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It is natural in many contexts to employ conditioning arguments in order to deduce properties of a

multivariate distribution Pn from properties of a lower-order distribution Pnÿ1. In this paper we show

that the pointwise (fractal) dimension of Pn can be updated from the pointwise dimension of Pnÿ1 via

the one-step conditional distributions provided the latter satisfy certain Lipschitz-type properties.

Speci®cally, we prove that pointwise dimension can be computed iteratively according to the

conditional additivity rule

á(x1, . . . , xn) � á(x1)� á(x2jx1)� á(x3jx1, x2) � . . . � á(xnjx1, . . . , xnÿ1):

This approach is then used to analyse the behaviour of pointwise dimension for various stationary

stochastic processes; the emphasis is on dynamical systems corrupted by noise. In particular, we show

that for functionals of stochastic processes with discrete conditional distributions satisfying the

necessary conditions (such as missing-data models of dynamical systems and randomly iterated function

systems) pointwise dimension remains bounded over time just as in the strictly deterministic case. On

the other hand, we prove that for stochastic dynamical systems with additive diffuse noise, pointwise

dimension diverges to in®nity over time. An example of a stationary dynamical system where the

conditional additivity rule fails is also provided.

Keywords: determinism; fractal dimension; Grassberger±Procaccia algorithm; iterated function system;

Markov process; missing data; pointwise dimension; stochastic dynamical system; time series

1. Introduction

In the following X will always denote a complete separable metric space with metric r. If P

is a probability distribution on the Borel sets of X , the pointwise dimension of P at x 2 X
(sometimes also called the local HoÈlder exponent at x) is de®ned as

áP(x) � lim
r!0

log P(B(x, r))

log r
, (1:1)

provided this limit exists. Here B(x, r) denotes the closed ball of radius r centred at x. If the

limit does not exist, we may consider the upper and lower values á�P(x) and áÿP(x) obtained

by replacing `lim' in (1.1) by `lim sup' and `lim inf', respectively. However, in all examples
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considered in this paper, the limits in (1.1) will hold P-almost surely (a:s:) and, for simplicity,

we will assume that this is the case throughout the following discussion.

Pointwise dimension and numerous related notions of scaling associated speci®cally with

probability measures (such as information dimension and correlation dimension) have a

relatively recent but intense history in physics, mathematics and probability theory. This

great interest is largely the result of the application of fractal concepts to the study of

nonlinear dynamical systems and related stochastic processes; see, for example, Billingsley

(1960; 1961), Young (1982), Hentschel and Procaccia (1983), Farmer et al. (1983), Cutler

(1990a, 1990b; 1991; 1993), Taylor (1986; 1992; 1995), Falconer (1990), Theiler (1990;

1991), Smith (1992), Barndorff-Nielsen et al. (1993), Ott et al. (1994), Serinko (1994),

Pesin (1996), and Keller (1997). The mapping (1.1) obviously describes the local scaling

behaviour of P as x varies over X , but its behaviour is also connected to the manner in

which P-mass is distributed globally over sets of differing dimensions; see Cutler (1990b;

1993) and Taylor (1992). In particular, we have the bounds

ess inf áP � inffdim(B)jP(B) . 0g < inffdim(B)jP(B) � 1g � ess supáP, (1:2)

where `dim' denotes Hausdorff dimension, and `ess inf' and `ess sup' denote, respectively, the

essential in®mum and essential supremum of áP(�) over X with respect to P. Thus the

interval of numbers [ess inf áP, ess sup áP] exactly bounds the effective dimension range of

P. An important special case, currently of much interest in nonlinear dynamics, occurs when

P is an ergodic invariant measure of a typical smooth chaotic dynamical system. Then (and

in many other situations as well) there exists a constant á0 such that áP(x) � á0 P-a:s: In this

case the dimension range of P collapses to the single number á0 and it is appropriate to

speak of the pointwise dimension of P. (However, the P-null sets fxjáP(x) � ág, á 6� á0, are

often signi®cant in their own right and comprise the so-called multifractal spectrum of P; see

Halsey et al. (1986), Falconer (1990), Brown et al. (1992), Holley and Waymire (1992) and

Taylor (1995).) The pointwise dimension of P is sometimes referred to as the information

dimension by physicists because of its connection with entropy and the rate of information

creation in an evolving dynamical system; see Farmer (1982) and Ott et al. (1994).

Experimental data from physical sources (usually obtained by observing some functional

of an evolving system) typically take the form of a real- or vector-valued time series

X 1, X2, . . . , and an attempt is made to reconstruct the `hidden' underlying state space via

the method of time-delay embeddings; see Sauer et al. (1991) and Abarbanel et al. (1993).

In the time-delay embedding method, observations are grouped into d-dimensional vectors

of the form (X m�1, X m�2, . . . , X m�d) and their behaviour is studied as the embedding

dimension d !1. This is equivalent to studying the behaviour of the joint distributions as

the number n of components (X1, . . . , Xn) increases. In particular, if dimension values

approach a ®nite asymptote as n!1, this is often interpreted as evidence that the

underlying system has settled onto a ®nite-dimensional attractor and may be regarded as

deterministic (this approach is called the Grassberger±Procaccia algorithm); see Ott et al.

(1994) and Cutler (1993; 1994; 1997). Results in Cutler (1997) show that pointwise

dimension does in fact remain bounded over time for any Lipschitz functional of a smooth

®nite-dimensional system. However, one goal of the present paper is to exhibit some simple

natural stochastic processes which also possess bounded pointwise dimension over time ±
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see the related sequence of papers Osborne and Provenzale (1989), Theiler (1991), and

Cutler (1994; 1997) on the theme of the relationship between determinism and ®nite fractal

dimension in the context of correlation dimension; see also Wolff (1990). Here we are

considering pointwise dimension, rather than correlation dimension, because the former is

generally mathematically superior to the latter. We are able to derive a practical formula for

computing pointwise dimension iteratively; moreover, pointwise dimension is directly linked

to the dimension structure of the associated distribution via (1.2) while correlation

dimension is sensitive to possible singularities in the measure and can take on arbitrarily

small values; see examples and discussion in Cutler (1990a; 1991; 1993).

