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Motivated by sampling problems in forestry and related fields, we suggest a spatial sampling scheme
for estimating the intensity of a point process. The technique is related to the ‘wandering quarter’
method. In applications where the cost of identifying random points is high relative to the cost of
taking measurements, for example when identification involves travelling within a large region, our
approach has significant advantages over more traditional approaches such as T-square sampling.
When the point process is Poisson we suggest a simple bias correction for a ‘naive’ estimator of
intensity, and also discuss a more complex estimator based on maximum likelihood. A technique for
pivoting, founded on a fourth-root transformation, is proposed and shown to yield second-order
accuracy when applied to construct bootstrap confidence intervals for intensity. Bootstrap methods for
correcting edge effects and for addressing non-Poisson point-process models are also suggested.
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statistic; Poisson process; T-square sampling; wandering quarter sampling

Introduction

The difficulty and importance of sampling spatial point processes to estimate their intensity
have led to the development of a number of different approaches; see, for example, the
monographs by CIliff and Ord (1981), Ripley (1981, 1988), Diggle (1983), Upton and
Fingleton (1985) and Cressie (1991). One of the most successful approaches is the method of
T-square sampling, which is based on measuring the distance from a random point to the
nearest object and then the distance to the next nearest object. However, the need to select a
number of random points, and the burden of actually locating these points in the field, reduce
the attractiveness of T-square sampling in an area such as forestry where the cost of locating
random points is large relative to the cost of taking measurements at these points. The
‘wandering quarter’ method proposed by Catana (1963) overcomes these difficulties by
reducing the required number of random starting points. This is achieved by following the
initial point-to-object distance by a chain of object-to-object distances. With the notable
exception of O’Hara Hines and Hines (1989), who used data collected by wandering quarter
sampling to test for spatial randomness, the method has been little used and, in the words of
Diggle (1983), remains ‘an ingenious sampling procedure whose statistical potential appears
not to have been tapped’. One reason for its slow adoption is that the use of longer chains of
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object-to-object distances brings about an increased likelihood of boundary problems — either
of reaching the end of the region in less than » steps or of encountering the side boundary.

In this paper we propose methods which overcome these difficulties. We suggest several
point estimators of intensity, including one based on a simple bias correction and another
on maximum likelihood. Two bootstrap methods founded on fourth-root transformations,
which produce pivotal statistics, are suggested for constructing interval estimators. Another
bootstrap approach is proposed for correcting errors induced by edge effects, and yet
another for accommodating non-Poissonness of the sampled point process. The performance
of our methods is described both theoretically and empirically, the latter including an
application to data on the spatial distribution of a Western Australian plant species. For
simplicity we shall often refer to the technique as the ‘wandering quarter’, although it is
more general than the method of that name introduced by Catana (1963).

In principle, the wandering quarter method can also be used to count moving objects
such as wild animals and whales. In practice, however, these applications can be hindered
by the need to determine the object locations. A wild animal is often noted at a
considerable distance from the observer, and its exact position can be difficult to determine
without sophisticated electronic equipment. Furthermore, the relationship between the
observer and the animal has an impact on the spatial distribution of the animal population,
which consequently can be difficult to model. Also, when counting members of an animal
population in a non-instantaneous way one needs to ensure that no animal is counted more
than once; for some species that can be very challenging unless the animal is actually
captured.

To describe a general version of our sampling procedure, suppose the objects of interest
are of infinitesimal size and are located in a well-defined region. We begin the construction
of a single chain by determining a fixed orientation, called the sampling direction, in which
to sample, and then selecting a random point Py in the region. From any point P;_;, the
next point in the chain is the location P; of the nearest object in the region within the
planar ‘cone’ which has its apex at P;_j, its axis pointing in the sampling direction, and
which subtends the angle 26 < m at its vertex. That is, at each step we include in our
sample the next nearest object within the sampling cone. This can be described as stepping-
stone sampling: if we think of the region as a river and the objects as stepping stones, we
cross the river on stones selected by starting from a random point and always moving to the
next nearest stone, within the sampling cone, in the forward direction. We recover Catana’s
wandering quarter method when 6 = ;t/4. The process is stopped either when there are no
points in the cone between the current point and the boundary of the region, or after a
predetermined number n of steps, whichever occurs soonest.

