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The signed square root statistic R is given by sgn(è̂ÿ è)(l(è̂)ÿ l(è))1=2, where l is the log-likelihood

and è̂ is the maximum likelihood estimator. The pth cumulant of R is typically of the form

nÿ p=2 kp � O(nÿ( p�2)=2), where n is the number of observations. This paper shows how to

symbolically compute kp without invoking the Bartlett identities. As an application, we show how

the family of alternatives in¯uences the coverage accuracy of R.
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1. Introduction

A central object in likelihood theory is the so-called R statistic, otherwise known as the

signed square root of the likelihood ratio statistic, R � sgn(è̂ÿ è)(l(è̂)ÿ l(è))1=2, where l is

the log-likelihood and è̂ is the maximum likelihood estimator. For discussions of this statistic,

see, for example, Barndorff-Nielsen (1986; 1991) and McCullagh (1984). To assess and

improve the accuracy of R, substantial effort has gone into computing its cumulants, usually

by a method of combining stochastic Taylor expansions with Bartlett identities; see, in

particular, Bartlett (1953a; 1953b), Lawley (1956), Shenton and Bowman (1977, Chapter 3),

McCullagh (1984; 1987, p. 202), Peers and Iqbal (1985), Skovgaard (1986), McCullagh and

Tibshirani (1990), DiCiccio and Romano (1989), DiCiccio et al. (1991), DiCiccio and Stern

(1993; 1994) and Mykland (1994; 1995a; 1995b).

Calculations with Bartlett identities are, however, notoriously cumbersome. One solution

to this problem lies in computer algebra; see Stafford and Andrews (1993), Andrews and

Stafford (1993; 2000), Stafford (1994; 1995), and Stafford et al. (1994). In this paper, we

shall suggest a different approach to deal with this issue.

The purpose of the following is to present a way of deriving the cumulants of R in a

computationally much simpler manner, bypassing the traditional machinery. Speci®cally, if

R n is the R statistic based on n observations, and if cump(R n) is the pth cumulant of R n

(see, for example, McCullagh 1987, Chapter 2), we shall see below that

cump(R n) � ä2, p � nÿ p=2 kp � O(nÿ( p�2)=2): (1:1)

Here ä2, p � 1 for p � 2 and ä2, p � 0 otherwise. We shall provide a formula for the

generating function of the kps with the help of (2.1), (2.5) and Theorem 2 below. We then

show how to implement the procedure by symbolic computation (Section 2). As an
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application, we discuss (Section 3) how these results can be used to analyse the effect of the

alternative on the null distribution of R, and how this affects the difference between nominal

and actual coverage of con®dence intervals.

To establish (1.1), note that, subject to regularity conditions, an asymptotically standard

normal statistic Tn satis®es cump(Tn) � nÿ( pÿ2)=2k p � nÿ p=2 kp � O(nÿ( p�2)=2), with k p �
ä2, p for p � 1, 2. This follows from general results on the expansions of cumulants in

Wallace (1958), Bhattacharya and Ghosh (1978) and Hall (1992). It now follows from

Theorem 1 of Mykland (1999) that k p � 0 for p > 3 when Tn � R n. The results in the

latter paper are related to large-deviation results for R statistics in Barndorff-Nielsen and

Wood (1998), Jensen (1992; 1995, Chapter 5; 1997) and Skovgaard (1990; 1996).

2. The main formula

2.1. Theoretical development

Suppose that a one-parameter family of probabilities Pâ is given, and that ln(â) is the log-

likelihood based on n observations. Let the kps from (1.1) be de®ned when the cumulants are

taken under distribution Pâ0
, and denote the exponential of their generating function by

î(h) � exp k1 h� 1

2
k2 h2 � 1

3!
k3 h3 � . . .

� �
: (2:1)

Our purpose in this section is to display a formula for î. Consider the density f n of R n, and

the cumulant generating function Kn, both under Pâ0
. The latter is given by

Kn(h) � hE(R n)� 1

2
h2 var(R n)� 1

3!
h3 cum3(R n) � . . . , (2:2)

and, under regularity conditions on the remainder term in (1.1), one obtains

Kn(n1=2 h) � 1
2
nh2 � log î(h)� O(nÿ1): (2:3)

The saddlepoint approximation to f n has the form

f n(n1=2 h) � 1

(2ðK 0n(ô̂n))1=2
exp(Kn(ô̂n)ÿ ô̂n K9n(ô̂n))(1� o(1)), (2:4)

where K9n(ô̂n) � n1=2. For the sample mean, this goes back to Daniels (1954), and a version

of (2.4) for general statistics is embodied in Theorem 1 of Chaganty and Sethuraman (1985).