In the following we will consider time series X1, X 2, . . . taking values in X and having

joint distributions Pn, n � 1, 2, . . . that is, Pn is the distribution of (X 1, . . . , X n) over the

Borel sets of the product space X n � 3n
m�1X . The focus will be on the pointwise

dimension map áPn
(�) of Pn and on developing a method of updating áPn

(�) from áPnÿ1
(�)

using the one-step conditional distributions of the time series, provided these distributions

satisfy certain Lipschitz-type properties. This updating method allows pointwise dimension

to be computed iteratively, and is a particularly powerful theoretical tool when the

conditional distributions of a time series are readily available (these are generally much

more accessible and of much simpler structure than the joint distributions themselves). The

later sections of the paper employ this procedure to compute pointwise dimension in a

variety of examples. Section 3 considers time series which can be expressed as functionals

of processes with discrete conditional distributions, with applications to missing-data in

dynamical systems (where observations are randomly and unknowingly missed) and to

iterated function systems. In Section 4 we establish results on the behaviour of pointwise

dimension for stochastic dynamical systems with independent and state-dependent additive

noise.

We also note that while we are focusing here on time series, the results (and technique)

are equally valid when looking simply at multivariate distributions and computing pointwise

dimension by conditioning on lower-order joint distributions.

2. The conditional additivity rule for dimension

We now introduce some convenient notation and preliminaries. An element (x1, . . . , xn) of

X n will sometimes be denoted by the subscripted bold italic xn; similarly, the random vector

(X1, . . . , Xn) will sometimes be denoted by X n. The metric r on X n will always be the

`sup' metric derived from r on X , that is,

r(xn, zn) � max
1< j<n

r(xj, z j): (2:1)

It follows from Theorem 2.12 of Cutler (1997) that pointwise dimension may be regarded as

an increasing function in n since the inequality áPnÿ1
(xnÿ1) < áPn

(xn) always holds at each

point xn. Moreover, it is easy to show that if X1, . . . , Xn are independent random variables,

then

áPn
(X n) � á1(X 1) � . . . � án(X n) a:s:, (2:2)
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where á j(�) is the pointwise dimension map of the marginal distribution of X j. In this section

we generalize this additivity property to the dependent case.

If (Z, Y ) represents a random vector taking values in a complete separable metric space

Z 3 Y and having joint distribution P, it follows from Theorem 10.2.2 of Dudley (1989)

that there exists a unique family of regular conditional distributions P(�jZ � z) describing

the distribution of Y given Z. For each ®xed value Z � z we let á( �jz) denote the pointwise

dimension map of the conditional distribution P(�jZ � z); that is,

á( yjz) � lim
r!0

log P(B(y, r)jZ � z)

log r
(2:3)

as y varies over Y . In the following we will be discussing the pointwise dimension maps

associated with Pnÿ1, Pn, and the (one-step) conditional distributions of X n given the past

X nÿ1; for convenience we will denote the conditional distribution of X n given X nÿ1 � xnÿ1

by P(�j xnÿ1). To further simplify notation, we will usually drop the subscripts on the

pointwise dimension maps, identifying the corresponding probability measure by the domain

of á(�). For example, á(xn) � á(x1, . . . , xn) has domain X n and therefore represents the

pointwise dimension map of Pn, while á(xn j xnÿ1) has domain X conditional on xnÿ1 �
(x1, . . . , xnÿ1) and therefore represents the pointwise dimension map of the conditional

distribution P(�j xnÿ1).

The following is our main technical result.

Theorem 2.1. Let X n � (X1, . . . , Xn) be a random vector in X n with distribution Pn, and

let P(�j znÿ1) denote the regular conditional distribution of X n given X nÿ1 � znÿ1. Suppose

that xn � (x1, . . . , xn) is a point for which there exists a1(r) . 0, a2(r) . 0, b > 1, r0 . 0,

and a Borel set S � X nÿ1 with Pnÿ1(S) � 1 such that, for all 0 , r , r0,

P(B(xn, r)jznÿ1) < a2(r) P(B(xn, br)jxnÿ1)

for all znÿ1 2 S \ B(xnÿ1, r) (2:4)

and

P(B(xn, br)jznÿ1) > a1(r) P(B(xn, r)jxnÿ1)

for all znÿ1 2 S \ B(xnÿ1, r), (2:5)

where log a j(r) � o( log r) as r! 0 for j � 1, 2.

Then, provided the limit (1.1) exists for each of the maps on the right-hand side of the

following equation, we have

á(xn) � á(xnÿ1)� á(xnjxnÿ1), (2:6)

where á(xnjxnÿ1) is the pointwise dimension of P(�j xnÿ1) at xn. More generally, even if the

limit (1.1) does not exist for some of the maps, we obtain the bounds

áÿ(xn) > áÿ(xnÿ1) � áÿ(xnjxnÿ1) (2:7)

and
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á�(xn) < á�(xnÿ1)� á�(xnjxnÿ1): (2:8)

Proof. Since B(xn, r) � B(xnÿ1, r) 3 B(xn, r) under the sup metric, we can write

Pn(B(xn, r)) �
�

B(xnÿ1,r)

P(B(xn, r)jznÿ1) Pnÿ1(dznÿ1): (2:9)

Applying (2.4) to (2.9), we obtain the upper bound

Pn(B(xn, r)) < a2(r)P(B(xn, br)jxnÿ1)Pnÿ1(B(xnÿ1, r)): (2:10)

Now replacing r by br everywhere in (2.9), it follows by reducing the region of integration to

B(xnÿ1, r) and applying (2.5) that we obtain the lower bound

Pn(B(xn, br)) > a1(r)P(B(xn, r)jxnÿ1)Pnÿ1(B(xnÿ1, r)): (2:11)

Taking logarithms, dividing by log r, and letting r ! 0 while noting that log br=
log r! 1, we see that (2.10) yields (2.7) while (2.11) yields (2.8) as desired. h

Remark 2.2. The above result shows that pointwise dimension is additive in a natural way

provided the one-step conditional distributions satisfy a Lipschitz-type continuity in their

arguments. If all limits (1.1) exist and equation (2.6) holds at the point xn, we will say that

the pointwise dimension of Pn satis®es the one-step conditional additivity rule at xn. It is

important to note that the Lipschitz-type conditions (2.4) and (2.5) are generally not

expendable. In Example 3.5 we show that the conditional additivity rule can fail in the

absence of these conditions.

