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We derive the chaotic expansion of the product of nth- and ®rst-order multiple stochastic integrals

with respect to certain normal martingales. This is done by application of the classical and quantum

product formulae for multiple stochastic integrals. Our approach extends existing results on chaotic

calculus for normal martingales and exhibits properties, relative to multiple stochastic integrals,

polynomials and Wick products, that characterize the Wiener and Poisson processes.
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1. Introduction

The Wiener±ItoÃ and Poisson±ItoÃ chaotic decompositions give an isometric isomorphism

between the Fock space Ã(L2(R�)) and the space of square-integrable functionals of the

process. This isomorphism is constructed by association of a symmetric function

f n 2 L2(R�)�n to its multiple stochastic integral. The isometry property comes from the

fact that the angle brackets hBi t and h ~Ni t of both the Wiener and compensated Poisson

processes (Bt) t2R� , ( ~N t) t2R� are equal to t. Therefore such isometric isomorphisms may exist

for more general processes, provided their angle bracket equals t.

A martingale is said to be normal (Dellacherie et al. 1992) if its angle bracket is equal

to t and if the range of the multiple stochastic integrals isometry de®ned on Ã(L2(R�)) is

equal to the space of square-integrable functionals of this martingale. This last property is

called the chaotic representation property.

The quadratic variation ([M , M] t) t2R� of a normal martingale (Mt) t2R� in L4(Ù) with

the chaotic representation property (or less restrictively, with the predictable representation

property) satis®es the equation

[M , M] t � t �
� t

0

ös dMs, t 2 R�, (1)

called a structure equation (Emery 1989), where (ös)s2R� is a predictable process. On the

other hand, a martingale satisfying (1) has angle bracket equal to t, but does not necessarily

possess the chaotic representation property.

In this paper we work with solutions of such equations, which include the Wiener

Bernoulli 6(4), 2000, 633±651

1350±7265 # 2000 ISI/BS



process, ö � 0; the compensated Poisson processes, ö constant and non-zero; and the

AzeÂma martingales, öt � âMt, â 2 [ÿ2, 0[.

Note that in the probabilistic framework of the structure equation one has to use a

predictable version of ö, which is öt � âM tÿ in the case of the AzeÂma martingale.

However, since we are working in L2 with stochastic integrals with respect to a normal

martingale, we do not need to distinguish between the adapted and predictable versions of ö
(Dellacherie et al. 1992, p. 199). Thus, in what follows we will use öt � âMt in the case of

the AzeÂma martingale.

In the stochastic analysis on both the Wiener and Poisson spaces, multiplication formulae

for multiple stochastic integrals proved to be useful tools as they give the chaotic expansion

of the product of two multiple stochastic integrals. Recently (Russo and Vallois 1998),

multiplication formulae have been proposed for multiple stochastic integrals with respect to

normal martingales. However, these formulae do not give the explicit chaotic expansion of

the considered products.

Our ®rst goal in this paper is to relate the product formulae of Kabanov (1975), Russo

and Vallois (1998) and Surgailis (1984) to their counterparts in quantum probability; see

Section 3. With these tools we compute the chaotic expansion of the product of a multiple

stochastic integral with a single stochastic integral, and refer to this formula as the chaotic

Kabanov formula. This formula is proved for a class of martingales that includes the AzeÂma

martingales; see Section 4. From the Kabanov formula, we have not obtained a general

formula for the chaotic expansion of the product of two multiple stochastic integrals of

orders n and m for this general class of martingales.

As an application of this Kabanov formula we show that a number of properties in

stochastic analysis such as the possibility of expressing multiple stochastic integrals with

polynomials and some properties of the Wick product are speci®c to the Wiener and

Poisson cases; see Section 5. In Section 6 we consider formulae giving the derivation of a

product.

2. Notation and preliminaries

We denote by

Ã(L2(R�)) � �
n2N

L2(R�)�n

the symmetric Fock space over L2(R�), where L2(R�)�n is endowed with the norm

k:k2
L2(R�)�n � n!k:k2

L2(R�)
 n , and h:, :i denotes the scalar product in L2(R�).

In this paper we work with a normal martingale (Mt) t2R� , with M0 � 0, that satis®es the

structure equation (1).

The multiple stochastic integral of a symmetric function f n 2 L2(R�)�n with respect to

(Mt) t2R� is denoted by

In( f n) � n!

�1
0

� tÿn

0

� � �
� tÿ

2

0

f n(t1, . . . , tn) dM t1
� � � dM tn

,
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and as a convention we let

In( f n) � In( ~f n) � In( f n(t1, . . . , tn)), (2)

if f n 2 L2(R�)
n is not symmetric, where ~f n denotes the symmetrization of f n in its n

variables.

We denote by F t the ó-algebra generated by fMs : 0 < s < tg, t 2 R�.

We let =ÿ : Ã(L2(R�))! Ã(L2(R�))
 L2(R�) and =� : Ã(L2(R�))
 L2(R�)!
Ã(L2(R�)) denote the annihilation and creation operators on Ã(L2(R�)), de®ned as

=ÿt In( f n) � nI nÿ1( f n(:, t)), t 2 R�, =�(In( fn�1)) � In�1( fn�1),

where fn�1 is symmetric in its n ®rst variables, n 2 N.

Let A � f]a, b] : a, b 2 R�, a , bg. For ]a, b], ]c, d] 2A we use the notation ]a, b] <
]c, d] if b < c. Let S n, n 2 N, denote the vector space

S n �
Xm

i�1

ái In(1Ai
1
� � � � � 1Ai

n
) : Ai

k \ Ai
l � Æ, 1 < k , l < n, Ai

1, . . . , Ai
n 2A,

(

ái 2 R, i � 1, . . . , m, m > 1

�
,

and let S denote the vector space generated by [n2NS n, which is dense in L2(Ù).