We record the length of each step, the orientation of each step relative to the sampling
direction, and the number of steps until we stop. Thus, the data from a single chain are
{N, X1, ..., XN, ©O1,...,Op}, where N equals the number of steps from P, before
stopping, X; denotes the length of the ith step, and ®; equals the angle subtended to the
axis of the cone by the vector representing the ith step. From these data we wish to
estimate the intensity, 4, of the point process. If we stop after n steps, and if the process is
Poisson, then there is no information in the ®; about A, and so we may use {Xy, ..., X,}
instead.
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We adopt two simplifications in our development. First, we consider only a single chain;
results for multiple independent chains are then straightforward to obtain. Second, nearly all
the available theory for distance-based methods for spatial sampling requires the simplifying
assumption that the objects of interest are located at the points of a homogeneous Poisson
process of intensity A. Either, this assumption is adopted as the null hypothesis under test,
as in O’Hara Hines and Hines (1989), or, under the Poisson assumption, the objective is to
make inference about A. The homogeneous Poisson process has limitations as a description
of the spatial distribution of plants or animals, but it allows us to develop theoretical results
which enable us both to understand the simplest case and the limitations of methodology
developed specifically for it. Under more general point-process models, such as those of
Bartlett and Lewis or Neyman and Scott, we may take the estimators suggested here as a
starting point and construct iterative corrections via Monte Carlo experiments (see Section
3).

Let w < co be the distance in the sampling direction from the initial point, Py, to the
boundary of the region. The two cases of interest are: w large relative to #n, so that we stop
after n steps; and w small relative to n, so that we stop on reaching the boundary after a
random number of steps, N. It is convenient to represent these cases in abstract discussion
as w= oo and w < oo, respectively. Our interest is primarily in the the context of random-
length chains (w < c0), but we also discuss fixed-length chains (w = co) where relevant.
For random-length chains we derive the maximum likelihood estimator and, because it is
computationally complex, several simpler forms. In conjunction with these estimators we
propose the use of parametric bootstrap methods, both to set confidence intervals based on
random-length chains and to adjust for bias and edge effects in fixed- and random-length
chains.

These methods, which are described in Section 2, enable us to overcome the difficulties
posed by wandering quarter sampling when the sampled process is Poisson. Section 3
describes iterated-bootstrap techniques for correcting biases when either there are edge
effects or the sampled process is modelled in a relatively complex way. In Section 4 we
outline theoretical results describing properties of our methods. Section 5 addresses
empirical properties, including an application to real data. Technical details are deferred to
an Appendix.

2. Methodology

2.1. Estimators

Under the assumption of a homogeneous Poisson process, successive interpoint distances in
our sampling scheme can be written in the form X, = (¢Z,)'/?, where t = (16)~', Z; has an
exponential distribution with unit mean, and the variables Z;, Z,, ... are independent. Hence,
when w = 0o the maximum likelihood estimator of 1 is given by
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n -1
A= <n1¢92x§> : 2.1)
i=1

In the case w < oo, the maximum likelihood estimator iML minimizes the function

i=1

2
N 0 N
lA) = Nlogh — lOZX? + log J expq —A6(cos w) > <w — ZX,- cos G),-) do|.
0 i=1

(2.2)

To appreciate why, put YV, =X 12 and note that, since the wvariables Zi, ..., Z,,
®y, ..., O, are independent, the joint density of Yy, ..., Y,11, O, ..., O,y is

n+1
Sortts o os Yusts 01, o, Onir) = (200)" " Vexp <tl Z)’z)a
P

for y; > 0 and |0;| < 6. The probability p, = P(N = n) equals the integral of f,.; over the
region defined by

n n+1
Zyll»/z cosf; = w, Zyll»/z cosf; = w. (2.3)
i=1 i=1
Conditional on N = n, the joint density of Yy, ..., ¥,, ©y, ..., ©®, equals the integral of

Sfnt1/ pn over those values of y,. and 6, that satisfy the second identity in (2.3), for fixed
Vi, .-, Vp and 0y, ..., 0, — that is,

n
1/2 1/2
yn/+l cos O,y > w— g yi/ cos 0;.
i=1

Therefore, defining y = (y1, ..., ¥u), 0 = (6, ..., 6,) and

6 n 2
2.(y, 0) = G’IJ exp{ —t '(cosw) 2 (w - Z y,l»/2 cos 91') do,
0 i—1

we see that the probability that N =n, Y; € (y;, yi+dy;) and O; € (6;, 6; + d6;) for
l < i< n equals

Sy, 0)gu(y, O)dyr ... dy,d6 ...d0,.