See also the development in Jensen (1995). Since we are dealing with the signed square root

statistic R n, whose cumulants are of the form (1.1), one can expand (2.4) in a Taylor series to

obtain

î(h) � lim
n!1

f n(n1=2 h)

ö(n1=2 h)
, (2:5)

ö being the standard normal density. Equation (2.5) is important because it can be combined

with Theorem 1 below to ®nd an explicit formula for î (Theorem 2).
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De®nition. Let ln � ln(â) be the log-likeliood based on n observations. _ln, �ln and l( p)
n are

derivatives with respect to the (scalar) parameter â. Also set

~l(â) � lim
n!1 (ln(â)ÿ ln(â0))=n (2:6)

and

J (â) � ÿ lim
n!1

�ln(â)=n (2:7)

where the limits are in probability under Pâ. Finally, let

h(â) �
���
2
p

sign(âÿ â0)~l(â)1=2: (2:8)

Our ®rst result approximates the density of R n.

Theorem 1. In a curved exponential family, and under the assumptions of Jensen (1997) and

of Appendix 1,

f n(r) � ö(r)J1=2(â)
@â

@h
(h)f1� O(nÿ1=2)g (2:9)

in a large-deviation region jhj < c, with h � r=
���
n
p

.

For the proof, see Appendix 1. The above now combines with (2.5) to yield the following

result.

Theorem 2. Subject to regularity conditions, î is given under Pâ0
by

î : h! J 1=2 @â

@h
: (2:10)

In the case of curved exponential families, the latter theorem is a direct corollary to the

former. For smooth families that are not in the form of a ®nite curved family, one can

proceed as follows. If R is the signed square root statistic in a suf®ciently smooth

likelihood family, one can write R � R� Op(nÿ( pÿ1)=2), where R is the R statistic in a

( p� 2, 1) curved exponential family. (see, for example, McCullagh 1987, p. 214). Theorem

2 is then immediate.

In problems with independent and identically distributed variables, the forms of ~l and J

are particularly straightforward:

~l(â) � Eâ0
(l1(â)ÿ l1(â0)) exp(l1(â)ÿ l1(â0)) (2:11)

and

J (â) � ÿEâ0
�l1(â) exp(l1(â)ÿ l1(â0)): (2:12)
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2.2. Implementation for symbolic computation

To use the above result to ®nd expressions for the kps, one needs tractable expressions for ~l
and J . In Appendix 2, we show that

~l(â) � lim
n!1

1

n

X
p>2

1

p!
(âÿ â0) p

3
X

q1�2q2 �...� kqk� p

(q1� . . . �qk)b(q1, . . . qk) cum(l(1)
n , . . . , l(1)

n|�������{z�������} ,

q1 times

. . . , l(k)
n , . . . , l(k)

n|�������{z�������} )

q k times

, (2:13)

where the bs are the coef®cients in the Bartlett identities, that is

b(q1, . . . , qk) � p!Yk

i�1

(i!)qi qi!

(2:14)

(see, for example, Barndorff-Nielsen and Cox 1989, p. 159). Similarly,

J (â) � lim
n!1 ÿ

1

n

X
p>2

1

p!
(âÿ â0) p

3
X

q1�2q2�...�kqk� p�2

~b(q1, . . . , qk) cum(l(1)
n , . . . , l(1)

n|��������{z��������}
q1 times

, . . . , l(k)
n , . . . , l(k)

n|�������{z�������} )

qk times

, (2:15)

where

~b(q1, . . . , qk) � b(q1, . . . , qk)
1

(
p�2

2 )

Xp�2

r�2

r

2

� �
qr: (2:16)

Finding the expression for the function (2.10), therefore, is purely a matter of inverting the

function h! â, and then plugging it into J (â)1=2 and also differentiating it. This is easily

done by symbolic manipulation software; we have used Maple (Char et al. 1991) to obtain

(2.17) and (2.18) below.