Let V n denote the vector space

V n �
Xm

i�1

ái1Ai
1 I n(1Ai

1 � . . . � 1Ai
n
) : Ai

k \ Ai
l � Æ, 1 < k , l < n,

(

Ak
0 \ Al

0 � Æ, 1 < k , l < m, Ai
0, . . . , Ai

n 2A, ái 2 R, i � 1, . . . , m, m > 1

�
:

We denote by V the vector space generated by [n>0V n, which is dense in L2(dë) and in

L1(dë), where dë � dt 3 dP.

Let Un denote the vector space

Un �
Xm

i�1

ái1Ai
0
In(1Ai

1
� � � � � 1Ai

n
) : Ai

k \ Ai
l � Æ, 0 < k , l < n,

(

Ak
0 \ Al

0 � Æ, 1 < k , l < m, Ai
0, . . . , Ai

n 2A, ái 2 R, i � 1, . . . , m, m > 1

�
:

Note that Un is made of processes in V n that do not depend on the `present'. We denote

by U the vector space generated by [n>0Un, and by �U the completion of U in L2(dë).

The space �U is strictly smaller than L2(dë) but it contains the adapted square-integrable

processes and the range of =ÿ, since F 2 S implies =ÿF 2U.

We will use the following lemma of Ma et al. (1998).

Lemma 1. Let In( f n), I1(g1) 2 S . We have

In( f n)I1(g1) � In�1( f n � g1)� n

�1
0

Inÿ1( f n(:, t))g1(t) d[M , M] t: (3)
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As a consequence of this lemma, we have

In(1A1
� � � � � 1A n

) � I1(1A1
) � � � I1(1An

)

whenever Ai \ Aj � Æ, 1 < i , j < n.

We assume that there exists a set P of functionals dense in L2(Ù) and included both in

L1(Ù) and in Dom(=ÿ), and such that P is stable by =ÿt , t 2 R�. This assumption is satis®ed

in the cases of interest to us, that is in the Wiener and Poisson cases, and also in the case of

the AzeÂma martingales since the latter is bounded (in this case it suf®ces to take P � S ).

We recall the following identity, satis®ed in general on Fock space:

E[=�(u)2] � kuk2
L2(Ù)
L2(R�) � E

�1
0

�1
0

=ÿs ut=
ÿ
t us ds dt

� �
: (4)

De®nition 1. Let Dom1,2(=�) denote the set of processes u 2 L1(dë) such that there exists a

sequence (un)n2N � V converging in L1(dë) to u and such that (=�(un))n2N converges in

L1(Ù) to an element of L2(Ù) denoted as =�(u).

Remark 1. The domain Dom1,2(=�) is well de®ned. We can show this as follows. Assume

that (un)n2N � V converges in L1(dë) to 0 and that (=�(un))n2N converges in L1(Ù) to

G 2 L2(Ù). From the duality relation

E[=�(un)F] � E

�1
0

un(t)=ÿt F dt

� �
, F 2 P ,

we obtain E[GF] � 0, F 2 P , hence G � 0 since G 2 L2(Ù).

This also means that if u 2 Dom1,2(=�) and there exists a sequence (un)n2N converging

in L1(Ù) to u and such that (=�(un))n2N converges in L1(Ù) to G 2 L2(Ù), then

G � =�(u). Naturally, Dom1,2(=�) contains the usual L2 domain of =� which is denoted as

Dom2(=�).

Finally, let

T n �
Xm

i�1

Fi1]ai,bi] In(1Ai
1
� � � � � 1Ai

n
) : [0, bi] \ Ai

j � Æ, j � 1, . . . , n,

(

Ai
k \ Ai

l � Æ, 1 < k , l < n, Ai
1, . . . , Ai

n 2A, Fi 2 L2(F ai
), i � 1, . . . , m, m > 1

�
,

and T be the vector space generated by [nT n. The space T \ L2(dë) is not dense in L2(dë),

but it contains U, and it is dense in �U.

Remark 2. Let u, v 2 U, where v is an adapted process. Then uv 2 T . To show this, we

write u � 1A In(1A1
� � � � � 1An

) with A1, . . . , Ak < B and

v � 1B Im(1A n�1
� � � � � 1A n�m

)

with An�1, . . . , An�m < B, since v is adapted. Then
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uv � 1A\B I k�m(1A1
� � � � � 1A k

� 1An�1
� � � � � 1A n�m

)I nÿk(1A k�1
� � � � � 1A n

),

hence uv 2 T .

Proposition 1. For u 2 T such that
�1

0
ut dMt 2 L2(Ù), we have u 2 Dom1,2(=�) and

=�(u) �
�1

0

ut dMt: (5)

Proof. We start by choosing u of the form u � F1]a,b] In(1A1
� � � � � 1An

), with F �
Im(1B1

� � � � � 1Bm
), Ai \ [0, b] � Æ, i � 1, . . . , n, and B1, . . . , Bm � [0, a]. Then, from

Lemma 1:

=�(u) � I n�m�1(1B1
� � � � � 1Bm

� 1]a,b] � � � � � 1An
)

� I1(1]a,b])Im(1B1
� � � � � 1Bm

)In(1A1
� � � � � 1An

)

� FI1(1]a,b])In(1A1
� � � � � 1A n

):

Hence, by linearity, for any u 2 T and F 2 S ,

=�(u) � FI1(1[a,b])In(1A1
� � � � � 1An

) �
�1

0

ut dMt:

If u 2 T , then choosing a sequence (Fn)n2N � S that converges in L2(Ù) to F, and

letting um � Fm1]a,b] In(1A1
� � � � � 1A n

), we have the convergence of (um)m2N in L1(dë) to u

and of (=�(um))m2N in L1(Ù) to
�1

0
ut dMt which belongs to L2(Ù) by hypothesis. h

3. Classical and quantum product formulae

The aim of this section is to link two versions of the product formula for a multiple stochastic

integral and a single stochastic integral with respect to normal martingales.