Corollary 2.3 (Conditional additivity rule). Suppose property (2.6) holds at each step

xk � (x1, . . . , xk), k � 2, . . . , n. Then inductively we obtain

á(x1, . . . , xn) � á(x1)� á(x2jx1)� á(x3jx1, x2) � . . . � á(xnjx1, . . . , xnÿ1): (2:12)

This extends the additivity equation for independent random variables to the general case.

Remark 2.4. We may also state Theorem 2.1 more generally in terms of the conditional

distribution of X j given the other nÿ 1 variables X 1, . . . , X jÿ1, X j�1, . . . , X n; that is, no

particular index ordering is relevant to the result. (In fact, the result holds quite generally in

product spaces admitting regular conditional distributions, but for the purpose of applications

here we ®nd it particularly useful to employ notation designed explicitly for the time-series

framework.) Similarly a k-step conditional additivity rule,

á(x1, . . . , xn) � á(x1, . . . , xnÿk)� á(xnÿk�1, . . . , xnjx1, . . . , xnÿk), (2:13)

holds under the assumption that the k-step conditional distributions satisfy analogous

Lipschitz-type properties. In practice, however, the one-step conditional distributions are

more likely to be available and therefore more useful.
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3. Applications to time series, and functionals of time series,
with discrete conditional distributions

The simplest scenario to which one might envision applying the conditional additivity rule is

that of time series where, for suf®ciently large n, the one-step conditional distributions are

discrete (more generally, we may consider functionals of such processes). The pointwise

dimension map of a discrete distribution is always 0 a:s:, so the dimension behaviour of such

conditional distributions is immediately known. Assuming (2.6) holds throughout, it follows

from Corollary 2.3 that pointwise dimension in such a real- or vector-valued time series will

level off at constant values for large n. Such behaviour is known and expected for

deterministic time series (see Example 3.3 below) and, as noted earlier, more generally for

any time series which can be represented as a Lipschitz functional of a smooth ®nite-

dimensional system. However, in Sections 3.1 and 3.2 we construct some natural stationary

stochastic processes where pointwise dimension remains bounded over time. These examples

can be regarded as `totally stochastic' in the sense that the randomness at each step is

governed by random coin tosses (Bernoulli variables); hence they differ in nature from the

example in Cutler (1997) where a stochastic element is introduced by a bad yet smooth

projection of a ®nite-dimensional system.

If xn 2 X is an atom of the conditional distribution P( �jxnÿ1) then we automatically

have á(xnjxnÿ1) � 0. Moreover, since the general inequality á(xn) > á(xnÿ1) is always true

(the increasing property of pointwise dimension) it follows in this case that one direction

á(xn) > á(xnÿ1)� á(xnjxnÿ1) of (2.6) immediately holds. Thus, in order to obtain (2.6), we

need only prove the reverse inequality á(xn) < á(xnÿ1)� á(xnjxnÿ1), and for this it is

suf®cient to verify (2.5). Thus we have the following:

Theorem 3.1. Let X n � (X1, . . . , Xn) be a random vector in X n with distribution Pn, and

let P(�j xnÿ1) denote the regular conditional distribution of X n given X nÿ1 � xnÿ1. Suppose

xn 2 X is an atom of P(�j xnÿ1). If the pointwise limit á(xnÿ1) exists and the Lipschitz-type

condition (2.5) is satis®ed at xn � (x1, . . . , xn), then (2.6) holds at xn and

á(xn) � á(xnÿ1)� á(xnjxnÿ1)|�������{z�������}
�0

� á(xnÿ1): (3:1)

Thus pointwise dimension remains constant in moving from xnÿ1 to xn. More generally, even

if the limit á(xnÿ1) does not exist, we obtain

áÿ(xnÿ1) � áÿ(xn) < á�(xn) � á�(xnÿ1), (3:2)

so the upper and lower limits remain constant.

In fact, proof of the left-hand equality in (3.2) requires a version of (2.8) for áÿ(xn).

Such an extension of (2.8) can be shown to hold assuming existence of the one limit

á(xnjxnÿ1) and the Lipschitz-type condition (2.5). We will not provide a proof of this here.

There is a simple suf®cient condition for (2.5) that is often useful in the case of discrete
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conditional distributions. Suppose at the point xn there exist constants b > 1 and c . 0 and

a Borel set S with Pnÿ1(S) � 1 such that P(�j xnÿ1) satis®es the following for all r . 0:

P(B(xn, br)jznÿ1) > c for all znÿ1 2 S \ B(xnÿ1, r): (3:3)

Note then that (2.5) holds by (non-optimally) taking a1(r) � c. Thus we have the following:

Corollary 3.2. Suppose P(�j xnÿ1) is discrete for Pnÿ1-almost all xnÿ1 and that for each such

xnÿ1 condition (3.3) holds at every atom of P(�j xnÿ1) (the parameters b and c in (3.3) may

vary from atom to atom). Then, assuming the limits á(xnÿ1) exist Pnÿ1-a.s., we have

á(xn) � á(xnÿ1) Pn-a:s.

