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At extreme levels, it is known that for a particular choice of marginal distribution, transitions of a

Markov chain behave like a random walk. For a broad class of Markov chains, we give a

characterization for the step length density of the limiting random walk, which leads to an interesting

suf®ciency property. This representation also leads us to propose a new technique for kernel density

estimation for this class of models.
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1. Introduction

The characterization of the extremal behaviour of Markov chains represents a major advance

in the applicability of extreme value techniques to genuine time series of data. Smith (1992)

obtained the following representation that is particularly amenable for statistical modelling.

Let fX ig denote a stationary ®rst-order Markov chain with bivariate distribution of con-

secutive pairs P(X1 < x1, X 2 < x2) � F(x1, x2) and marginal distribution function F1(x) �
exp(ÿeÿx), the standard Gumbel distribution. Under mild regularity conditions, as u!1
and for ®xed p, given X1 . u, the differences X 2 ÿ X 1, X3 ÿ X2, . . . , X p ÿ X pÿ1 are

approximately independent of each other and of u. The implications for Markov chains with a

more general marginal speci®cation follow by marginal transformation.

For practical purposes Smith's characterization suggests ®rst transforming an observed

series to have Gumbel margins, and then modelling extremal episodes of the transformed

chain ± in the sense of an arbitrary observation Xi having exceeded a high threshold u ± as

a random walk with step length distribution given by

H(z) � lim
u!1 P(Xi�1 < u� zjX i � u): (1)

A brief simulation study in Section 2 of this paper suggests that provided the temporal

dependence is not too weak, the limiting random walk is a reasonable approximation to the
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true Markov chain at low enough levels for inference to be feasible. Smith et al. (1997) adopt

the model for simulating the stochastic behaviour of functionals of extremal episodes, such as

the distribution of the number or aggregate of exceedances of a high threshold u. These

techniques require the speci®cation of valid models for the step length distribution H in

equation (1). The ®rst aim of this paper, developed in Section 2, is to give an explicit

characterization of admissible models for H. In Section 3 we go one stage further and

investigate the inferential properties of the limiting random walk model itself ± again, the

simulations suggest that in most cases such inferences will give good approximations to the

true Markov chain model. This gives rise to a curious and surprising suf®ciency result.

Finally, in Section 4, we consider the impact of these results for nonparametric estimation of

the step length density, leading to a proposal for kernel estimation that respects the functional

constraints on the admissible class.

2. Limiting random walk

2.1. Characterization

As in the previous section, we assume fX ig is a Markov chain having transitions determined

by F, which is a bivariate distribution with Gumbel margins. Temporal dependence in the

chain is determined by the dependence characteristics of F. Thus, it is the joint tail of F that

characterizes extremal dependence in the chain. This, in turn, is determined by standard

multivariate extreme value theory. Under weak regularity assumptions (Resnick 1987,

Chapter 5), F lies in the domain of attraction of a bivariate extreme value distribution, G.

This means that the distribution of linearly rescaled componentwise maxima of n independent

variables having distribution F converges as n!1 to G. More precisely, as n!1,

fF(x� log n, y� log n)gn ! exp[ÿV (ex, e y)], (2)

where V is a homogeneous function of order ÿ1 satisfying V (x, 1) � V (1, x) � xÿ1, thus

characterizing the bivariate extreme value family. Hence, adopting this limit as an

approximation for large x and y,

F(x, y) � exp[ÿnÿ1V (exÿlog n, e yÿlog n)]

� exp[ÿV (ex, e y)], (3)

by the homogeneity of V . Thus, the tail of F can be approximated by a bivariate extreme

value distribution. Smith et al. (1997) suggested incorporating this approximation into the

Markov chain to model the transitions at high levels. Thus, when xi . u for large u,

F(xi, xi�1) is modelled by equation (3). Within this model we now seek to characterize the

admissible class of limiting random walk step length distributions in (1).