The ®rst one is called the Kabanov formula in reference to Kabanov (1975), which

treated the Poisson case, ö � 1, and can be stated as follows. For f n 2 L2(R�)�n and

g 2 L2([0, T ]), in particular g with compact support, Lemma 1 was extended by Ma et al.

(1998) and Russo and Vallois (1998) as

In( f n)I1(g) � In�1( f n � g)� n

�1
0

I�nÿ1( f n(:, t))g(t) d[M , M] t: (6)

The second term in this formula is an integration over a diagonal, due to the ItoÃ formula, and

the notation `I�nÿ1( f n(:, t))' will be made precise in De®nition 2.

The second product formula uses only chaos expansions and Fock space, and can be

found in the work of quantum probabilists. It is often stated in the formalism of quantum

stochastic integrals:
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�1
0

gt dMt �
�1

0

gt da�t �
�1

0

gt daÿt �
�1

0

ö t gt da�t ; (7)

cf. Parthasarathy (1990) and Biane (1995, Proposition 18).

The de®nition of quantum stochastic integrals as operators poses several functional

analytic problems. See the paper of Attal and Lindsay (1997) for recent extensions of their

de®nition. In general, the above relation does not hold in L2(Ù) except in a weak sense

(Biane 1995), where this formula is proved for F an exponential vector, and for bounded

predictable g and ö, with compact support.

Relation (7) can be reformulated formally using the operators =ÿ, =�, as follows:

F=�(g) � =�(F 
 g)�
�1

0

g(t)=ÿt F dt � =�(gö=ÿF) (8)

(see, for example, Attal 1998; Biane, 1995; and the references therein), the only difference

between (7) and (8) being a change of notation.

In the Poisson case, this formula also appears in the papers of Nualart and Vives (1990)

and Dermoune et al. (1988). It will play an important role in the computation of the chaotic

expansion of the Kabanov formula, since unlike (3) and (6) it uniquely involves calculations

on chaos.

The product formula (8) can be rewritten in the language of quantum stochastic

differentials as �1
0

g(t) dMt �
�1

0

g(s) dBs �
�1

0

ö(s)g(s) da�t ,

or

dMt � dBt � ö(t) da�t : (9)

In the Wiener interpretation of the Fock space, the differential operator dBt identi®es

with multiplication by the classical Brownian differential, and this formula states that the

differential operator dMt � dBt � ö(t) da�t is identi®ed with the multiplication operator by

the classical differential dMt when the Fock space is identi®ed with the L2 space of

(Mt) t2R� . However, equation (9) has no classical interpretation because the operator

processes (Bt) t2R� and (a�t ) t2R� cannot be interpreted simultaneously as multiplication

operators in the same probabilistic interpretation of the Fock space (the reason for this is

that they do not commute). Consequently, (9) does not have a classical meaning; it only

de®nes an operator process on Fock space.

If ö(t) is a function of Mt, for example, ö(t) � f (Mt), then (9) becomes a quantum

stochastic differential equation, in the space of operators on Fock space,

dMt � dBt � f (Mt) da�t , (10)

which does not have a classical interpretation, whatever the interpretation chosen for the Fock

space.

In order to ®nd the multiplication formula for multiple stochastic integrals with respect to

(Mt) t2R� , one has to compute in particular the chaos expansion of Mt multiplied by a

multiple stochastic integral. This means that the explicit expression of Mt as an operator on
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Fock space has to be obtained. A way to obtain this expression is to solve (10) in the space

of operators on Fock space, that is to determine the process of operators associated with

(Mt) t2R� . The simplest case is the linear case, f (x) � âx, â 2 [ÿ2, 0[, which corresponds

to the family of AzeÂma martingales. In this case, (10) reads

dMt � dBt � âMt da�t , (11)

which can be formally solved as a linear equation. It can be easily shown that its solution is

Mt �
X
n>0

ân

� t

0

� t nÿ1

0

� � �
� t2

0

Bt1
da�t2
� � � da�t nÿ1

,

or

Mt �
X
n>0

ân

� t

0

� t n

0

� � �
� t1

0

dBt0
da�t1
� � � da�tn

:

This expression can now be rewritten explicitly in terms of operators on Fock space:

MtF �
X
n>0

ân=� 1[0, t] =� � � � =�
�:

0

=ÿs ds=ÿ � � � =ÿF

� �� �� �� �
(12)

�
X
n>0

ân=�(1[0, t](=
�(� � � =�(=�(1[0,:]=

ÿ � � � =ÿF))))):

When F � In( f n), this gives the explicit chaos expansion of MtIn( f n).

The above calculation is formal and some further computations are required in order to

obtain the explicit chaos expansion of MtIn( f n). In this paper we justify each of the above

steps by explicit calculations and carry out the ®nal computations suggested in (12). The

aim of this remark was to show that the quantum stochastic point of view gives a different

understanding of the problem and provides a quick solution by reducing the problem to the

determination of a quantum diffusion. We stress that although the solution process has a

classical version, the diffusion equation (10) is meaningful only in the space of operators on

Fock space. Also, those remarks show that the reason why explicit calculation can be

carried out is in fact that (11) is a linear equation.

We also note that a slightly more general case can be considered, ö(t) �
ë t �

� t

0
â t(s) dMs, which is still linear. In this case the solution reads

Mt �
X
n>0

� t

0

� t n

0

â tn
(tnÿ1)

� t nÿ1

0

� � �
� t1

0

dBt0
da�t1
� � � da�tn

�
X
n>0

� t

0

� t n

0

â tn
(tnÿ1)

� t nÿ1

0

� � �
� t2

0

â t2
(t1)ë t1

da�t0
� � � da�tn

:

This situation is considered in our paper.