Example 3.3 Deterministic time series. Cutler (1997) de®nes a strictly stationary time series

X 1, X2, . . . to be deterministic if there exists an integer np > 1 and mapping T : X n p ! X
such that X n p�1 � T (X1, . . . , X n p

) a:s: We assume that np is the smallest such integer and

refer to it as the predictive dimension of the time series, while T is called the predictor

function. (Such a time series can always be expressed as a smooth functional of a dynamical

system evolving on the ®nite product space X n p .) It follows from Theorem 2.18 of Cutler

(1997) that á(xn) � á(xnp
) Pn-a:s: for all n > np provided T is a Lipschitz mapping.

However, this result also follows from Corollary 3.2 of this paper. For n . np the one-step

conditional distributions of the time series are discrete, in fact are Dirac point masses

P(�j xnÿ1) � äxn
(�), where xn � T (xnÿnp

, . . . , xnÿ1) (3:4)

and äxn
(B) � 0 unless xn 2 B. So, given an arbitrary point xnÿ1, we need only consider the

single atom xn given by (3.4). If T is a Lipschitz mapping, that is, there exists K > 1 such

that r(T (wnp
), T (znp

)) < K r(wnp
, znp

), then (3.3) holds at xn � (x1, . . . , xn) with c � 1 and

b � K. This follows because r(znÿ1, xnÿ1) < r) r(zn, xn) < Kr (where zn � T (znÿn p
, . . . ,

znÿ1)) and so zn 2 B(xn, Kr). This gives P(B(xn, Kr)jznÿ1) � 1. It now follows from

Corollary 3.2 that á(xn) � á(xnÿ1) Pn-a.s.

Remark 3.4. We should point out that stationarity of the time series is not actually required

for the result stated in the previous example; the conditional distributions are Dirac point

masses in any case and Corollary 3.2 applies generally. So, for example, if we selected a

deterministic start (x1, . . . , xn p
) then we would have discrete Pn and á(xn) � 0 for all n > 1.

However, from the point of view of observed scaling behaviour in the time series, this result

is not likely to be practically applicable in the absence of stationarity. In particular, if the

process is moving towards stationarity (and this is often the case in the dynamical systems

context) then the long-run scaling behaviour of the observed time series will tend to mimic

that of the stationary distribution (at least at larger spatial scales) and not that of the initial

distribution of (X 1, . . . , X n p
), even though the `true' dimension is that of the latter. (We also

assume ergodicity of the stationary distribution here.) This `inconsistency' result is actually a

blessing in disguise, since it is the stationary distribution which is usually of interest.

Example 3.5 Deterministic Counterexample. In Cutler (1990b) we construct a continuous but

non-Lipschitz function T : [0, 1]! [0, 1] with ergodic invariant distribution ì having the
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property that ì has positive mass on two sets of different Hausdorff dimensions. Speci®cally,

there exist two values 0 , ã, ç, 1 and Borel sets Dã and Dç such that ì(Dã) �
ì(Dç) � 1=2 and áì(x) � ã for x 2 Dã and áì(x) � ç for x 2 Dç. (This construction, in

which T can be regarded as isomorphic to the shift map on an underlying periodic Markov

chain with three states, is suf®ciently lengthy and non-trivial that we refer the interested

reader to the original paper in lieu of reproducing the details here.) The effect of T is to shift

back and forth between the two sets Dã and Dç, that is, T (Dã) � Dç and T (Dç) � Dã.

Consequently the discrete conditional additivity rule (3.1) fails at the ®rst step: for x 2 Dã we

have á(x, T (x)) � ç. ã � 0 � á(x). This shows that, in the absence of (2.5), a sudden jump

in the dimension can occur even though, conditionally, we appear to be adding 0.

It is useful to note that if a time series arises as a Lipschitz functional of another time

series, then pointwise dimension of the functional process remains bounded above by that of

the original underlying time series. We make this statement precise in the following

theorem; see Lemma 4.4 of Cutler (1997) for proof. For convenience, we will generally

assume in this and the following sections that the pointwise limits á(xn) exist.

Theorem 3.6. Let Y1, Y2, . . . be a time series taking values in a complete separable metric

space Y and having joint distributions Qn. If h: Y ! X is a Lipschitz mapping, then the

functional time series X 1, X2, . . . given by X k � h(Yk) and having joint distributions Pn

satis®es áPn
(xn) < inf áQn

(yn), where the in®mum is taken over all yn � (y1, . . . , yn)

satisfying xn � (h(y1), . . . , h(yn)).

In particular, if for suf®ciently large n the underlying time series Y1, Y2, . . . has discrete

conditional distributions satisfying the hypotheses of Corollary 3.2, thereby having

pointwise dimension levelling off at constant values bounded above by some á0 (this

maximum value á0 is necessarily ®nite if the Y s take values in Rd), then the pointwise

dimension of the functional time series X 1, X2, . . . is also almost surely bounded above by

á0. (However, it is worth noting that the conditional distributions of X 1, X 2, . . . will not

necessarily be discrete.)

3.1. Missing-data models of dynamical systems

The occurrence of randomly missing observations during the recording of the evolution of a

dynamical system will automatically turn the recorded time series into a stochastic process

(the next recorded observation cannot be predicted with certainty based on the past, and the

time series fails to meet the determinism criterion of Example 3.3). In our ®rst and simplest

missing-data model we consider the situation of randomly and independently missing

observations in a time series generated by iterating a mapping j. Speci®cally, let Y be a

complete separable metric space (with metric r) and j : Y ! Y a Lipschitz mapping with

invariant distribution Q, that is, Qjÿ1 � Q. The intended observed time series is the

sequence Y1, Y2, . . . where Yn � jnÿ1(Y ) is the (nÿ 1)th iterate of a random initial

condition Y under j. The initial condition Y is assumed to have distribution Q. The time

series Y1, Y2, . . . is then strictly stationary and deterministic (as in Example 3.3) with
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predictive dimension np � 1 and predictor function T � j. Letting Qn denote the distribution

of (Y1, . . . , Yn) and noting that Q1 � Q, it follows as a special case of Example 3.3 that, for

all n > 1, áQn
(yn) � áQ(y1) Qn-a:s:

Now suppose that observations are missing randomly and independently (each with

probability p) from the deterministic series Y1, Y2, . . . , so that what we actually record is

the stationary Markov process W1, W2, . . . with one-step discrete transition probabilities

given by

P(Wn � jm(w)jW nÿ1 � w) � pmÿ1(1ÿ p), for m � 1, 2, . . . : (3:5)

The stationary marginal distribution of this Markov process is the invariant distribution Q of

j. In this simple model, each iterate Yn in the original time series has probability p of going

missing, and the independence assumption leads to the geometric probabilities in (3.5). We

assume here that we do not know the time locations of the missing observations. In the case

of one-dimensional maps it would probably be easy to determine the time locations, at least

for small p, by plotting W n�1 versus Wn; however, ®nding the time points becomes much

more dif®cult in higher dimensions, as is certainly the case for the second missing-data

model we consider later in this section.