It follows that the negative log-likelihood equals the function at (2.2), up to terms that do not
depend on A.

The integral in the likelihood, and the resulting complexity of the calculations, motivate
consideration of more elementary estimators. An analogue of the estimator in (2.1) is the
‘simple estimator’,
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N -1
Asimp = (N‘le > X%) : 2.4)
i—1

As we shall show in Section 4, isimp is biased. However, the majority of bias is readily
removed using an adjusted form of the estimator,

I -1
Aagj = {(N —g)IQZXf} . (2.5)
i=1

2.2. Properties of estimators

First consider the case w = oo. Since ¢~ 1Z,<,1X has a gamma distribution with »n degrees
of freedom, 1 = (1 — n~ )4 is unbiased for A. If (a), a») denotes an interval in which a
gamma random Varlable with n degrees of freedom lies with probability o, then
(Aay/n, Aas /n) is an exact a-level confidence interval for A. Standard asymptotic arguments
show that both 4 — 4 and 1 — 1 are asymptotically normally distributed with zero mean and
variance A2/n.

The theory is more complex when w < oo, and will be dealt with in detail in Section 4.
We shall show there that the estimators /'{ML, iglmp and lad] are all asymptotically normally
distributed with asymptotic variance A>/v, where v = v(w) = w/E(X cos ©) and (X, ©) has
the distribution of a generic (X;, ®;). The quantity v plays a role similar to that of » in the
case w = 0o, and is asymptotic to N, in the sense that N/v — 1 almost surely as v — oc.
Now, ¥ ~ CAY2w as w — oo, where C is a constant depending only on 6; the proof will be
outlined in Section 4. Therefore, the asymptotic variances of Amr, Asimp and A.qj are all
equal to C~'A3/2w~!. The latter property will play a major role in our bootstrap method.

Since N/v — 1, the variance properties when w < oo are directly analogous to those
when w = oco: in asymptotic terms the variance in both cases, and for each estimator, equals
2% multiplied by the inverse of the number of steps taken. Note, however, that when w < oo
the actual bias and variance are in general not well defined unless we condition on N = 2.
Both Amp and Agmp have biases of order w~l whereas Aagi has bias of order w2, as
w — 00.

2.3. Bootstrap confidence intervals when w < oo

It does not seem possible to construct exact confidence intervals when w < oo, although
bootstrap methods give a high degree of accuracy. As a prelude to describing the methods, let
A(w) denote any of the three estimators J.ML, defined by minimizing YA) in (2.2), Asimp and
Aadj Let the stochastic process Ao() have the distribution of A() when A, the true value
of the parameter, equals 1. We take Ao() to be independent of the sample y =
{N, X1,..., XN, O, ..., Op}, and allow the argument v of [\O(U) to be a function of
the data, denoting v by 0 to indicate this property.

Note particularly that, when the true parameter value is A, the distribution of A(w)/l is
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identical to that of Ao(ll/ 2w). Also, since the asymptotic variance of A(w) equals
C'232w=!, where C is as in Section 2.2, an approximate variance-stabilizing trans-
formation is obtained by taking the fourth root of A. These properties are the key to our
bootstrap methods, which are as follows. .

Given O, we may approximate the distribution of Ay(v), conditional on y, to arbitrarily
high accuracy using Monte Carlo methods. Define 0 = A(w)l/ 2w, and take the conditional
distribution of A(w)/4{Ag(®)"/* — 1} (or A(w)"/*{Ag(D) — 1}), given the data, to be our
approximation to the unconditional distribution of T WA = AW = A4 (or TH(A) =
A(w)A=3/% — A1/*). Both T and T, are continuous, strictly monotone decreasing functions,
and so are appropriate as the basis for confidence intervals for 1. The function 7; has the
advantage that the equation 77(1) = x always admits a unique solution 1 > 0, regardless of
the value of x € R. This is not true of the equation 7,(1) = x. The approximations are
second-order accurate, in that they capture terms of order w2 as w— 0o, in the
difference between the distribution of A(w) and its limiting form. Consequently, the errors
of approximation are O,(w™!).