Our aim in this section is to prove (7) in L2(Ù) from (6). The proof of Biane (1995) ±

see also Attal (1998) ± relies on the construction of quantum stochastic calculus, whereas
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our proof uses more classical probabilistic arguments. We also prove that (8) holds in L2

under assumptions that are satis®ed in our setting.

De®nition 2. Following Ma et al. (1998) and Russo and Vallois (1998), let ì denote the

measure on R� 3 Ù de®ned as ì([0, t] 3 A) � E[1A[M , M] t], A 2 F , t 2 R�, and let

í � (ë� ì)=2. For u 2 �U we denote by u� the limit in L2(dí) of any sequence (un)n2N � U
that converges in L2(dë) to u.

Note that u � u� ë-a.e., but not ì-a.e., except in the Wiener case (ö � 0), and in general

for u 2U. From Lemma 5.2. of Ma et al. (1998) we have

kukL2(dë) � ku�kL2(dì), u 2 �U:

In what follows we ®x T . 0. For u 2 �U,
� T

0
u�t d[M , M] t is de®ned a.e. as an integral

with respect to an increasing process and it belongs to L1(Ù), since

E

�T

0

u�t d[M , M] t

����� �����
" #

< T 1=2ku�kL2(dì) < T 1=2kukL2(dë): (13)

The following lemma allows us to prove the quantum product formula (7) from the

probabilistic product formula (6).

Lemma 2. Let u 2 �U and assume that 1[0,T ]ö 2 L2(dë) for some T 2 R�. Then

1[0,T ]uö 2 Dom1,2(=�) if and only if�T

0

u�t d[M , M] t 2 L2(Ù),

and in this case, �T

0

ut dt � =�(1[0,T ]uö) �
�T

0

u�t d[M , M] t: (14)

Proof. We start by assuming that u 2 U is of the form u �Pn
i�1 Fi1]ai ,bi], where bi < T :

Since ö is adapted we can choose a sequence (vn)n2N � U of adapted processes converging

to ö1[0,T ] in L2(dë). Then, from Remark 2, uvn 2 T and, from Proposition 1,

(=�(uvn))n2N �
�1

0

uvn(t) dMt

� �
n2N

:

Hence (=�(uvn))n2N converges in L1(Ù) toXn

i�1

Fi

�bi

ai

ös dMs �
�T

0

utö t dMt 2 L2(Ù),

uö 2 Dom1,2(=�) and =�(uö) � � T

0
utö t dMt, that is,
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�T

0

ut dt � =�(uö) �
�T

0

ut d[M , M] t:

If u 2 �U we approximate it in L2(dë) by a sequence (un)n2N in U. Then, from (13) we

have that (
� T

0
un(t) dt � =�(unö))n2N � (

� T

0
un(t) d[M , M] t)n2N converges in L1(Ù) to� T

0
u� d[M , M] t. h

We now prove the quantum product formula (7), under assumptions different from that of

Biane (1995).

Proposition 2. Let F be in a ®nite sum of chaos and let h 2 L2([0, T ]) be bounded. Then

hö=ÿF 2 Dom1,2(=�) if and only if I1(h)F 2 L2(Ù) and in this case,

I1(h)F � =�(h
 F)� (h, =ÿF)L2(R�) � =�(hö=ÿF): (15)

Proof. We let F � In( f n) 2 S , h 2 L2([0, T ]), and apply (6) and Lemma 2 to

h=ÿ In( f n) 2 �U, since �U contains the range of =ÿ. In the general case we choose a

sequence (Fn)n2N � S that converges to F in L2(Ù). The right-hand side of (15) converges

to =�(h
 F)� � T

0
ht=

ÿ
t F dt � =�(hö=ÿF) � I1(h)F in L1(Ù) and (hö=ÿFn)n2N

converges to hö=ÿF in L1(Ù) as n goes to in®nity. Hence hö=ÿF 2 Dom1,2(=�) if and

only if I1(h)F 2 L2(Ù). h

The result extends to bounded simple adapted processes of the form h � G1[ t1, t2[ for

F t1
-measurable G, since in this case =ÿs G � 0, s . t1 (see Lemma 4.1. of Ma et al. 1998),

which means that =�(1[ t1, t2[G) � G=�(1[ t1, t2[).

We close this section with a remark on the link between independence of stochastic

integrals and their deterministic kernels. The above formula easily gives information on the

chaotic expansion of a product of stochastic integrals, for general ö. If f , g 2 L2([0, T ])

are such that fgö 2 Dom1,2(=�), then

I1( f )I1(g) � I2( f � g)� ( f , g)L2(R�) � =�( fgö): (16)

Letting T go to in®nity, the formula holds for f , g 2 L2(R�), provided

fgö 2 Dom1,2(=�). From this formula it is clearly seen that the chaotic expansion of

I1( f )I1(g) may be an in®nite sum of multiple stochastic integrals, depending on the chaotic

expansion of ö. This formula can be applied in order to obtain a necessary condition for the

independence of stochastic integrals. The result of Urbanik (1967) says that if a stochastic

process (Xt) t2R� has stationary and independent increments then independence of
�1

0
f t dXt

and
�1

0
gt dX t implies fg � 0, except if X is Gaussian, in which case the condition becomes

( f , g)L2(R�) � 0. In the Gaussian case this property has been further extended to multiple

stochastic integrals by UÈ stuÈnel and Zakai (1990). See also Privault (1996) for the case of

deterministic ö. We can now give an extension of this property to more general ö.

Proposition 3. Assume that the chaotic expansion of öt does not contain terms of order 1.

