â. The information about parameters of the model does not

depend on the parameters (B, í) of the base measure P, but only on the parameters (â, Y ) of

the likelihoood Z. Therefore, if we have a parametric model for (�B, í), the partial likelihood

leads to ef®cient inference as long as â(1), Yÿ� and Y� do not involve the parameter of

interest.

(ii) The partial likelihood is a likelihood

If B(1), íÿ� and í� do not depend on the parameter of interest,

B9(1) � B(1), í9ÿ� � íÿ�, í9� � í�, (3:1)

then â2 � 0, and the í density of í9 is

Y (s, x, v) � �Y (s, x)1fx 6�0g � 1ÿ a9s
1ÿ as

1fx�0g:
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Hence the representation (2.6) of the full likelihood Z reduces to the partial likelihood �Z.

For multivariate point processes, this observation is due to Arjas and Haara (1984). Their

condition A is contained in (3.1). They use Jacod's (1975) representation of the full

likelihood. The reduction of Z to �Z under (3.1) also follows from our factorization.

(iii) The partial likelihood is a projection

Suppose that we are given a parametric model for the partial speci®cation �B, í, but leave

the model completely unspeci®ed otherwise. If the full likelihood admits a representation

(2.6), our factorization shows that the partial likelihood leads to ef®cient inference about the

parameter. If we do not have the representation (2.6), it is still possible to prove this.

Following Greenwood and Wefelmeyer (1990), introduce �P by d�P � �Z dP, and call an

estimator ef®cient if it is ef®cient in this model. Greenwood and Wefelmeyer (1992) show

that this is equivalent to ef®ciency in the full model; �P is in the full model because X has

characteristics �B, í under �P by the Girsanov theorem, and �P is least favourable since �Z is

the projection of any full likelihood Z t � dP9t=dPt such that X has characteristics �B9, í9
under P9, by the converse of the Girsanov theorem (Jacod and Shiryaev 1987, p. 160,

(3.28)). The latter argument has already been used by Jacod (1990a) (see also Jacod

(1990b)) to prove that the partial Fisher information is smaller than the full Fisher

information.

(iv) Factoring the partial likelihood

The partial likelihood factors as E ( �N c)E ( �Nd), with factors de®ned in (2.18) and (2.26).

Suppose that we model X as X c � Xd, where X c is a continuous semimartingale with

characteristics (�Bc, �C, 0), and Xd is a pure jump process with jump characteristic í. Then

X c � X c
c � X c ÿ �Bc. Furthermore, the Girsanov theorem says that

�B9c � �Bc � c�âc
. �F:

Hence

E ( �N c) � exp f�âc
. (X c ÿ �Bc)ÿ 1

2
c�â2

c
. �Fg

depends only on �Bc, and E ( �Nd) depends only on í. We arrive at a factorization of �Z with

factors depending on independently varying parameters �Bc and í.

(v) Fixed ®xed jumps

In most applications, the probabilities at and a� t of jumping at a ®xed time t do not depend

on the parameter of interest, a9t � at and a9� t � a� t. For example, they are simultaneously

either 1 or 0, or all 0. In this case, Y� � Y0, and (2.26) and (2.28) reduce to
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E ( �Nd) t � exp fÿ(�Y ÿ 1) � íc
tg

Y
s< t

ÄX s 6�0

�Y (s, ÄX s),

E (N d�) t � exp fÿ(Y0 ÿ 1) � íc� tg
Y
s< t

ÄVs 6�0,ÄX s�0

Y0(s, ÄVs):

4. Examples

The factorization simpli®es for more speci®c processes. We give some examples.

(i) Discrete-time processes

For discrete-time processes, we have already described Cox's factorization in (1.2). It is

instructive to derive a comparable factorization from our theorem, now for likelihood ratios

rather than likelihoods. The observations will be jumps of a semimartingale, and we shall use

small letters for them. Let x0, x1, . . . be real-valued responses, and v0, v1, . . . d-dimensional

covariates. They generate a ®ltration (F n)n>0. As in Section 2 we assume, for simplicity, that

the distribution of (x0, v0) is known. For n � 1, 2, . . . , we specify a model for the regular

conditional distributions pn(dx) of xn given F nÿ1. The continuous-time process X t �P
n< t xn, t > 0, is a (special) semimartingale with characteristics �B � 0, �C � 0, and

í(dt, dx) �
X
n>1

ín(dx)En(dt),

where ín is de®ned by

pn(dx) � ín(dx)� pn(f0g)E0(dx):

The distinction between xn � 0 and xn 6� 0 is necessary because the jump measure of X does

not charge xn � 0. This will lead to a more complicated factorization than (1.2), namely f � n

has the form (4.9). Note that

pn(f0g) � 1ÿ ín(R) � 1ÿ an: (4:1)