This bootstrap approximation is readily used to construct confidence intervals for A with
coverage accuracy O(w™). In particular, if 4;, @, are functions of the data, and of w, such
that

Plar < Aw)' *H{Ao(®)/* — 1} < aaly] = a,

Plby < AW *{A(D) — 1} < haly] = ,
then
P{a; < Aw)'/* =2V < 4y} = a+ O(w™),

P{br < A = 2V < by} = a + O(w™).

Equivalently, if 1 = A; denotes the solution of the equation d; :/A\N(w)j/4 —AY4 or of
b; = A(w)A=3/* — A1/*, for i =1 and 2, then the confidence interval (1,, 1;) covers A with
probability a + O(w™'); see Theorem 5.2.

3. Bias correction by simulation

3.1. Adjustment for bias caused by edge effects

We first suggest corrections for biases caused by the intrusion of boundaries into calculation
of the estimator. Depending on the location of the initial point Py, there can be a significant
non-zero probability that one or more of the cones that define the steps will protrude beyond
the left- and right-hand boundaries before we reach the point at which we stop. Naive
application of the methods suggested earlier may then lead to significant biases, which can be
corrected using the bootstrap as follows. .

Compute a pilot estimator 4; of A, perhaps just Agmp, and simulate from a homogeneous
Poisson process with intensity A; in a region of the same size and shape as the actual
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region. Without bothering with any corrections, compute the bootstrap version /lsmp of ismp
for the simulated data; and by repeated simulation of the same process, calculate a Monte
Carlo approximation to I =F (lsmlpbg) where E'(:|y) denotes expectatlon conditional on y
and on the bootstrap version of N being at least 1. Put 2.2 22 1/A1. Now iterate the
procedure, defining, at the jth step, first A; = E (iSlmp %), where iSlm is now derived using a
simulated homogeneous Poisson processAw1th intensity A > and then A 1 = A //'L At the
Jjth step the bias-corrected estimator is A;. Stop when numerical convergence is achieved.

3.2. Adjustment for bias caused by non-Poissonness

It is generally the case that statistical techniques proposed in the context of independent data
form a basis for methods for dependent data. The present setting is no exception. While the
bias-correction properties of Poisson-based estimators such as A,q; are unlikely to be available
for non-Poisson data, the estimators can be expected to be reasonably unbiased if the point
process is not far from Poisson, and that is in itself a recommendation. We suggest basing
general point estimators of 4 on Agmp Or A.qj, modelling the departure of the sampled point
process from Poissonness, and borrowing ideas from Section 3.1 so as to correct for bias.

Specifically, let J. be an estimator such as /lsunp or /'LadJ which we wish to correct for bias,
and let M(4) be a model (e.g. Neyman—Scott) for the point process, depending on the
unknown value of 1. Regard A=A asa preliminary estimator of 4, and suppose that after ;
steps we have calculated an updated estimator A; Compute values l* of 1 based on
independent Monte Carlo trials of the point process under the model /\/l(ﬂ. ;), conditional on
the data. (The edge-correction step suggested in Section 3.1 may be built into the definition
of A. If it is, then the present Monte Carlo step effectively involves the double bootstrap.)
Take /'L to be the average of these B values, and let yi il = ll, A /A be the bias-corrected
estimator of A at the (j+ 1)th step.

In practice, the model would generally be chosen using prior information, acquired for
example from a previous data set in a related setting obtained by direct observation rather
than wandering quarter sampling. From those data, model parameters other than the
intensity could be estimated. There is unlikely to be adequate information in data gathered
using the wandering quarter method for estimating parameters other than intensity. For the
same reason, while techniques based on the block bootstrap for spatial data (see Hall 1985;
Sherman 1996; Garcia Soidan and Hall 1997) are theoretically possible in this setting, they
would generally not be feasible. However, one could treat the sequence of values X; as a
time series and either apply block bootstrap methods in that context (Carlstein 1986;
Kiinsch 1989; Politis et al. 1999) or use a more structural bootstrap method (Bose 1988).