Then, independence of I1( f ) and I1(g) implies ( f , g)L2(R�) � 0 and f tgt � 0, E[ö2
t ] dt-a.e.
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Proof. We follow an argument of UÈ stuÈnel and Zakai (1990) that deals with the Wiener case.

k f � gk2

L2(R�)�2 > ( f , f )L2(R�)(g, g)L2(R�) � E[I1( f )2]E[I1(g)2]

� E[(I1( f )I1(g))2]

� k f � gk2
L2(R�)�2 � ( f , g)2

L2(R�) � k=�( fgö)k2
L2(Ù),

where we used the assumption on the chaotic expansion of ö which implies the orthogonality

of =�( fgö) and I2( f � g) in (16). Hence ( f , g)L2(R�) � 0, and =�( fgö) � 0 a.e. Hence

fgö � 0, dë-a.e. h

Note that the hypothesis of this proposition do not include the AzeÂma martingales.

4. Chaotic Kabanov formula

The purpose of this section is to obtain in Theorem 1 a chaotic formula for the product

I1(g)In( f n) using Proposition 2 applied to F � In( f n). Under certain assumptions on f n and

g, we have

I1(g)In( f n) � In�1( f n � g)� nI nÿ1(h f n(�, :), g(:)i)� n=�(g(:)ö(:)I nÿ1( f n(�, :))): (17)

If ö is deterministic, in particular in the Wiener and Poisson cases, this formula easily yields

the Kabanov formula (Privault 1996). On the other hand, if ö is random the chaos expansion

of the term ö: I nÿ1( f n(�, :)) is unknown unless öt belongs to the ®rst chaos, i.e.

ö(t) � á(t)� I1(â t), t > 0, since in this case an induction argument can be used in (17)

to compute the term ö: I nÿ1( f n(t1, . . . , tnÿ1, :)) and to determine the chaotic expansion of

the product I1(â t)In( f n). Thus in this case the chaotic expansion of I1(g)In( f n) can be

obtained as a consequence of Proposition 2.

In this section, we assume that ö is of the form ö(t) � á(t)� I1(ât), t > 0, where á is

a locally bounded function from R� to R and â t(:) is a bounded function from R� to R

with support in [0, t], for any ®xed t 2 R�. This situation is more general than the situation

of Russo and Vallois (1998, Section 4); moreover, chaotic expansions are completely

determined here.

We have the following lemma:

Lemma 3. Let è 2 R�. Let f p 2 L2(R�)� p and

æ(t1, . . . , t kÿ1; tk) � â t2
(t1) � � � â t k

(t kÿ1), t1, . . . , tk 2 R�, k . 1,

and æ(t) � 1, t 2 R�, for k � 1. The chaos expansion of the product I1(âè)Ip( f p) is given by

I1(âè)Ip( f p) � I p�1(g�p�1(�; è))� Ip(g�p(�; è))� I pÿ1(gÿpÿ1(�; è)),

where
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g�p�1(t1, . . . , t p�1; è) �
Xp�1

j�1

p!

( jÿ 1)!
æ(tj, . . . , t p�1; è) f p(t1, . . . , t̂ j, . . . , t p�1),

where t̂ j means that tj is omitted in the arguments of f p,

g�p(t1, . . . , tp; è) � f p(t1, . . . , tp)
Xp

j�1

p!

( jÿ 1)!
æ(tj, . . . , tp; è)á(tj),

and

gÿpÿ1(t1, . . . , t pÿ1; è) �
Xp

j�1

p!

( jÿ 1)!
æ(tj, . . . , t pÿ1; è)h f p(t1, . . . , t pÿ1, :), â tj

(:)i,

with tp � è.

Proof. We will prove the lemma by induction on p. Observe that the kernels g�, g� and gÿ

are not symmetric functions and that this result uses the convention (2).

For p � 1, using Proposition 2, we have

I1(âè)I1( f ) � I2(âè � f )� hâè, f i � =�(âèö f )

� I2(âè � f )� hâè, f i � I1(âèá f )� I2(âè( t1) f (t1) � â t1
(t2))

� I2(âè � f � âè f � â t)� I1(âèá f )� hâè, f i,
and therefore, in particular, I1(âè)I1( f ) is in the domain of =�.

For the general case, applying Proposition 2 and the fact that f p�1 is symmetric, we have

I1(âè)I p�1( f p�1) � I p�2(âè � f p�1)� ( p� 1)I p(hâè(:), f p�1(�, :)i)
� ( p� 1)=�(âè(:)á(:)I p( f p�1(�, :)))
� ( p� 1)=�(âè(:)I1(â:)I p( f p�1(�, :))):

Now, applying the induction hypothesis to I1(â t p�2
)Ip( f p�1(�, t p�2)) in the last term, we

have,

I1(âè)I p�1( f p�1) � I p�2(âè � f p�1)

� ( p� 1)I p�2(âè(t p�2) � ç�p�1(t1, . . . , t p�1; t p�2))

� ( p� 1)I p�1(âè(t p�1)á(t p�1) f p�1(t1, . . . , t p�1))

� ( p� 1)I p�1(âè(t p�2) � ç0
p(t1, . . . , tp; t p�2))

� ( p� 1)I p(hâè(:), f p�1(�, :)i)
� ( p� 1)I p(âè(t p�2) � çÿpÿ1(t1, . . . , t pÿ1; t p�2)),
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where ç�p�1(�, r), ç�p(�, r) and çÿpÿ1(�, r) are the functions de®ned in the lemma with

f p�1(�, r) and âr respectively in place of f p(�) and âè.

If we write the kernels of orders p, p� 1 and p� 2, we can see that they have the

desired form. Note also that we have proved that I1(âè) p�1( f p�1) is in the domain of =�.h

Let Ó p denote the set of all permutations of f1, . . . , pg. In the following corollary we

replace f p by the product h1 � � � � � hp to give a partial symmetrization of the kernels

obtained in the above proposition.