The quantities k1 and k2 are both well documented in the literature (see, for example,

McCullagh 1987, p. 214). Here, we therefore give

k3 � c
ÿ9=2
11 [ÿ c111c11c22 � 17

4
c111c11c112 � 7

4
c111c11c1111 ÿ 125

72
c3

111 � c2
11c23 ÿ 1

2
c2

11c113

ÿ 3
2
c2

11c1112 ÿ 3
10

c2
11c11111]� O(nÿ1) (2:17)

and
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k4 � cÿ6
11 [45

4
c2

11c112c1111 ÿ 23
3

c111c2
11c23 ÿ 9

8
c2

11c22c1111 ÿ 45
4

c2
11c22c112 � 1465

144
c4

111 ÿ 9
2
c2

11c2
22

� 45
4

c2
11c2

112 � 33
14

c2
11c2

1111 ÿ 6c3
11c24 ÿ 8c3

11c114 ÿ 11
3

c3
11c33 ÿ 12c3

11c1113 ÿ 51
2

c3
11c1122

ÿ 21
2

c3
11c11112 ÿ 13

2
c3

11c222 ÿ 3
4
c3

11c111111 � 113
24

c2
111c11c22 ÿ 455

12
c2

111c11c112 ÿ 341
24

c2
111c11c1111

� 19
3

c111c2
11c113 � 3c111c2

11c122 � 16c111c2
11c1112 � 3c111c2

11c11111 ÿ 8c3
11c123]� O(nÿ1),

(2:18)

where cq1...q r
� cum(l(q1)

n , . . . , l(qr)
n )=n, and where we have adopted the convention from

McCullagh (1987, Section 7.2.3) of using a parametrization where c1q � 0 for q > 2. Note

that cq1...qr
depends on n, whereas the kp do not, which is why there are O(nÿ1) terms in

(2.17) and (2.18). We use this to be consistent with (3.3)±(3.5).

One would think of the cq1...q r
as being of order O(1). In the case of i.i.d. observations,

these coef®cients are simply constant, and there is no O(nÿ1) term. The more general

notation can accommodate triangular arrays, independent but non-identically distributed

observations, and also some cases of dependent observations. Conditions under which the

cq1...q r
are O(1) in the dependent case can, for example, be found in Goetze and Hipp

(1983).

3. The accuracy of con®dence intervals

One of the least studied phenomena of likelihood theory is the impact on the coverage

accuracy of con®dence intervals of the alternative implied by the likelihood family that is

used.

From a traditional likelihood perspective, this may seem like a strange consideration, as

the likelihood is determined by the actual family of alternatives. Recent years, however,

have seen the increasing use of `arti®cial' likelihoods that are designed to work under a

multiplicity of null distributions, and such likelihoods need a pragmatic and sometimes

deliberately incorrect speci®cation of the family of alternatives. Examples of this include

the projective (McLeish and Small 1992), dual (Mykland 1995a; Kong and Cox 1996) and

exponential (Nicolae 1999) likelihoods.

The usual set-up is the following. One has a class P of null distributions P, and one has

a score function which we shall write as _ltrue,n(â0). The latter notation is a little abusive, as

we do not assume that one has a likelihood ltrue,n(â). In fact, in the types of problems we

are considering, one would seek to avoid specifying such a likelihood. A main reason would

be that such a speci®cation might lead to additional constraints on the class P . To create an

R statistic to test H0 : P 2 P , one speci®es instead a criterion function ln(â) satisfying

(i) EP expfln(â)ÿ ln(â0)g � 1 for all P 2 P and (ii) _ln(â0) � _ltrue,n(â0). This speci®es a

parametric family dPâ � expfln(â)ÿ ln(â0)gdP for each P 2 P , but the likelihood and the

R statistic are independent of which of these families is actually used.
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Example. Consider an AR(1) model X n�1 � âX n � En�1(jâj, 1) where one does not know

the distribution of the Ens apart from assuming that they are i.i.d. with mean zero. A

frequently used score function for â would be _ltrue,n(â) �Pnÿ1
i�0 X i(X i�1 ÿ âX i). This is, of

course, the likelihood score for Gaussian Es with variance 1, as well as the quasi-score (see,

for example, Section 9.4 of McCullagh and Nelder 1989, p. 341). There is, however, no

likelihood resulting in this score that will generate a bigger family P than the Gaussian

distributions. There are, however, likelihoods, such as the projective or dual likelihood, that

will give rise to the score _l n(â0) across a bigger P if one does not require the criterion

function to generate all the distributions in P , and if one lets the likelihood depend on â0.

Such likelihoods satisfy (i) and (ii) above, and can be used to create an R statistic.