Dickson (1995) studied the ®rst missing-data model in the context of estimating the

dominant Lyapunov exponent of the mapping j using the popular Wolf algorithm (Wolf et

al. 1985). He found that, even for very small p, estimates of the Lyapunov exponent were

seriously corrupted by the `noise' due to missing observations. This can be understood by

noting that the Lyapunov exponent is determined by estimating derivatives of the (unknown)

mapping j, and a missing observation produces a sharp discontinuity in the numerator of

the derivative expression, while the denominator (determined by nearest neighbours) tends

to 0. This problem is only exacerbated by increasing the sample size, so that estimates of

the Lyapunov exponent actually diverge to 1 as the number of observations tends to 1.

(The core of Dickson's thesis was an algorithm that searched for, and removed, such

discontinuity points from the calculation of the Lyapunov exponent.) While Lu and Smith

(1997, p. 136) point out that one advantage of Lyapunov exponents over dimension is that

the former have a direct interpretation in terms of the dynamics of the system, the

following theorem shows that, in return, dimension is less sensitive to occasional

disruptions, such as missing observations, in the dynamics. The pointwise dimension of

the underlying deterministic system is preserved exactly. However, it should be expected

that a substantial number of missing observations would have some effect on actual

numerical estimates of dimension, likely slowing convergence.

Theorem 3.7 (First missing-data model). Let j be a Lipschitz mapping with invariant

distribution Q, and let W1, W2, . . . be the stationary Markov process of the missing-data

model described above, having one-step transition probabilities given by (3.5). Let ~Qn denote

the joint distribution of (W1, . . . , Wn). Then the pointwise dimension maps of the ~Qns are

constant in n and coincide with the pointwise dimension map of Q; that is, á ~Qn
(wn) �

áQ(w1) � áQ(y1) ~Qn-a:s: for all n > 1, where y1 is the initial condition of j. In particular, if

there exists á0 such that áQ(y) � á0 Q-a:s:, then also á ~Qn
(wn) � á0

~Qn-a:s:
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Proof. Note that ~Q1 � Q, and let K > 1 be the Lipschitz constant of j. To show that á ~Qn

(wn) � áQ(w1) ~Qn-a:s: it suf®ces, by Corollary 3.2, to prove that the transition probabilities

(3.5) satisfy (3.3) at each atom. Since P(�jWnÿ1 � w) has atoms wm � jm(w), m � 1, 2, . . . ,

consider the atom wm. Then r(z, w) < r) r(jm(z), wm) < K m r, and so

P(Wn 2 B(wm, K m r)jW nÿ1 � z) > P(Wn � jm(z)jW nÿ1 � z) � pmÿ1(1ÿ p):

Thus (3.3) holds at (w, wm) with c � pmÿ1(1ÿ p) and b � K m; note that the values of c and

b change with m and that the radius of the enlarged neighbourhood B(wm, br) expands to 1
as m!1. The equality áQ(w1) � áQ(y1) follows from the fact that w1 � jk(y1) for some

k > 0 and áQ(�) is an invariant function (that is, áQ(j(y)) � áQ(y)) when j is Lipschitz; see

Cutler (1990b). Finally, if we additionally have áQ(y) � á0 Q-a:s: then we also obtain

á ~Qn
(wn) � á0

~Qn-a:s: since we can write Q � ~Qnðÿ1
n where ðn(wn) � w1. h

While Theorem 3.7 is attractive, it will have limited value in practice because it is only in

exceptional cases that we observe a dynamical system evolving in its natural phase space Y
(with or without missing observations). More typically we can measure only a functional

h : Y ! Rd of the system, so that the data take the form of a real- or vector-valued time series

X 1, X2, . . . , where X k � h(Yk). If h is a typical `good' functional ± in the sense of generic as

used by Takens (1981) or in the sense of prevalent as used by Sauer et al. (1991)) and Y is a

®nite-dimensional manifold, then the time series X 1, X2, . . . has ®nite predictive dimension np

and in fact an embedding Ö exists between the points Yk and the vectors (X k , . . . , X k�n pÿ1).

In this case it is possible to recover many parameters (including the fractal dimensions) of the

original underlying system. In the second missing-data model (below) we show that, provided

h is at least Lipschitz continuous, pointwise dimension remains appropriately bounded above

when observations are randomly missing from the functional time series X1, X 2, . . . , and

further that the exact dimension will be recovered asymptotically provided h is a good

functional. Again we assume that the probability any observation Xj goes missing is p, and

that observations go missing independently of one another. Let Z1, Z2, . . . denote the

stationary vector-valued stochastic process we actually observe; it is worth noting that the Z

process, unlike the W process of the ®rst missing-data model, need not (in fact generally will

not) be Markov. Moreover, the one-step conditional distributions of the Z process need not be

discrete, even for large n. The key to the ®rst part of our result below is to realize that the Z

process can be represented as a functional of the W process; that is, although it is actually

certain observations X k � h(Yk) that are missing, it is probabilistically equivalent to regard the

corresponding underlying Yks as missing and write Z k � h(Wk). We obtain the following:

Theorem 3.8 (Second missing-data model). Let j be a Lipschitz mapping on Y with

invariant distribution Q, and let Y1, Y2, . . . be the deterministic time series generated by

iterating j. Suppose h : Y ! Rd is a Lipschitz functional and X1, X2, . . . is the functional

time series Xk � h(Yk) with joint distributions Pn, n � 1, 2, . . . : Let Z1, Z2, . . . be the process

generated by the second missing-data model with ~Pn the joint distribution of (Z1, . . . , Zn).