Substituting (3) for F in equation (1), and using the fact that nth partial derivatives of V

are homogeneous of order ÿ(n� 1), gives, for z 2 R:
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H(z) � lim
u!1 f1(u)ÿ1 @F(x, y)

@x

����
(x, y)�(u,u�z)

( )

� lim
u!1

ÿeuV1(eu, eu�z) exp[ÿV (eu, eu�z)]

eÿu exp(ÿeÿu)

� �

� lim
u!1

ÿV1(1, ez) exp[ÿeÿuV (1, ez)]

exp(ÿeÿu)

� �
� ÿV1(1, ez), (4)

where f1 denotes the Gumbel density function, and V1 is the derivative of V with respect to

the ®rst component. In some cases, the form of V leads to H having positive mass at ÿ1,

i.e. H(ÿ1) . 0. Restricting attention to transition models for which H is continuously

differentiable and H(ÿ1) � 0, we obtain from (4) that the density of the step length of the

limiting random walk is

h(z) � ÿezV1,2(1, ez), (5)

where V1,2 denotes the mixed partial derivative.

Equation (5) gives one characterization of the step length density, h, for the limiting

random walk. From Coles and Tawn (1991, Theorem 2), the parametric family V1,2 can

always be written in the form

V1,2(x, y) � ÿ2

(x� y)3
g

x

x� y

� �
, (6)

where g is a probability density function on [0, 1], having mean equal to 1
2
. Hence,

h(z) � 2ez

(1� ez)3
g

1

1� ez

� �
(7)

which gives an alternative, but equivalent, characterization for h in terms of transformed

densities on [0, 1]. It is easily checked that a variable Z having density (7) must have

negative mean.

When modelling extremes it is usual to adopt a parametric family for either the

homogeneous function V or the density g (Coles and Tawn 1991, for example). To

emphasize the dependence on a possibly vector-valued parameter á, we denote these

functions by V (x, y; á) and g(w; á), respectively. For example, one standard bivariate

extreme value model is the logistic model (Gumbel, 1960), for which

V (x, y; á) � (xÿ1=á � yÿ1=á)á, (8)

x . 0, y . 0, 0 ,á, 1. Equivalently, from (6),

g(w; á) � 1
2
(1=áÿ 1)fw(1ÿ w)gÿ1ÿ1=áfwÿ1=á � (1ÿ w)ÿ1=ágáÿ2: (9)

Hence, from either (5) or (7), the associated limiting random walk has density
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h(z; á) � (1=áÿ 1)eÿz=á(1� eÿz=á)áÿ2, (10)

which is Example 2 of Smith (1992). The parameter á determines the degree of dependence

in the Markov chain, with á! 1 corresponding to independence and á! 0 giving perfect

dependence. The fact that g is symmetric about 0.5 for this model corresponds to time-

reversibility of the Markov chain.

2.2. Accuracy of the random walk model

Exact inference for the Markov model of Section 1 has been discussed in detail by Smith et

al. (1997). A simpler approach is based directly on the limiting random walk char-

acterization. Let Z1, . . . , Z n correspond to differences between consecutive variables above a

high threshold u of a Markov chain; that is, Zi � X (i)�1 ÿ X (i), where the X (i) are the

realizations of the chain exceeding u. By the characterizations of Sections 1 and 2, the Zi can

be modelled as independent variables with density function h as in (5) or (7). Simulation

studies suggest this approximation is accurate provided dependence in the chain is not too

weak. We will demonstrate this for Markov chains whose transition distribution F is given by

the right-hand side of (2) with V given by (8). For values of á in the range 0.3 to 0.9 a series

of 10 000 points from the associated Markov chain was simulated. Accordingly, the correct

limiting model for h is given by equation (10). In each case the quality of the limiting model

for steps above u � u0:95, the 95% marginal quantile, was examined in two ways: ®rst, to

assess the independence of successive steps; and second, to assess the validity of density (10).