Requirement (ii) implies that the arti®cial and the (notional) true likelihoods have the

same power to ®rst order in contiguous neighbourhoods (this is fairly obvious, but for a

detailed argument in the dual likelihood case, see Mykland 1995a, Section 5); the argument

generalizes easily to other situations), and hence, typically, also to second order (Bickel et

al. 1981). At the third order, though the two likelihoods do not have the same power, there

is no clear ordering between them (for a comparison of dual and true likelihood see Lazar

and Mykland 1998; the same arguments apply quite generally).

Since the arti®cial likelihoods, therefore, have good ef®ciency properties, a comparison of

likelihoods will mainly come down to the question of accuracy. This is what we shall

pursue in the following. Note that the debate concerning this matter has been particularly

acute in connection with empirical/dual likelihood; see Corcoran et al. (1995) and Mykland

(1999). Incidentally, in view of the ef®ciency properties of the arti®cial likelihoods, it may

even be relevant to consider this accuracy question when P has only one element.

The formulae in the previous section permit us to characterize the impact on accuracy of

the choice of arti®cial likelihood. We are looking at log-likelihoods ln having the same

score _l n, but where we can otherwise vary �ln,
:::
ln, and so on, as we see ®t, so long as we

still have a likelihood function. The only restriction we impose is that

cov( _l n, �ln) � cov(�ln,
:::
ln) � . . . � 0

(as in McCullagh 1987, Section 7.2.3), since this can be done by a reparametrization which

does not alter the statistic R n.

In view of property (1.1), the Edgeworth expansion for the cumulative distribution Fn of

the signed square root R n is

Fn(r) � Ö(r)ÿ ö(r) nÿ1=2 k1 � nÿ1 r
1

2!
(k2 � k2

1)� nÿ3=2 k91

�

� nÿ3=2(r2 ÿ 1)
1

3!
(k3 � k2

1)� 1

2!
k2 k1

� ��
� O(nÿ2):

In the same notation as (2.17)±(2.18), we have that

k1 � ÿc
ÿ3=2
11 c111=3!, (3:3)
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k91ÿ � k91 ÿ c
ÿ5=2
11 [1

4
c23 � 1

4
c1112 � 1

12
c113]ÿ c

ÿ7=2
11 c111[17

24
c112 � 9

16
c22] (3:4)

and

k2 � cÿ2
11 [1

4
c22 ÿ 1

2
c112 ÿ 1

4
c1111]� 7

18
cÿ3

11 c2
111 � O(nÿ1), (3:5)

where k91 is the corresponding quantity for an exponential family with the same score, that is,

k91 � ÿ(625c3
111 ÿ 630c111c1111c11 � 108c11111c2

11)c
ÿ9=2
11 =360. k1 and k2 come from McCul-

lagh (1987, p. 214); (3.4) is derived by a higher-order version of the technology presented in

this paper. One could also, obviously, expand the cs in orders of n, but that would only

increase the messiness of expressions.

In view of (2.17)±(2.18) and (3.3)±(3.5), the coverage error at the nÿ1=2 level is ®xed by

the score _l n, the nÿ1 behaviour depends on the score and �ln, the nÿ3=2 behaviour on _ln, �ln

and
:::
ln, and so on. This, in itself, is not particularly surprising.

What is surprising, however, is that there is a radical difference between what can go

wrong at the nÿ1 level and the nÿ3=2 level. We shall argue below that a bad choice of �ln

can result in arbitrary undercoverage, but limited overcoverage. On the other hand, a bad

choice of
:::
ln can lead to both unlimited under- and overcoverage.

Consider ®rst the nÿ1 level, that is, the coef®cient k2. We shall argue that the worst-case

scenario for overcoverage occurs when the second derivative of the log-likelihood is of the

following `most conservative' form:

�l n,mc � [ _l, _l]n ÿ 2 var( _ln)� an
_l n, (3:6)

where [ _l, _l]n is the observed (optional) quadratic variation of _ln. Any non-random an will do

(one obtains the same R n statistic). For the validity of our formulae, we need (3.1), and so we

assume an � ÿcov( _ln, [ _l, _l]n)=var( _ln). Note that one valid log-likelihood function with this

second derivative is simply expf(âÿ â0) _ln � 1
2
(âÿ â0)2�ln,mcg normalized by its expectation.