4. Theoretical properties in the case w < oo

First we address properties of N. Defining V; = X;cos ®;, we see that N equals the largest
integer j such that ) ;<;¥; < w. Therefore, in a renewal process where consecutive service
lifetimes are the independent random variables Vi, V5, ..., N equals the number of items
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that are replaced during the time interval [0, w], and D,, = w — > <y X; cos ©®;, appearing in
formula (2.2) for ¢, equals the ‘current life’ of the item in service at time w. Standard
methods for analysing renewal processes (Cox 1962) allow us to prove that the limiting
distribution of D,,, as w — oo, has density P(V > x)/E(V), where V has the distribution of a
generic V;. Moments of N may be computed using standard arguments. For example, the
expected value of N, as a function of w, equals the renewal function of the process.
Moreover, E(N) = v + O(1) and var(N) = (¢ /u)*>v + O(1) as w — oo, where u = E(V) =
Lm/26%)1/%sin 6, 02 = var(V) and v = w/u.

Using standard arguments based on an invariance principle for a sum of independent
random variables, it may also be shovyn that theAmaximum likelihood estimator Ay, defined
by minimizing ¢ in (2.2), and also Asmp and A.gj, are asymptotically normally distributed
with meanA/l and variance A2 /v. Moreover, if var’ denotes variance conditional on N = 2,
then var'(Awmr), var'(Asmp) and var'(daq) all equal A*v~'+ O,(w™?), as w — co. These
properties may be used as the basis of a proof that Ay, Asimp and Aag all achieve the
asymptotic minimum variance bound for estimators of A based on ). Theorem 4.1 below
gives formulae for the mean.

Let A denote the true value of the parameter, recall the definition earlier of the random
variable D,, and put

W(w) = (A0)~(cos w) 2 D?

0
T = Jo W(w)’ exp{—W(w)}dw, 7 =E(T1/Ty).

Alternatively, we may replace D,, by its weak limit as w — oo, without affecting the results
below. Let E’ denote expectation conditional on N = 2.

Theorem 4.1. If 6 € (0, t/2) is fixed and w < oo then, as w — oo,

E'(Asimp) = A + 3uiw ™" + O(w™?), (4.1)
E'(Aagj) = A + O(w™2), (4.2)
E'(Aw) = A + G — Dw™ + O(w™2). (4.3)

Both (4.1) and (4.3) continue to hold if E is taken to denote expectation conditional on
N = 1. Formula (4.1) shows that Ay, tends to overestimate A. In relative terms the bias is
too large by the factor

E
L+3uw™ + 0w = (N) 3+ o(w™?).

E(N)_z

This suggests a simple remedy: replace the divisor N by N f% in the definition of isimp in
(2.4), giving the estimator A,qj of (2.5). Result (4.2) confirms that this does in fact remove the
majority of the bias. Also, since 7 > 0, the maximum likelihood estimator Ay also alleviates



Bias correction and bootstrap methods for a spatial sampling scheme 837

some of the bias of /A'Lsimp, although the fact that 7 is not in general equal to % means that bias
is not reduced by an order of magnitude.

Finally, we show that the bootstrap approximation suggested in Section 2.3 is second-
order accurate. We use the notation there, and so A(w) denotes any one of the estimators
lML, /ISImp and Augj; AO() is a stochastic process independent of the data, with the
distribution of A() under the assumption that A = 1; and 0 = A(w)l/ 2w. For the results
below it is not essential that the version of A used to define 0 be the same as the one for
which we wish to compute the distributional approximation. In practice it usually would be,
however. Let a(a), IS(a) denote the solutions of

PIAW) #H{Ag(0)* — 1} < d(a)ly] = a,

PIAW) {Ao(D) — 1} < b(a)ly] = a,

respectively, and write A for the class of all measurable subsets of the real line.