Judged in terms of the sample correlation of successive transitions above u0:95, the

assumption of independent transitions was found to be reasonable for each value for á: in the

worst case, the correlation was found to be about ÿ0:1. For reasonably small values of á, the

assumption of the limiting density (10) was also found to be a good approximation, though

problems arise for larger values of á, corresponding to weakly dependent chains. Figure 1,

giving probability plots of the transition densities above u0:95 with respect to the true limit

model (10), illustrates the problem. For á � 0:9 and to a lesser extent for á � 0:7, the limit

model is poor in the lower tail, while for smaller values of á the model is almost perfect. In

the case of á � 0:9 a probability plot based on a threshold corresponding to u0:999, the 99.9%

quantile, is also shown: there is some improvement, but the ®t in the lower tail is still very

poor. This suggests that for large values of á much higher thresholds are necessary before the

limiting model gives a workable approximation. Such a limitation is not surprising, since the

limit model of (10) as á! 1 corresponds to unit mass at ÿ1.

3. A suf®ciency property of the random walk model

We now restrict our attention to Markov chains having the same time-reversibility property

as the logistic model (8), so that g(w; á) � g(1ÿ w; á), or equivalently, V (x, y; á) � V (y,

x; á). In this section we show that the corresponding model for the limiting random walk h in

equation (7) possesses a special suf®ciency property. Surprisingly, despite the fact that h is

asymmetric with negative mean generally depending on the parameter value á,
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fjZ1j, jZ2j, . . . , jZ njg constitutes a suf®cient statistic for this family. Thus, all likelihood

inferences, such as the maximum likelihood estimate and likelihood-based con®dence

intervals, are invariant to the sign of the Zi. The result is proved as follows. From the

symmetry and homogeneity properties of V , equation (5) can be rewritten as:

h(z; á) � ÿezV1,2(1, ez; á)

� ÿeÿ2zV1,2(eÿz, 1; á)

� ÿeÿ2zV1,2(1, eÿz; á):

Figure 1. Probability plots of the limiting random walk model for a Markov chain with transitions

given by the logistic bivariate extreme value distribution. Distributions are based on steps above a

threshold equal to the 95% marginal quantile for each value of the dependence parameter á, and also,

plotted as `�', for the 99.9% marginal quantile in the case á � 0:9.
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Hence,

h(z; á) � ÿm(z)V1,2(1, ejzj; á),

where

m(z) �
ez z > 0,

eÿ2z z , 0:

(
This provides the factorization required for the sequence of absolute values of the step

lengths, fjZijg, i � 1, . . . , n, to be suf®cient for á.

The suf®ciency property can also be reasoned from an intuitive viewpoint. By the

Markov property, the log-likelihood for á is a sum of contributions associated with the

individual Zi. But by the time-reversibility of the process, positive and negative steps in the

limiting random walk contain the same information about the level of dependence in the

Markov chain. Thus, inferences on á should depend only on the magnitude of each

individual step.

Representation (7) also suggests a way of deriving other models sharing the same

suf®ciency property. Let g(w; á) be a family of probability density functions on [0,1],

symmetric about 1
2
. Applying the logistic transformation

W � (1� e Z)ÿ1 (11)

leads to Z having density

h�(z; á) � ez

(1� ez)2
g

1

1� ez
; á

� �
: (12)

Up to a multiplication factor not involving á, this is equal to h in equation (7) and, hence,

has the same suf®ciency property.

4. Implications for inference

Consider now the problem of inference for h, the limiting random walk step length density.

In common with other inferential problems involving multivariate extremes, the entire

admissible class for h has no ®nite parametrization, being limited in this case only by the

representation (7). In analogous situations, both parametric and nonparametric procedures

have been considered; see Coles and Tawn (1991) for a discussion of parametric procedures,

de Haan and Resnick (1993) and CapeÂraaÁ et al. (1997) for a discussion of nonparametric

procedures, and Smith et al. (1990) for a comparison of the two approaches. In the present

context, as discussed in Section 2, the parametric approach would be to adopt a sub-family

for h satisfying constraint (7), such as model (10), and to estimate parameters by, say,

maximum likelihood. The restriction of parametric procedures to sub-families is avoided by

the use of nonparametric models, but at the expense of dif®culty in constraining function

estimates to lie within their functional domain, representation (7) in this speci®c case.