To analyse the relationship between the most conservative choice (3.6) and any other

second derivative �l n, suppose that �ln � �ln,mc � mn � rn, where mn is a martingale

orthogonal to _l n, and rn is Op(1) and asymptotically independent of _ln, [ _l, _l]n and mn.

This will be the case in most regular situations: the independent case is obvious; for

Markov chains, see Jacod and Shiryaev (1987, pp. 445±448); for mixing sums, see Hall and

Heyde (1980, Chapter 5), or Jacod and Shiryaev (1987, pp. 448±458). By the Bartlett

identities for martingales (Mykland 1994),

cov(�l n,mc, mn) � cum( _ln, _ln, mn), (3:7)

(use (2.16) in that paper as well as cov( _l n, [m, _l]n) � E([ _l, _l, m]n). Hence

k2 � k2,mc � 1

4
cÿ2

11

1

n
var(mn)� o(1), (3:8)

where k2,mc is the value of k2 when �ln,mc is taken as the second derivative of l. Thus,

k2 > k2,mc, (3:9)

As discussed after formula (2.18), cÿ2
11 is of order O(1), and so is var(mn)=n � E[m, m]n=n in
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asymptotically ergodic situations. Hence, the second term of (3.8) is of order O(1). Similarly,

k2,mc � O(1) by (3.5).

Equation (3.9) establishes our claim about limited overcoverage at this level, as follows.

For ®xed _l n, let Fn,mc be given as the expansion (3.2) up to and including terms of order

O(nÿ1) for an R statistic that comes from a log-likelihood satisfying (3.6). This uniquely

de®nes Fn,mc. In view of the above, we have the following theorem.

Theorem 3. Subject to regularity conditions, for ®xed _ln,

P(R n < r) � Fn,mc(r)ÿ (k2 ÿ k2,mc)
1

2!
nÿ1 rö(r)� O(nÿ3=2)

< Fn,mc(r)� o(nÿ1), for r . 0,

> Fn,mc(r)� o(nÿ1), for r , 0: (3:10)

Hence, there is limited overcoverage both for one-sided con®dence sets fR n < rg and

fR n > ÿrg, and for two-sided sets fjR nj < rg, r . 0.

The coef®cients in the nÿ3=2 term, however, tell a different story. From (3.2), we can

write

P(R n < r) � ÿnÿ3=2ö(r) k91 � 1

3!
(r2 ÿ 1)k3

� �
� terms that only depend on _l n and �ln � O(nÿ2): (3:11)

In both k3 and k91,
:::
ln enters linearly. Let us focus on k3, let _l n and �l n be given, and consider

a zero-mean martingale mn, orthogonal to _ln, so that

cov(�l n, mn)ÿ 1
2

cum( _ln, _ln, mn) � ín� o(n), (3:12)

where í 6� 0. Replace the original
:::
l n by

:::
lá,n �

:::
ln � ámn. The new

:::
lá,n satisifes the third

Bartlett identity (and is hence a valid third derivative of ln), and also cov(
:::
lá,n, _ln) � 0. In this

set-up,

k3,á � k3 � ác
ÿ5=2
11 í� o(1), (3:13)

which can take any value. In other words, in view of (3.11), both under- and overcoverage are

potentially unbounded at this level.
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Appendix 1: Curved exponential families and proof of
Theorem 1

For a more rigorous development, consider a curved exponential family

ln(â) � ln(â0)� (âÿ â0) _ln(â0)� 1
2
(âÿ â0)2�ln(â0) � . . . (A1:1)

of order p (i.e., terms of order p� 1 and higher are non-random). We shall consider R for

testing H0 : â � â0. Suppose that there is a valid saddlepoint approximation to the density of

the vector ( _l n(â), . . . , l( p)
n (â)). One can then proceed as follows.

Begin by ®xing â1 6� â0. Then reparametrize the family as in Section 7.2.3 of McCullagh

(1987, pp. 204±207) to make covâ1
( _ln(â1), l(q)

n (â1)) � 0 for 2 < q < p. From McCullagh

(1987), this is accomplished by using the parameter ö, given by ö1 � â, and

ö(â)ÿ ö1 � âÿ â1 � 1

2
(âÿ â1)2 covâ1

( _ln(â1), �ln(â1))

varâ1
( _ln(â1))

� . . .