Corollary 1. If f p � h1 � � � � � hp, where hi 2 L2(R�) for any i � 1, . . . , p, we have the

following expression:

I1(âè)Ip(h1 � � � � � hp) � I p�1(g�p�1(�; è))� Ip(g�p(�; è))� I pÿ1(gÿpÿ1(�; è)),

where the symmetrizations of g�p�1, g�p and gÿpÿ1 are given by

~g�p�1(t1, . . . , t p�1; è) �
X
ó2Ó p

Xp

l�0

1

l!
â t l�2

(t l�1)
Yl

i�1

hó (i)(ti)
Yp�2ÿ l

j�3

(â t l� j
hó ( l� jÿ2))(t l� jÿ1)

with t p�2 � è,

~g�p(t1, . . . , tp; è) �
X
ó2Ó p

Xpÿ1

l�0

1

l!
(áâ t l�2

hó ( l�1))(t l�1)
Yl

i�1

hó (i)(ti)
Yp�1ÿ l

j�3

(â t l� j
hó ( l� jÿ1))(t l� jÿ1)

with t p�1 � è, and

~gÿpÿ1(t1, . . . , t pÿ1; è) �
X
ó2Ó p

Xpÿ1

l�0

1

l!
hâ t l�1

, hó ( l�1)i
Yl

i�1

hó (i)(ti)
Ypÿ l

j�2

(â t l� j
hó ( l� j))(t l� jÿ1)

with tp � è.

We are now ready to state the chaotic Kabanov formula.

Theorem 1. Let g be a bounded function with compact support on R�, and

ã(t1, . . . , tk) � â t2
(t1) � � � â t k

(t kÿ1)g(tk), t1, . . . , tk 2 R�, k . 1,

and ã(t) � g(t), t 2 R�, for k � 1. We have

I1(g)Ip( f p) � I p�1(g�p�1)� Ip(g�p)� I pÿ1(gÿpÿ1) (18)

where the kernels g�p�1, g�p and gÿpÿ1 are

g�p�1(t1, . . . , t p�1) �
Xp�1

j�1

p!

( jÿ 1)!
ã(t j, . . . , t p�1) f p(t1, . . . , t̂ j, . . . , t p�1),

where t̂ j means that tj is omitted in the arguments of f p,
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g�p(t1, . . . , tp) � f p(t1, . . . tp)
Xp

j�1

p!

( jÿ 1)!
ã(tj, . . . , tp)á(tj),

and

gÿpÿ1(t1, . . . , t pÿ1) �
Xpÿ1

j�1

p!

( jÿ 1)!
ã(tj, . . . , t pÿ1)h f p(t1, . . . , t pÿ1, :), â t j

(:)i

� ph f p(t1, . . . , t pÿ1, :), g(:)i:

Proof. By Proposition 2, we have

I1(g)Ip( f p) � I p�1(g 
 f p)� pI pÿ1(h f p(�, :), g(:)i)
� p=�(g(:)á(:)I pÿ1( f p(�, :)))� p=�(g(:)I1(â:)I pÿ1( f p(�, :))),

and applying Lemma 3 we obtain the decomposition (18). h

Proposition 4. Assume now that the underlying martingale is the standard AzeÂma martingale,

that is, á � 0 and âè � ÿ1[0,è], è 2 R�. Then

I1(1[0,è])Ip(1

 p
[0,è]) �

1

p� 1
I p�1(1


( p�1)
[0,è] )ÿ pI pÿ1((t( pÿ1) ÿ è)1


( pÿ1)
[0,è] (t1, . . . , t pÿ1)),

with t(0) � 0 and t( pÿ1) � t1 _ � � � _ t pÿ1, p . 1.

Proof We let f p(t1, . . . , tp) � Ð p
i�11[0,è](ti) and g � 1[0,è]. By Theorem 1 we have

g�p�1(t1, . . . , t p�1; è) �
Xp�1

j�1

p!

( jÿ 1)!
(ÿ1) pÿ jÿ11f t j<���< t p�1<èg

Yjÿ1

i�1

1[0,è](ti),

g�p(t1, . . . , tp; è) � 0,

gÿpÿ1(t1, . . . , t pÿ1; è) �
Xp

j�1

(ÿ1) pÿ j p!

( jÿ 1)!
tj1f t j<���< t pÿ1<èg

Yjÿ1

i�1

1[0,è](ti),

with tp � è. Symmetrizating and doing some straightforward computations we obtain the

desired result. h

5. Consequences of the chaotic Kabanov formula

In this section we use the chaotic Kabanov formula to prove that the Wiener and Poisson

processes are the only normal martingales to possess certain properties relative to

polynomials and Wick product.
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5.1. Existence of a family of orthogonal polynomials associated with the

martingale

Let X be a normal martingale. Following Meyer (1976), we de®ne by induction the

martingales

P
(0)
t � 1, P

(1)
t � X t, . . . , P

(n)
t �

�
[0, t]

P(nÿ1)
sÿ dX s, t 2 R�:

Note that P
(n)
t � (1=n!)In(1�n

[0, t]) for all n. It is well known that in the Wiener case we have

the relation P
(n)
t � Hn(X t, t), where Hn(x, y) � y n=2 hn(x=

p
y) and hn is the Hermite

polynomial of degree n.

Also in the Poisson case, we have P
(n)
t � Cn(Xt, t), where fCn(x, y)g are the Charlier

polynomials (Meyer 1976; Surgailis 1984).

This situation motivates the following de®nition:

De®nition 3. We will say that a normal martingale X has an associated family of polynomials

fQn(x, y)g, where Qn is a polynomial of degree n in x, if

P
(n)
t � Qn(X t, t), for all n:

Now the natural problem is to characterize the normal martingales that have an

associated family, and the answer is the next theorem.