Moreover, because of the suf®ciency argument in Section 3, invoking the likelihood principle,
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positive and negative values of Z should contain the same inferential information. Implicitly,

any likelihood-based technique such as maximum likelihood or Bayesian inference is bound

to respect this criterion, but this is not necessarily the case for nonparametric estimators.

However, the discussion of Section 3 suggests a way to construct a kernel density estimate

of h which respects both the representation (7) and the property of invariance to the sign of

the Zi.

Our model is that Z1, . . . , Z n, representing step lengths at high levels of the chain, are

independent variables with density of the form (7). Applying the logistic transformation (11)

generates independent variables W1, . . . , W n with density

hW (w) � 2wg(w), 0 < w < 1: (13)

Now de®ne, for i � 1, . . . , n,

W�i �
Wi with probability 1

2

1ÿ Wi with probability 1
2
:

(
(14)

Then each W�i has density

hW�(w) � 1
2
f2wg(w)� 2(1ÿ w)g(1ÿ w)g

� g(w)

by the symmetry of g. Thus, applying the logistic transform (11) not only to Z1, . . . , Z n, but

also to Z n�1, . . . , Z2n, where Z n�i � ÿZi for i � 1, . . . , n, generates a non-independent

sample W�1 , . . . , W�2n having the same marginal distribution as the variable (14), i.e., having

marginal density g. Moreover, the sample is symmetric about 0.5. Standard, though bounded,

kernel density estimation on the W�i therefore yields an estimate ~g of g which is itself

symmetric about 0.5. Substitution of ~g for g in (7) then generates an estimate, ~h of h, which

by construction is an admissible step length density for a limiting random walk in the sense

de®ned in Section 1.

A simulation study also suggests that, in circumstances where the limiting model gives a

good approximation, this approach has better mean-square-error properties than a naive

kernel density estimator applied to the Zi. Again we focus on model (2) with V given by

(8), but now restricted to the case á < 0:7, for which the random walk limit with step

length density (10) was found previously to give a good approximation.

For each á, series of 10 000 points, X i, were again simulated from the Markov chain, and

steps Zi � X i�1 ÿ X i for which X i exceeded u0:95, or u0:99 in the case of á � 0:7, were

assumed to be independent with step length density (10). This procedure was repeated 100

times, to obtain estimates of mean integrated square error in the estimation of h using the

two different kernel density estimators. The results are summarized in Table 1.

Similar empirical rules were used to control the degree of smoothing for each of the two

estimators in order to obtain a fair comparison. However, because of the boundedness of the

domain in the logistic space, re¯ected kernels were used for the transformed estimator.

For small values of á the mean integrated square error of the naive density estimator is

reduced by about 50% when using the transformed estimator. For larger values of á the
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improvement is less marked to the extent that there is no improvement in the case á � 0:7
despite the fact that a higher threshold was selected. Interpretation is dif®cult in this case,

and for larger values of á, since the quality of the limiting model itself is poor. However, it

is encouraging that when the model is appropriate the transformed estimator seems to have

preferred inference properties, in addition to the bene®t of falling within the true functional

space of the model.
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Table 1. Mean integrated square errors in the estimation of step length density h,

using naive kernel density estimation on step lengths (MISE (~h1)) and transformed

kernel density estimation in logistic space (MISE (~h2)); in each case, estimates are

based on steps Zi � Xi�1 ÿ Xi for which Xi exceeded u0:95, or u0:99 in the case of

á � 0.7

á 0.3 0.4 0.5 0.6 0.7

MISE (~h1) 0.0030 0.0023 0.0018 0.0020 0.020

MISE (~h2) 0.0015 0.0011 0.0008 0.0016 0.020
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