� Eâ1
_l n(â1)(ln(â)ÿ ln(â1))

varâ1
( _ln(â1))

: (A1:2)

Hence

ö0 ÿ ö1 � ö(â0)ÿ ö1

�
@

@â
Eâ0

g(ln(â)ÿ ln(â0))jâ�â1

Eâ1
�ln(â1)

� ÿ
_~l(â1)

J (â1)
(A1:3)

as n!1 under Pâ. Here g(x) � (xÿ 1)ex, which can be replaced by g(x) � xex since

Eâ0
exp(ln(â1)ÿ ln(â0)) � 1. In the new parametrization, the null hypothesis is ö � ö0.

Now embed ln(â)ÿ ln(â0) in a full exponential family. In the notation of Jensen (1997)

(which we shall be using in the following), Tq � l(q)
n =q!n. Note that we do not require the

Tqs to be means, only that the saddlepoint approximation hold.

Our larger family is then (in the new parametrization)

ln(ö0)� è1
_ln(ö0) � . . . � èp

1

p!
l( p)

n (ö0):

A reparametrization of the ès is given by
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è1 � ö

and

èl � öbl, for l > 2 (A1:4)

(in Jensen's notation, ö is â0 and bl is â l). A corresponding sequence of null hypotheses is

H
(1)
0 : ö � ö0

and

H
( l )
0 : bl � 1, for l > 2: (A1:5)

Hence, H
(1)
0 is our original null hypothesis.

Let the uls be chosen as in Jensen (1997, Section 3). In view of Section 2 of the same

paper, the joint density of (R1, RL,2, . . . , RL, p) is, in a large-deviation region,

1

(2ð) p=2

h1

u1

exp ÿ 1

2
r 2

1 ÿ
1

2

Xp

i�2

r 2
l,i

 !
f1� O(nÿ1)g: (A1:6)

We are here suppressing the dependence of the Rs on n, and similarly for the Us and è̂s

below. Note that R1 � R. By using Skorokhod embedding, it therefore follows that, under

Pâ1
,

fâ0,n(RjRL,2, . . . , RL, p)

ö(R)
� R1

U1

f1� Op(nÿ1)g: (A1:7)

Note that R1=
���
n
p � h(â1)(1� Op(nÿ1=2)), where h is as given in (2.8). Hence, if we can

show that

U1=
���
n
p � (ö1 ÿ ö0)J (â1)1=2f1� Op(nÿ1=2)g, (A1:8)

it follows from (A1.3), and by averaging over (RL,2, . . . , RL, p), that

fâ0,n(R)

ö(R)
� J (â1)1=2 h(â1)

_~l(â1)
f1� Op(nÿ1=2)g

� J 1=2(â1)
@â

@h
(h)f1� Op(nÿ1=2)g (A1:9)

under Pâ1
. Again by Skorokhod embedding, we obtain Theorem 1.

It remains to show (A1.8). In Jensen's (1997) notation,

è̂ l ÿ è̂ lÿ1 � (â̂ l
1 ÿ â̂ lÿ1

1 , è̂ l
2 ÿ è̂ lÿ1

2 , . . . , è̂ l
lÿ1 ÿ è̂ lÿ1

lÿ1, è̂ l
l ÿ (â̂ lÿ1

1 ) l,

(â̂ l
1)ÿ (â̂ lÿ1

1 ) l�1, . . . , (â̂ l
1) p ÿ (â̂ lÿ1

1 ) p) (A1:10)

where è̂l ÿ (â̂ lÿ1
1 ) l is the term in the lth column. Note that (â̂ l

1)k is â l
1 raised to power k,

which is the only instance of power notation in (A1.10).

Since corr(T1, Tl) ' 0 (note that this is where the reparametrization above is used),
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è̂ l
l ÿ (â̂ lÿ1

1 ) l is Op(nÿ1=2) but not op(1). On the other hand, for l > 2, â̂ l
1ÿ â̂ lÿ1

1 � Op(nÿ1).

Hence, for l > 2,

è̂ l ÿ è̂ lÿ1 � (0, è̂ l
2 ÿ è̂ lÿ1

2 , . . . , è̂ l
l ÿ (â̂ lÿ1

1 ) l, 0, . . . , 0)� Op(nÿ1): (A1:11)

Hence the determinants in equation (7) in Jensen (1997) can be evaluated by multiplying the

diagonal, and so (5.8) follows. Note that in the above argument, if Tl is zero, one just deletes

line and column l and makes the appropriate modi®cation to the next column. This does not

affect the result.