Theorem 2. Let X be a normal martingale in L4(Ù). Then X has an associated family of

polynomials if and only if ös is a deterministic constant process, that is, X is a Poisson or a

Wiener process.

Proof. The if part is straightforward. If ös � 0 we are in the Wiener case, and if ös � c 6� 0,

we are in the Poisson case with jumps of height c.

The proof of the only if part is a consequence of the Kabanov formula. Assume that the

chaotic decomposition of the process ö is

öt �
X1
n�0

In( f n(:, t)),

and X has an associated family of polynomials. Then, by the Kabanov formula,

P
(1)
t P

(1)
t � X 2

t � I1(1[0, t])I1(1[0, t]) � I2(1�2[0, t])� t � =�(1[0, t](x)ö(x)) (19)

� I2(1�2[0, t])� t �
X1
i�1

Ii(1[0, t](x) f iÿ1(:, x)):

For each ®xed t, X 2
t will be a linear combination of the three polynomials Q0(X t, t),

Q1(X t, t) and Q2(X t, t), which are respectively 1, I1(1[0, t]) and 1
2
I2(1�2[0, t]). So

X 2
t � a2(t)I2(1�2[0, t])� a1(t)I1(1[0, t])� a0(t): (20)
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Then the chaotic decomposition of X 2
t has only terms upto the second chaos, and from

(19) we obtain f n � 0 for n > 2. Therefore,

öt � f 0(t)� I1( f 1(:, t)):

Identifying the kernels of (19) and (20), we have for all t

1[0, t](x) f 0(x) � a1(t)1[0, t](x)

for the ®rst chaos, and

1�2[0, t](u, v)� 1
2
(1[0, t](u) f 1(v, u)� 1[0, t](v) f 1(u, v)) � a2(t)1�2[0, t](u, v), u, v 2 R�,

for the second chaos. So f 0(u) � c0, u 2 R�, and f 1(:, x) � c11[0,x](:).
Then

öt � c0 � c1 I1(1[0, t]), t 2 R�: (21)

We now apply Proposition 2 (or the Kabanov formula) to the product I1(1[0, t])I2(1�2[0, t])

with a ö given by (21), and we obtain

I1(1[0, t])I2(1�2[0, t]) � I3(1�3[0, t])� 2tI1(1[0, t])

� 2c0 I2(1�2[0, t])� =�(2c11[0, t](x1)I1(1[0,x1])I1(1[0, t])):

Hence

I1(1[0, t])I2(1�2[0, t]) � aI3(1�3[0, t])� bI2(1�2[0, t]) (22)

� cI1 t1[0, t](x1)�
� t

0

c11[0,x1](u) du1[0, t](x1)

� �
,

where a, b, c 2 R.

As

I1(1[0, t])I2(1�2[0, t]) � X tQ2(X t, t),

the product is a polynomial of degree 3 in X t, and can be expressed as a linear combination

of Q0, Q1, Q2 and Q3. So

I1(1[0, t])I2(1�2[0, t]) � b3(t)Q3(X t, t) � � � � � b0(t) (23)

� 1

3!
b3(t)I3(1�3[0, t])�

1

2!
b2(t)I2(1�2[0, t])� b1(t)I1(1[0, t])� b0(t),

and as before identifying the kernels of (22) and (23), and focusing our attention to the chaos

of order 1, we have

a1(t)1[0, t](x1) � c(t1[0, t](x1)� c1

� t

0

1[0,x1](u) du1[0, t](x1)

� c(t1[0, t](x1)� c1x11[0, t](x1)),

therefore c1 has to be zero, and we get that the process ö is a constant. h
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Remark 3. Since for the standard AzeÂma martingale we have ös � ÿI1(1[0,s]), the theorem

implies that the AzeÂma martingale does not have an associated family of polynomials.

Remark 4. In particular we have proved that any normal martingale in L4 with an associated

family of polynomials is a process with independent increments. In fact, a normal martingale

in L4 has independent increments if and only if ö is deterministic (Utzet 1992; Emery 1989).

Remark 5. Yor (1997, Chapter 15) introduces a family of polynomials related to the AzeÂma

martingales in a different context. These polynomials give the conditional expectation of

powers for AzeÂma martingales with respect to the ó-algebras of the strict past.

5.2. Projection property for the Wick product

Let X be a normal martingale in L4(Ù). The Wick product I1( f1) : In(gn) of I1( f 1) and

In(gn) is de®ned by

I1( f 1) : In(gn) � In�1( f 1 � gn):

This motivates the following de®nition.

De®nition 4. We say that X has the Wick projection property if the Wick product

I1( f 1) : In(gn) is the projection of the product I1( f 1)In(gn) over the chaos of order n� 1.

Here the product I1( f 1)In(gn) is assumed to belong to L2(Ù) and the kernels f 1 and gn are

bounded and with compact support.

Now the natural problem is to determine the martingales that have this property.

Theorem 3. Assume that ö has a chaotic decomposition with no terms in chaos greater than

1. Then X has the Wick projection property if and only if ö is deterministic.

Proof. Proposition 2 says that

I1( f 1)In(gn) � I n�1( f1 � gn)� nI nÿ1

�1
0

f 1(s)gn(:, s) ds

� �
� =�( f 1(u)ö(u)nI nÿ1(g n(:, u))),

and it is straightforward to see that the last addend has null projection over the chaos of order

greater than n for all f 1 and gn if and only if ö is deterministic. h

Remark 6. If in the de®nition of the Wick projection property we impose I1( f 1) : In(gn) to

be the projection of the product I1( f 1)In(gn) over the sum of chaos of order strictly greater

than n, instead of over the class of order n, then the above result can be extended to normal

martingales X with öt �
P

i I i( f i(:, t)) for which Proposition 2 is valid.
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6. Derivation rule of products

It is well known that on the Wiener space, that is for ö � 0, =ÿ is identi®ed with a derivation

operator. As noticed by Ma et al. (1998), =ÿ cannot act in the same way as a Sobolev

derivative, =ÿ f (Mt) � 1[0, t] f 9(Mt), unless ö � 0. In this section we study the product rule

for =ÿ and, in particular, we further show that =ÿ can be a derivation operator only for

ö � 0.