To introduce the partial likelihood process, let p9n be another regular conditional

distribution in the model, with p9n ! pn, and write �Yn for the ín density of í9n. As in

(2.26), the partial likelihood process (2.23) can be written

�Z t � E ( �N d) t �
Y
n< t

xn 6�0

�Yn(xn)
Y
n< t

xn�0

1ÿ a9n
1ÿ an

: (4:2)

Now let pn(dx, dv) be a regular conditional distribution of (xn, vn) given F nÿ1. De®ne
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Vt �
P

n> tvn. Then (X , V ) is a (special) semimartingale with characteristics B � 0, C � 0,

and

í(dt, dx, dv) �
X
n>1

ín(dx, dv)En(dt),

where ín is de®ned by

pn(dx, dv) � ín(dx, dv)� pn(f(0, 0)g)E(0,0)(dx, dv):

As in (4.1),

pn(f(0, 0)g) � 1ÿ ín(R 3 Rd) � 1ÿ an: (4:3)

To introduce the full likelihood process, let p9n be another regular conditional distribution

of (xn, vn) given F nÿ1, and assume that p9n ! pn. With notation analogous to the above,

the density process (2.6) can be written

Z t �
Y
n< t

(xn,v n) 6�0

Yn(xn, vn)
Y
n< t

(xn,vn)�0

1ÿ a9n
1ÿ an

: (4:4)

To describe the factorization, write

ín(dx, dv) � íÿ0,n(dx, dv)� í0n(dv)E0(dx):

The consistency relations (2.9) and (2.10) are then written

íÿ0,n(dx, dv) � ín(dx)íÿ�,n(x, dv),

í0n(dv) � (1ÿ an)í� n(dv),

where íÿ�,n(x, dv) is the conditional jump size distribution of vn given xn � x. In particular

(compare (2.24)),

1ÿ an � 1ÿ an ÿ a0n � (1ÿ an)(1ÿ a� n): (4:5)

Then the consistency relations (2.12) and (2.13) for the relative densities are

Yÿ0,n(x, v) � �Yn(x)Yÿ�,n(x, v), (4:6)

Y0n(v) � 1ÿ a9n
1ÿ an

Y� n(v): (4:7)

The factorization Z � �Z Z� can now be obtained from the theorem in Section 2 and (2.26)±

(2.28) or directly from (4.2) and (4.4) and the consistency relations (4.5) to (4.7), with

Z� t �
Y
n< t

xn 6�0

Yÿ�,n(xn, vn)
Y
n< t

v n 6�0,xn�0

Y� n(vn)
Y
n< t

v n�0,xn�0

1ÿ a9� n

1ÿ a� n

: (4:8)

To compare with Cox's discrete-time factorization (1.2), write �f n for the pn density of

p9n. Then �f n equals �Yn on Rnf0g and, with (4.1),

�f n(0) � p9n(f0g)
pn(f0g) �

1ÿ a9n
1ÿ an

:
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Hence the partial likelihood process (4.2) is �Z t �
Q

n< t
�f n(xn). This is the partial likelihood

ratio obtained from the usual discrete-time partial likelihood. Now factor

pn(dx, dv) � pn(dx) p� n(x, dv):

We have p� n(x, dv) � íÿ�,n(x, dv) for x 6� 0, and p� n(0, dv) � í� n(dv) on Rdnf0g. Further,

p� n(0, f0g) � 1ÿ a� n. Write f � n(x, v) for the p� n(x, dv) density of p9� n(x, dv). By (1.2),

the factor (4.8) must equal
Q

n< t f � n. Indeed,

f � n(x, v) �
Yÿ�,n(x, v), x 6� 0,

Y� n(v), x � 0, v 6� 0,
1ÿ a9� n

1ÿ a� n

, x � 0, v � 0:

8><>: (4:9)

(ii) Continuous processes

Suppose that (X , V ) is a continuous semimartingale, with characteristics (B, C, 0). Then the

factorization reduces to Z � �Z Z� � E ( �N c)E (N c�) with factors de®ned in (2.18) and (2.19).

In this case, X c � X ÿ �B and V c � V ÿ B(1) with

B � �B
B(1)

� �
� cb . F, b � b1

b(1)

� �
:

In particular,

�Z � exp f�â . (X ÿ �B)ÿ 1
2
c�â2 . Fg:

The compensator of â(1)
. (ÿcÿ1c(1)1

. X � V ) is

(ÿcÿ1cT
(1)1â(1), â

T
(1))cb . F � âT

(1)(c(11) ÿ cÿ1c(1)1cT
(1)1)b(1)

. F:

Hence

Z� � exp fâ(1)
. (ÿcÿ1c(1)1

. X � V )ÿ âT
(1)(c(11) ÿ cÿ1c(1)1cT

(1)1)b(1)
. F

ÿ 1
2
âT

(1)(c(11) ÿ cÿ1c(1)1cT
(1)1)â(1)

. Fg,
which does not depend on �â.