Appendix 2: Derivations for Section 2.2

If g(x) � xex,

~l(â) � lim
n!1

1

n
Eâ(ln(â)ÿ ln(â0))

� lim
n!1

1

n
Eâ0

g(ln(â)ÿ ln(â0)), (A2:1)

so that the pth derivative is

~l( p)(â0) � lim
n!1

1

n
Eâ0

X
q1�2q2�����kqk� p

g(q1�����qk )(0)b(q1, . . . , qk) _ln(â0)q1 � � � l(k)
n (â0)qk ,

(A2:2)

which yields (2.13) since g(v)(0) � õ and since moments can be replaced by cumulants in the

above. The latter can either be seen by direct computation, or by observing that the right-

hand side of (A2.1) is O(1).

To ®nd J, note that

@ p

@â p
�ln(â) exp(ln(â)ÿ ln(â0))jâ�â0

�
Xp

r�0

p

r

� �
l(r�2)

n

X
q1�2q2�...�kqk� pÿr

b(q1, . . . , qõ)( _ln)q1 . . . (l(k)
n )q k , (A2:3)

which gives (2.15) for the same reasons as used above, and because

~b(q1, . . . , qõ) �
Xp

r�0

p

r

� �
b(q1, . . . , qr�1, qr�2 ÿ 1, qr�3, . . . , qõ): (A2:4)

Since

b(q1, . . . , qr�1, qr�2 ÿ 1, qr�3, . . . , qõ) � b(q1, . . . , qõ)
qr�2

(
p�2
r�2 )

, (A2:5)

this gives (2.15) by direct computation.

Likelihood computations without Bartlett identities 483



References

Andrews, D.F. and Stafford, J.E. (1993) Tools for the symbolic computation of asymptotic expansions.

J. Roy. Statist. Soc. Ser. B, 55, 613±627.

Andrews, D.F. and Stafford, J.E. (2000) Symbolic Computation for Statistical Inference. Oxford:

Oxford University Press.

Barndorff-Nielsen, O.E. (1986) Inference on full or partial parameters based on the standardized

signed log likelihood ratio. Biometrika, 73, 307±322.

Barndorff-Nielsen, O.E. (1991) Modi®ed signed log likelihood ratio. Biometrika, 78, 557±563.

Barndorff-Nielsen, O.E. and Cox, D.R. (1989) Asymptotic Techniques for Use in Statistics. London:

Chapman & Hall.

Barndorff-Nielsen, O.E. and Wood, A.T.A. (1998) On large deviations and choice of ancillary for p�
and r�. Bernoulli, 4, 35±63.

Bartlett, M.S. (1953a) Approximate con®dence intervals. Biometrika, 40, 12±19.

Bartlett, M.S. (1953b) Approximate con®dence intervals. II. More than one unknown parameter.

Biometrika, 40, 306±317.

Bhattacharya, R.N. and Ghosh, J.K. (1978) On the validity of the formal Edgeworth expansion. Ann.

Statist., 6, 434±451.

Bickel, P.J., Chibisov, D.M. and van Zwet, W.R. (1981) On ef®ciency of ®rst and second order.

Internat. Statist. Rev., 49, 169±175.

Chaganty, N.R. and Sethuraman, J. (1985) Large deviation local limit theorems for arbitrary sequences

of random variables. Ann. Probab., 13, 97±114.

Char, B.W., Geddes, K.O., Gonnet, G.H., Leong, B.L., Monagan, M.B. and Watt, S.M. (1991) Maple

V. Language Reference Manual. Berlin: Springer-Verlag.

Corcoran, S.A., Davison, A.C. and Spady, R.H. (1995) Reliable inference from empirical likelihoods.

Preprint.

Daniels, H.E. (1954) Saddlepoint approximations in statistics. Ann. Math. Statist., 25, 631±650.

DiCiccio, T.J. and Romano, J.P. (1989) On adjustments based on the signed root of the empirical

likelihood ratio statistic. Biometrika, 76, 447±456.

DiCiccio, T.J. and Stern, S.E. (1993) On Bartlett adjustments for approximate Bayesian inference.

Biometrika, 80, 731±740.

DiCiccio, T.J. and Stern, S.E. (1994) Frequentist and Bayesian Bartlett correction of test statistics

based on adjusted pro®le likelihoods. J. Roy. Statist. Soc. Ser. B, 56, 397±408.