Then we have the inequality á~Pn
(zn) < áQ(y1) ~Pn-a.s. (where y1 is the initial condition of j). If

áQ(y) < á0 Q-a:s: then á~Pn
(zn) < á0

~Pn-a:s: Moreover, if áQ(y) � á0 Q-a:s: and h is a good

functional with embedding dimension np, then limn!1á~Pn
(zn) � á0 with probability one.
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Proof. As noted earlier, we may write Z k � h(Wk), where W represents the ®rst missing-data

model. Applying Theorem 3.6 followed by Theorem 3.7, we obtain

á~Pn
(h(w1), . . . , h(wn)) < á ~Qn

(w1, . . . , wn) � áQ(w1) � áQ(y1) ~Qn a:s:,

which gives á~Pn
(zn) < áQ(y1) ~Pn-a:s: since ~Pn � ~Qn hÿ1

n where hn(wn) � (h(w1), . . . , h(wn)).

Now suppose h is a good functional with embedding dimension np so that an embedding Ö
is achieved between the points Yk and the vectors (X k , . . . , X k�n pÿ1). The embedding Ö is

bi-Lipschitz with Ö(yk) � (xk , . . . , xk�n pÿ1). As a consequence the X series is deterministic

(see Example 3.3) with predictive dimension no greater than np. It follows that áPn
(xn) �

áPnp
(xnp

) � áQ(y1) Pn-a:s: for all n > np (the last equality is a consequence of the bi-

Lipschitz property of Ö). Now consider the Z process. By the increasing property of

pointwise dimension, we know that limn!1á~Pn
(z1, . . . , zn) exists for each sequence

z1, z2, . . . ; moreover, that limit is bounded above almost surely by á0 when áQ(y) � á0

Q-a:s: We now want to show that the limit in fact equals á0 with probability one. First, note

that by the monotone convergence theorem we have limn!1 E(á~Pn
(Z1, . . . , Zn)) < á0. Then

note that, with probability one, each z1, z2, . . . sequence contains a string zr�1, zr�2, . . . ,

zr�n p
consisting of np consecutive x observations where none have gone missing; that is,

there exist r > 0 and s > 0 such that zr�m � xs�m for each m � 1, . . . , np. Now condition

on the event Ir � f(Z r�1, . . . , Z r�n p
) is the ®rst unbroken X -string}. It follows that the

conditional distribution of (Z r�1, . . . , Z r�n p
) given Ir coincides with Pn p

; hence

E(á~Pn
(Z1, . . . , Zn)jIr) � á0 for n > r � np:

Then

E(á~Pn
(Z1, . . . , Zn)) >

Pnÿn p

r�0 E(á~Pn
(Z1, . . . , Zn)jIr) P(Ir) � á0 P([nÿn p

r�0 Ir)! á0

since

limn!1P([n
r�0 Ir) � 1:

We thus conclude that limn!1 E(á~Pn
(Z1, . . . , Zn)) � á0. Combining this with the fact that

á~Pn
(z1, . . . , zn) increases pointwise to a limit bounded above by á0, we get

limn!1 á~Pn
(z1, . . . , zn) � á0 with probability one, as claimed. h

3.2. Random iterations of dynamical systems and iterated function

systems

Here we consider the situation where we have two mappings j and ø with common domain

and range Y , and a randomly chosen initial condition Y1. At each iteration one of the

mappings is randomly selected and applied to the current state, leading to a stochastic process

Y1, Y2, . . . : We will assume the simplest possible model here, where the choice of mapping at

the nth iteration is determined by the toss of a weighted coin, resulting in the Markov process

Yn�1 � j(Yn) with probability è
ø(Yn) with probability 1ÿ è

�
(3:6)

with one-step conditional distributions given by the weighted average of two Dirac measures
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P(�j y ) � èäj( y)(�)� (1ÿ è) äø( y)(�): (3:7)

Such processes are studied, for example, by Bhattacharya and Rao (1993); they consider the

random iteration of two quadratic or logistic maps on the unit interval. It is clear that we could

employ a more complicated randomization rule for selecting the mapping at each stage, or

select from among a larger number of mappings, without greatly altering the ¯avour of the

problem. In the case that the mappings are also contractive (that is, r(j(x), j(y)) < cr(x, y),

where c , 1), we have a hyperbolic iterated function system (IFS); these form the foundation for

fractal image compression techniques (see Barnsley and Elton 1988). We obtain the following:

Theorem 3.9. Let Y1, Y2, . . . be the Markov process given in (3.6) with joint distributions Pn,

n � 1, 2, . . . : Provided the mappings j and ø are both Lipschitz continuous, we have

á(yn) � á(ynÿ1) Pn-a:s: for n > 2, regardless of the distribution of the initial condition Y1.

Proof. Let K1 > 1, K2 > 1 denote the Lipschitz constants of j and ø respectively, and

set b � max(K1, K2). Let y 2 Y . Then for z 2 B(y, r) we have

P(B(w, br)jz) � èäj(z)(B(w, br))� (1ÿ è)äø(z)(B(w, br)) > min(è, 1ÿ è)

for either of the possible atoms w � j(y) and w � ø(y). Taking c � min(è, 1ÿ è), the result

now follows from Corollary 3.2. h

We end this section by noting that while the above theorem is true no matter how the

initial condition is chosen, we are typically interested in the stationary case, as noted in

Remark 3.2. Bhattacharya and Rao (1993) discuss the existence and nature of unique

invariant measures for the Markov process (3.6) generated by logistic maps, while Elton

(1987) and Barnsley and Elton (1988) obtain results on unique invariant measures for

certain types of IFS. Note that Theorem 3.9 helps explain why stochastic algorithms for

iterating IFS nonetheless produce ®nite-dimensional attractors and ®nite-dimensional

invariant measures in the limit.