(iii) Jump processes

Let X and V be pure jump processes, and let í and í be the compensators of the random

jump measures of X and (X , V ), respectively. Then the factorization reduces to Z � �Z Z�
with

�Z t � exp fÿ(�Y ÿ 1) � íc
tg

Y
s< t

ÄX s 6�0

�Y (s, ÄX s)
Y
s< t

ÄX s�0

1ÿ a9s
1ÿ as
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and

Z� t �
Y
s< t

ÄX s 6�0

Yÿ�(s, ÄX s, ÄVs) exp fÿ(Y� ÿ 1) � íc� tg
Y
s< t

ÄVs 6�0,ÄX s�0

Y�(s, ÄVs)

3
Y
s< t

ÄVs�0,ÄX s�0

1ÿ a9� s

1ÿ a� s

:

An analogous factorization holds for multivariate point processes with more general state

spaces; the partial likelihood �Z is described by Arjas and Haara (1984).

(iv) Diffusions with jumps

Let (X , V ) be a diffusion with jumps, with characteristics

dBt � bt(X tÿ, Vtÿ) dt,

dCt � ct(X tÿ, Vtÿ) dt,

í(dt, dx, dv) � dt K t(X tÿ, Vtÿ, dx, dv):

Specify a model for the characteristics of X:

d�Bt � �bt(X tÿ, Vtÿ) dt,

d�Ct � ct(X tÿ, Vtÿ) dt,

í(dt, dx) � dt �K t(X tÿ, Vtÿ, dx):

Write

K t(X tÿ, Vtÿ, dx, dv) � Kÿ0, t(X tÿ, Vtÿ, dx, dv)� K0 t(X tÿ, Vtÿ, dv)E0(dx):

Consistency of í with í gives

Kÿ0, t(X tÿ, Vtÿ, dx, dv) � �K t(X tÿ, Vtÿ, dx)Kÿ�, t(X tÿ, Vtÿ, x, dv):

Let P9 be another distribution with P9t ! Pt for t 2 [0, 1), so that C9 � C. For simplicity,

assume again P90 � P0. Write

â t � ct(X tÿ, Vtÿ)ÿ1fb9t(X tÿ, Vtÿ)ÿ bt(X tÿ, Vtÿ)g,
�â t � ct(X tÿ, Vtÿ)ÿ1f�b9t(X tÿ, Vtÿ)ÿ �bt(X tÿ, Vtÿ)g:

As in Section 2, the consistency relation for â and �â is ct(X tÿ, Vtÿ)�â t � (ct(X tÿ, Vtÿ)â t)1.

Write Yt(X tÿ, Vtÿ, x, v) for the K t(X tÿ, Vtÿ, dx, dv) density of K9t(X tÿ, Vtÿ, dx, dv), and

de®ne Y0, �Y and Yÿ� correspondingly. Since (X , V ) does not have ®xed jumps, we have
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a � 0 and hence a � a� � 0 and Y�(x, v) � Y0(X tÿ, Vtÿ, x, v). We suppress (X sÿ, Vsÿ).

The partial likelihood process is

�Z t � exp

� t

0

�âs dX c
s ÿ 1

2
cs

�â2
s ds

� �
exp ÿ

� t

0

�
f�Ys(x)ÿ 1g �Ks(dx) ds

� � Y
s< t

ÄX s 6�0

�Ys(ÄX s):

The likelihood factors, Z � �Z Z�, where Z� is obtained from (2.19), (2.27) and (2.28) as

Z� t � exp

� t

0

â(1)s(ÿcÿ1
s c(1)1s dX c

s � dV c
s)ÿ 1

2

� t

0

âT
(1)s(c(11)s ÿ cÿ1

s c(1)1scT
(1)1s)â(1)s ds

� �

3
Y
s< t

ÄX s 6�0

Yÿ�,s(ÄX s, ÄVs) exp ÿ
� t

0

�
fY0s(v)ÿ 1gK0(dv) ds

� � Y
s< t

ÄVs 6�0,ÄX s�0

Y0s(ÄVs):

Here �Z depends on �b through �â, and on �K through �Y . The second factor Z� depends on b

through â(1), and on K through Yÿ�, K0 and Y0. As in the continuous processes case, we

argue that the ®rst term of Z� does not depend on �b even though it contains X c.
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