DiCiccio, T.J., Hall P. and Romano, J.P. (1991) Empirical likelihood is Bartlett-correctable. Ann.

Statist., 19, 1053±1061.

Goetze, F. and Hipp, C. (1983) Asymptotic expansions for sums of weakly dependent random vectors.

Z. Wahrscheinlichkeitstheorie verw. Geb., 64, 211±239.

Hall, P. (1992) The Bootstrap and Edgeworth Expansion. Berlin: Springer-Verlag.

Hall, P. and Heyde, C.C. (1980) Martingale Limit Theory and its Application. New York: Academic

Press.

Jacod, J. and Shiryaev, A.N. (1987) Limit Theorems for Stochastic Processes. Berlin: Springer-Verlag.

Jensen, J.L. (1992) The modi®ed signed likelihood statistic and saddlepoint approximations.

Biometrika, 79, 693±703.

Jensen, J.L. (1995) Saddlepoint Approximations in Statistics. Oxford: Oxford University Press.

Jensen, J.L. (1997) A simple derivation of r� for curved exponential families. Scand. J. Statist., 24,

33±46.

Kong, A. and Cox, N.J. (1996) From ef®cient nonparametric tests for linkage analysis to

484 P.A. Mykland



semiparametric models and lodscores. Technical report no. 435, Department of Statistics,

University of Chicago.

Lawley, D.N. (1956) A general method for approximating the distribution of likelihood ratio criteria.

Biometrika, 43, 295±303.

Lazar, N. and Mykland, P.A. (1998) An evaluation of the power and conditionality properties of

empirical likelihood. Biometrika, 85, 523±534.

McCullagh, P. (1984) Local suf®ciency. Biometrika, 71, 233±244.

McCullagh, P. (1987) Tensor Methods in Statistics. London: Chapman & Hall.

McCullagh, P. and Nelder, J.A. (1989) Generalized Linear Models, 2nd edition. London: Chapman &

Hall.

McCullagh, P. and Tibshirani, R. (1990) A simple method for the adjustment of pro®le likelihoods.

J. Roy. Statist. Soc. Ser. B, 52, 325±344.

McLeish, D.L. and Small, C.G. (1992) A projected likelihood function for semiparametric models.

Biometrika, 79, 93±102.

Mykland, P.A. (1994) Bartlett type identities for martingales. Ann. Statist., 22, 21±38.

Mykland, P.A. (1995a) Dual likelihood. Ann. Statist., 23, 396±421.

Mykland, P.A. (1995b) Embedding and asymptotic expansions for martingales. Probab. Theory Related

Fields, 103, 475±492.

Mykland, P.A. (1999) Bartlett identities and large deviations in likelihood theory. Ann. Statist., 27,

1105±1117.

Nicolae, D.L. (1999) Allele sharing models in gene mapping: a likelihood approach. Ph.D. thesis,

University of Chicago.

Peers, H.W. and Iqbal, M. (1985) Asymptotic expansions for con®dence limits in the presence of

nuisance parameters, with applications, J. Roy. Statist. Soc. Ser. B, 47, 547±554.

Shenton, L.R. and Bowman, K.O. (1977) Maximum Likelihood Estimation in Small Samples. London:

Grif®n.

Skovgaard, Ib (1986) A note on the differentiation of cumulants of log likelihood derivatives. Internat.

Statist. Rev., 54, 29±32.

Skovgaard, Ib (1990) On the density of minimum contrast estimators. Ann. Statist., 18, 779±789.

Skovgaard, Ib (1996) An explicit large-deviation approximation to one-parameter tests. Bernoulli, 2,

145±165.

Stafford, J.E. (1994) Automating the partition of indexes. J. Comput. Graph. Statist., 3, 249±259.

Stafford, J.E. (1995) Exact cumulant calculations for Pearson ÷2 and Zelterman statistics for r-way

contingency tables, J. Comput. Graph. Statist., 4, 199±212.

Stafford, J.E. and Andrews, D.F. (1993) A symbolic algorithm for studying adjustments to the pro®le

likelihood. Biometrika, 80, 715±730.

Stafford, J.E., Andrews, D.F. and Wang. Y. (1994) Symbolic computation: a uni®ed approach to

studying likelihood. Statist. Comput., 4, 235±245.

Wallace, D.L. (1958) Asymptotic approximations to distributions. Ann. Math. Statist., 29, 635±654.

Received August 1998 and revised January 2001

Likelihood computations without Bartlett identities 485