4. Applications to stochastic dynamical systems with additive
noise

In many cases of practical interest, it is both necessary and useful to modify the simple

deterministic systems discussed in Example 3.3 to allow for routine perturbations due to

external (typically diffuse) noise. The simplest (and one of the most useful) modi®cations is a

stochastic dynamical system with additive noise:

Xn � T (X nÿ p, . . . , X nÿ1)� ån, (4:1)

where T is the deterministic `skeleton' of the system (playing the same role as in Example

3.3) and å1, å2, . . . is a sequence of random variables representing the noise introduced into

the system at each step. Such stochastic systems are discussed in detail in Kifer (1988), Tong

(1995; 1997) and Berliner et al. (1997). The integer p in (4.1) is generally called the order of
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the resulting stochastic time series X1, X 2, . . . and in fact corresponds to the predictive

dimension of the `noiseless' system driven by T alone.

The situation here is quite different from that of systems corrupted by discrete noise as in

Section 3, where the dimensions of the underlying deterministic systems are essentially

preserved in spite of the noise. In the case of stochastic systems with additive diffuse noise,

it is part of vague folklore that the fractal dimensions of the time series should increase

without bound as n!1, regardless of the behaviour of the deterministic skeleton T ; see

the discussion in the context of correlation dimension in Tong (1995, p. 415). We provide a

simple rigorous proof of this for pointwise dimension via our conditional additivity rule.

Although the case of independent and identically distributed (i.i.d.) noise can be subsumed

under the more general case of Theorem 4.2 below, it is of such importance (and its proof

comparatively simpler) that we treat it separately ®rst. Note that there are no stationarity

requirements on the time series.

Theorem 4.1 (i.i.d. noise). Let X 1, X 2, . . . be a time series taking values in Rd of the form

Xn � T (X nÿ p, . . . , X nÿ1)� ån, (4:2)

where T : (Rd) p ! Rd is a Lipschitz mapping. Suppose that the sequence of noise random

variables å1, å2, . . . has the following property: there exists a distribution Pe in Rd such that,

for each n . p, the conditional distributions ån=X1, . . . , X nÿ1�D Pe. (These conditions are

automatically met if å1, å2, . . . is an i.i.d. noise sequence which is also independent of the

initial distribution of the system.) Then for each n . p and xn 2 (Rd)n the one-step

conditional additivity rule holds for the joint distributions Pn of X1, X 2, . . . ; that is

á(xn) � á(xnÿ1) � á(xnjxnÿ1) : (4:3)

If we further assume that there exists a constant á0 . 0 such that áPe
(x) � á0 Pe-a:s: (note

that this condition is automatically met with á0 � d if Pe is absolutely continuous with

respect to Lebesgue measure in Rd) then we have

á(x p�m) � á(x p)� má0 Pp�m-a:s:, for all m > 0, (4:4)

and so limn!1á(xn) � 1 with probability one.

Proof. Let n . p and for convenience let z�nÿ1 � (znÿ p, . . . , znÿ1). Select any point

xn � (x1, . . . , xn) in (Rd)n. It follows from (4.2) and our hypotheses that for any

znÿ1 2 (Rd)nÿ1 we have

P(B(xn, r)jznÿ1) � Pe(B(xn ÿ T (z�nÿ1), r)): (4:5)

Now by assumption T satis®es a Lipschitz condition, say with Lipschitz constant K > 1. It

follows from this and the triangle inequality that if kz�nÿ1 ÿ x�nÿ1k < r then

B(xn ÿ T (z�nÿ1), r) � B(xn ÿ T (x�nÿ1), (K � 1)r) (4:6)

and similarly

B(xn ÿ T (z�nÿ1), (K � 1)r) � B(xn ÿ T (x�nÿ1), r): (4:7)
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Taking b � K � 1, from (4.5) and (4.6) we then have

P(B(xn, r)jznÿ1) < Pe(B(xn ÿ T (x�nÿ1), br))

� P(B(xn, br)jxnÿ1), for all znÿ1 2 B(xnÿ1, r), (4:8)

and similarly, from (4.5) and (4.7) we have

P(B(xn, br)jznÿ1) > Pe(B(xn ÿ T (x�nÿ1), r))

� P(B(xn, r)jxnÿ1), for all znÿ1 2 B(xnÿ1, r), (4:9)

verifying equations (2.4) and (2.5). This shows that the one-step conditional additivity rule

(4.3) holds at every xn. Now for n . p it also follows from (4.5) that

á(xnjxnÿ1) � áPe
(xn ÿ T (x�nÿ1)): (4:10)

Suppose now that there exists á0 . 0 such that Pe(A) � 1, where A � fx 2 Rd jáPe
(x) � á0g.

We prove that (4.4) is true by induction on m. First, de®ne Sm � fx p�mjá(x p�m) �
á(x p)� má0g and Am � fx p�mjá(x p�mjx p�mÿ1) � á0g � fx p�mjx p�m ÿ T (x�p�mÿ1) 2 Ag.
Note that (4.4) is obviously true for m � 0; that is, Pp(S0) � 1. Now assume it is true for m.

Letting P denote the probability measure on the underlying probability space of the time

series, we have

Pp�m�1(Am�1) � P([X p�m�1 ÿ T (X�p�m) 2 A])

� P([å p�m�1 2 A])

� Pe(A) � 1: (4:11)

Now note that (4.3) implies Sm�1 � (Sm 3 Rd) \ Am�1. Since the induction hypothesis

gives Pp�m(Sm) � 1, it follows from this and (4.11) that Pp�m�1(Sm�1) >
Pp�m�1((Sm 3 Rd) \ Am�1) � 1, which completes the proof. h

In many cases it is more plausible to consider location-dependent noise; for example, we

might expect the variance of the noise distribution to depend on the location in space.