For deterministic ö, Privault (1996) noticed that the product formula becomes

=ÿs (FG) � F=ÿs G � G=ÿs F � ös=
ÿ
s F=ÿs G, s 2 R�:

This rule does not extend to random ö, but (8) gives by duality the following information.

Proposition 5. For F, G 2 S ,

E[=ÿs (FG)jF s] � E[F=ÿs G � G=ÿs F � ös=
ÿ
s F=ÿs GjF s], ds-a:e:

Proof. We write (8) for u 2 U adapted, and apply the duality between =ÿ and =�:

E[(u, =ÿ(FG))]

� E[=�(u)FG]

� E[G(=�(uF)� (u, =ÿF)L2(R�) � =�(uö=ÿF)]

� E[(u, F=ÿG)L2(R�) � (u, G=ÿF)L2(R�) � (u, ö=ÿF=ÿG)L2(R�)]: h

From the above it follows that if =ÿ is a derivation then E[ös=
ÿ
s F=ÿs G] � 0, s 2 R�,

F, G 2 S , hence ö � 0.

As a consequence of Proposition 5, we have

=ÿs (FG) � F=ÿs G � G=ÿs F � ös=
ÿ
s F=ÿs G �As(F, G), s 2 R�,

where A(F, G) is a process with zero adapted projection.

Our aim in the following is to gain more information on this process in the case of the

AzeÂma martingales. We use the notation As(F, t) �As(F, I1(â t)), t 2 R�.

Proposition 6. Assume that ö is given as öt � á t � I1(â t), t 2 R�, where á is locally

bounded and â t is bounded, t 2 R�. Then

=ÿs (I1(â t)F) � F=ÿs I1(â t)� I1(â t)=
ÿ
s F � ös=

ÿ
s I1(â t)=

ÿ
s G �As(F, t), s 2 R�,

where E[As(F, t)jF s] � 0, s 2 R�, and As(F, t) is given by the relation

As(F, t) � =�(â t(:)â:(s)=ÿ: F � ösâ t(:)â:(s)=ÿ: =ÿs F � â tAs(=
ÿ
: F, :)): (24)

Proof. We use the relation =ÿs =�(u) � =�(=ÿs u)� us:
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=ÿs (I1(â t)F)

� =ÿs (=�(â t F)� (â t, =ÿF)L2(R�) � =�(â tö=ÿF))

� =�(â t=
ÿ
s F)� â t(s)F � (â t, =ÿ=ÿs F)L2(R�) � =�(â tá=ÿ=ÿs F)

� â t(s)ás=
ÿ
s F � =�(â t(:)=

ÿ
s (I1(â:)=

ÿ
: F))� â t(s)I1(âs)=

ÿ
s F

� =�(â t=
ÿ
s F)� (â t, =ÿ=ÿs F)L2(R�) � =�(â tá=ÿ=ÿs F)

� F=ÿs I1(â t)� â t(s)ás=
ÿ
s F � â t(s)I1(âs)=

ÿ
s F

� =�(â t(:)(â:(s)=ÿ: F � I1(â:)=
ÿ
: =ÿs F � ös=

ÿ
2 I1(â:)=

ÿ
s =ÿ: F �A(=ÿ: F, :)))

� =�(â t=
ÿ
s F)� (â t, =ÿ=ÿs F)L2(R�) � =�(â tö=ÿ=ÿs F)

� F=ÿs I1(â t)� â t(s)ás=
ÿ
s F � â t(s)I1(âs)=

ÿ
s F

� =�(â t(:)â:(s)=ÿ: F � â t(:)ös=
ÿ
s I1(â:)=

ÿ
s =ÿ: F � â t(:)As(=

ÿ
: F, :))

� I1(â t)=
ÿ
s F � F=ÿs I1(â t)� ös=

ÿ
s I1(â t)=

ÿ
s F

� =�(â t(:)â:(s)=ÿ: F � â t(:)ösâ:(s)=ÿ: =ÿs F � â t(:)As(=
ÿ
: F, :)),

and we obtain (24). h

As a consequence of this proposition, for F � In( f �n) the remaining process A(F, t)

can be explicitly determined by induction from

As(In( f �n), t) � nI n((â t(:)â:(s) f :) � f �(nÿ1))� n(nÿ 1) f s=
�(ösâ t(:)â:(s) f : I nÿ2( f �(nÿ2)))

� n=�( f :â t(:)As(I nÿ1( f �(nÿ1))), t):

Note that F 7! A(F, t) is linear and that the chaotic expansion of ös I nÿ2( f �(nÿ2)) can

be explicitly computed from the Kabanov formula. As an application we compute

As(In( f �n), t) for n � 0, 1, 2. We have As(1, t) � 0, As(I1( f �1), t) � I1(â t(:)â:(s) f :), and

As(I2( f �2), t) � I2(â t(:)â:(s) f : � f )� 2 f s=
�((ás � I1(âs))â t(:)â:(s) f :)

� 2=�( f :â t(:)I1(â:(�)â�(s) f �))
� I2(â t(:)â:(s) f : � f )� 2 f sás I1(â t(:)â:(s) f :)� 2 f s I2(â t(:)â:(s) f : � âs)

� 2I2( f :â t(:) � â:(�)â�(s) f �):
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