Theorem 4.2. If 0 € (0, t/2) is fixed and w < oo then, as w — oo,

sup [PIAW)/*{Ao(0)'/* — 1} € Aly] — P{AW)'* =2 € A} = 0,(w "), (4.4)
AecA

sup | PLA(w) /#{Ag(D) — 1} € Aly] — P{AWAT/* =24 ¢ A} = 0,(w™), 4.5)
AeA

sup |P{AW)'* = 2% < d(@)} — a = O(w™), (4.6)
0<a<l
sup |P{AWA 4 — A4 < b(a)} — a| = O(w™). 4.7
0<a<l

Let &= 2A¥%/60°)/*(Lsin0)'/2. The results noted in the first two paragraphs of this
section imply that w!/ 2{A(w) A}/& is asymptotically standard normal as w — oo.
Therefore, the normal approximation to the distribution of A(w) is given by

P{A(w) € 4} ~ P[N(0, 1) € {w'?(a — 1) /& : a € 4}].

It may be proved as in Section A.5 that the error in this approximation is of size w—'/2. The
fact that terms in w~'/? make a non-vanishing contribution to the approximation is a
consequence of skewness of the distribution of X. On the other hand, we see from (4.4) and
(4.5) that the bootstrap method is accurate up to terms of order w™!. That is, the method has
implicitly corrected for the main effect of skewness, and so is second-order accurate. Results
(4.6) and (4.7) show that the second-order accuracy property extends to coverage accuracy.

5. Empirical results

To explore the finite-sample performance of our methods we applied them first to simulated
data which followed either a homogeneous Poisson process of intensity 2 or a cluster process,
and then to real data which appeared to follow a homogeneous Poisson process.
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We first address the performance of the estimators and the bootstrap confidence intervals
proposed in Section 2.3, using four different cone angles. In this example we sampled in the
centre of a large region, and so no edge effects occurred. In Table 1 we report the means,
standard deviations and coverages of nominal 95% two-sided confidence intervals based on
the two possible approximate pivotal quantities, 7 and 75, and the coverages of nominal
97.5% upper and lower confidence intervals, labelled U(7;) and L(T;), respectively. True
intensity is 4 = 2. Each entry in the table is based on 1000 realizations. The mean v and
standard deviation 7 of the numbers of observations N on which the estimates were based
are approximately (v, 7) = (9.88, 1.70), (15.40, 2.12), (21.32, 2.63) and (27.51, 3.34) in the
cases 0 = m/8, /4, 3m/8 and m/2, respectively.

The use of a cone semi-angle of @ = 7/2 turns out to be problematic for at least two
reasons. First, the last two distance measurements are often outliers and make the intensity
overly small. Second, if there are two objects at the same distance, up to rounding errors, then
the number of steps can become infinite as the algorithm jumps from one object to the next
and back again. To overcome the latter problem we used the following ‘censoring’ approach.
At any step, if there were no objects within a 7t/2 quadrant then the end of the region was
deemed to have been reached. This ad hoc modification affects only the last one or two steps.

When the cone angle is relatively small, the adjusted estimator has least bias and the
simple estimator has greatest bias. However, when the cone angle is large, the adjusted
estimator has a larger bias and, at 7/4, the simple estimator has least bias. The maximum
likelihood estimator is most efficient when the cone angle is small, but the adjusted
estimator is more efficient when the cone angle is large. The efficiencies are virtually equal
when 6 = rt/4. Coverages are close to their nominal levels when the angle is small, but are
below nominal levels for two-sided and for one-sided upper intervals, and above nominal
levels for one-sided lower intervals, when the cone angle is large.

Table 1. Performance of point and interval estimators when no edge effects occur. Columns headed
Ti, L(T;) and U(T;) give coverages of two-sided, lower one-sided and upper one-sided confidence
intervals respectively, based on 7;, with respective coverages 0.95, 0.975 and 0.975. The true value of
A was 2

0 Estimator Mean  Std dewv. Ty T, L(Ty) u(r,) LTy U(Ty)
/8 ’Esimp 2.20 0.686 94.7 93.6 975 97.2 97.0  96.6
Aagy 1.87 0.637 96.6 95.1 98.1 98.6 97.7 974
AML 2.08 0.640 93.0 920  96.0 97.0 955 965
/4 Asimp 2.15 0.52 95.9 954 977 98.3 974  98.0
Aagy 1.93 0.51 96.2 953 977 98.5 97.6 978
AML 2.09 0.52 96.5 96.5 985 98.0 98.5 98.0
3m/8 Asimp 2.02 0.432 94.1 93.6 983 95.8 98.1 95.5
Aagy 1.90 0.418 96.2 953 977 98.5 97.6 978
AML 1.98 0.423 93.3 93.0 975 95.5 97.5 955
w/2 Asimp 1.84 0.345 89.3 889 994 89.9 994  89.6
Aagy 1.74 0.335 96.2 953 977 98.5 97.6 978