(Special types of state-dependence are given by ARCH/GARCH models; see Shephard

1996.) We address this more general situation in the following theorem. Let x�nÿ1 �
(xnÿ p, . . . , xnÿ1) and X�nÿ1 � (X nÿ p, . . . , X nÿ1), following the shorthand notation of the

preceding proof.

Theorem 4.2 (Location-dependent noise). Let X 1, X2, . . . be a time series taking values in

Rd of the form

Xn � T (X nÿ p, . . . , X nÿ1)� ån, (4:12)

where T : (Rd) p ! Rd is a Lipschitz mapping. Suppose that the sequence of noise random

variables å1, å2, . . . has the following property: for each n . p there exists a family of

distributions Pe(�jxnÿ1) in Rd such that the conditional distributions ån=X nÿ1 �
xnÿ1�D Pe(�jxnÿ1). Moreover, suppose that the noise distributions Pe(�jxnÿ1) satisfy equations
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(2.4) and (2.5) at each point xn. Then for each n . p and xn 2 (Rd)n the one-step

conditional additivity rule holds for the joint distributions Pn of X1, X 2, . . .; that is,

á(xn) � á(xnÿ1)� á(xnjxnÿ1): (4:13)

If we further assume that there exists a constant á0 . 0 such that áPe
(xjxnÿ1) � á0 almost

surely for each n . p and xnÿ1 2 (Rd)nÿ1, then we have

á(x p�m) � á(x p)� má0 Pp�m-a:s:, for all m > 0, (4:14)

and so limn!1á(xn) � 1 with probability one.

Proof. Analogously to (4.5) we have

P(B(xn, r)jznÿ1) � Pe(B(xn ÿ T (z�nÿ1), r)jznÿ1): (4:15)

Now let xn � (x1, . . . , xn) be given, and set ~xn � (x1, . . . , xnÿ1, wn) � (xnÿ1, wn), where

wn � xn ÿ T (x�nÿ1). By assumption Pe(�jxnÿ1) satis®es (2.4) and (2.5) at the point ~xn, for

some parameters a1(r), a2(r), and b0 > 1. (We reserve the symbol b for b � K � 1, where K

is the Lipschitz constant of T , as used in the proof of Theorem 4.1.) Now (4.6) continues to

hold and so for kznÿ1 ÿ xnÿ1k < r we obtain

P(B(xn, r)jznÿ1) � Pe(B(xn ÿ T (z�nÿ1), r)jznÿ1)

< Pe(B(xn ÿ T (x�nÿ1), br)jznÿ1)

< a2(r)Pe(B(xn ÿ T (x�nÿ1), b0br)jxnÿ1)

� a2(r)P(B(xn, b0br)jxnÿ1): (4:16)

Similarly (4.7) continues to hold, yielding

P(B(xn, b0br)jznÿ1) � Pe(B(xn ÿ T (z�nÿ1), b0br)jznÿ1)

> Pe(B(xn ÿ T (x�nÿ1), b0 r)jznÿ1)

> a1(r)Pe(B(xn ÿ T (x�nÿ1), r)jxnÿ1)

� a1(r)P(B(xn, r)jxnÿ1): (4:17)

Together (4.16) and (4.17) give (4.13). Now set A(xn) � fx 2 Rd jáPe
(xjxn) � á0g and

suppose that Pe(A(xn)jxn) � 1 for each n > p and Pn-almost all xn. Setting Am �
fx p�mjá(x p�mjx p�mÿ1) � á0g as before and noting that, by (4.15),

á(xnjxnÿ1) � áPe
(xn ÿ T (x�nÿ1)jxnÿ1), (4:18)

we obtain
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Pp�m�1(Am�1) � P([X p�m�1 ÿ T (X�p�m) 2 A(X p�m)])

�
�

(Rd ) p�m

P([X p�m�1 ÿ T (X�p�m) 2 A(X p�m)]jX p�m � x p�m)Pp�m(dx p�m)

�
�

(Rd ) p�m

P([å p�m�1 2 A(x p�m)]jX p�m � x p�m)Pp�m(dx p�m)

�
�

(Rd ) p�m

Pe(A(x p�m)jx p�m)Pp�m(dx p�m)

� 1, (4:19)

using the assumptions on the noise. The remainder of the proof follows by induction as in the

proof of Theorem 4.1. h

Example 4.3. Consider the simple case where T is a Lipschitz mapping of R into R and the

noise distributions are mean-zero Gaussian with location-dependent variances ó 2(x) . 0,

x 2 R. We assume that the noise variable ån, given the current location X nÿ1 � x, is

independent of the past of the process. Then

ö(ujx) � exp[ÿu2=2ó 2(x)]

(2ðó 2(x))1=2
(4:20)

is the density function of Pe(�jx) and we see that

Pe(B(w, r)jz) �
�w�r

wÿr

ö(ujz) du

� ó 2(x)

ó 2(z)

 !1=2�w�r

wÿr

c(u, z, x)ö(ujx) du, (4:21)

where c(u, z, x) � exp[u2(ó 2(z)ÿ ó 2(x))=(2ó 2(x)ó 2(z))]. It is easy to see that provided

ó 2(z) is bounded away from 0 and away from 1 over some r0-neighbourhood of x (as will

certainly be the case if ó 2(z) is continuous at x) then we have positive constants a1 and a2

(which generally depend on w and x) such that

a1 Pe(B(w, r)jx) < Pe(B(w, r)jz) < a2 Pe(B(w, r)jx) (4:22)

for all z 2 B(x, r) and 0 , r , r0. Thus (2.4) and (2.5) hold for the noise distributions and so

(4.13) is valid. Moreover, as existence of a density ö(ujx) on R implies that áPe
(wjx) � 1

almost surely, all conclusions of Theorem 4.2 hold and the pointwise dimension of the

stochastic system X n � T (X nÿ1)� ån diverges to 1.
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