AML 1.81 0.346 86.5 100 86.5 86.5 100 86.5
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To explore the effectiveness of the bootstrap edge correction suggested in Section 3.1, a
Poisson process of intensity 2 was simulated in a region with dimensions 10 X 2, the longer
side being in the sampling direction. Additionally, the right-hand boundary was a straight
line and the left-hand boundary was given by y = 0.5sinx. The results of making one and
two iterations of the bootstrap bias correction applied to Agmp, for three different cone
angles, are presented in Table 2. For the sake of comparison we also give there the means
and standard deviations of Agmp. It can be seen from the table that bias and efficiency tend
to increase as the cone angle increases, that the bootstrap edge correction reduces bias even
when the cone angle is large, and that the effect of bias correction on efficiency is small.
Only one or two iterations are required to effect most of the achievable bias correction. The
mean v and standard deviation 7 of the numbers of observations N on which the estimates
were based are approximately (v, t) = (9.35, 1.76), (14.46, 2.18) and (19.29, 2.71) in the
cases 0 = m/8, m/4 and 37m/8, respectively. . R

Results are similar for the other estimators, Ay and Aag. Of course, these estimators
cannot be expected to have special virtues in such cases, and there is no a priori reason for
preferring them to Agm, When bootstrap bias correction is employed. We shall illustrate the
application of bias correction to A,q later in this section.

We also explored properties of the the estimator Agmp, applied to a parent—daughter
cluster process (i.e. a Neyman—Scott process). The parents in each cluster were simulated
from a Poisson process with mean 4/0, and each parent was given a Poisson number of
daughters, the number having mean 0 — 1. Thus, the mean cluster size was 0 and the
intensity of the cluster process was A = 4. The positions of the daughters, in the coordinate
systems of their respective parents, were bivariate normal with mean zero and variance o2
in each coordinate. The degree of clustering was thus controlled by o. For the detailed
results reported here we took 0 = 0.1 and 6 = 2 (model 1) or 6 = 4 (model 2). The process
was simulated 2000 times in a 10 X 5 region, the shorter side being in the sampling
direction. In each case, sampling was started in the centre of the left-hand edge to reduce
any boundary problems. It was found empirically that for model 1 the distribution of
Z;=16X 12 had mean 1.26 and variance 3.05, and that for model 2 the distribution of Z;
had mean 1.58 and variance 8.31. If the point process were Poisson then the mean and
variance would both equal 1.

To emulate what might happen if one were to fit an approximate model, rather than the
correct model, we considered the case where the fitted model was (a) homogeneous Poisson,
with no attempt made to capture clustering, or (b) an underdispersed Neyman—Scott model,

Table 2. Influence of bootstrap correction for edge effects. Columns headed Mean (i) and Std dev. (i)
give the mean and standard deviation respectively after i iterations and for the estimator Agim,. The
notation i = 0 corresponds to the uncorrected estimator lsimp. The true value of A was 2

0 Mean (0) Std dev. (0) Mean (1) Std dev. (1) Mean (2) Std dev. (2)
/8 1.95 0.81 2.04 0.85 2.05 0.86
/4 1.90 0.56 2.08 0.58 2.06 0.58

3m/8 1.68 0.47 2.11 0.52 2.05 0.52
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with correct mean cluster size 0 but clustering parameter o /2, or (c) the Neyman—Scott
model using the correct mean cluster size ¢ and correct clustering parameter ¢, or (d) an
overdispersed Neyman—Scott model using the correct mean cluster size ¢ but clustering
parameter 20, or (e) the Neyman—Scott model with mean cluster size /2 but correct
clustering parameter o, or (f) the Neyman—Scott model with mean cluster size 20 but
correct clustering parameter 0. In each case we employed techniques suggested in Section
3.2 to estimate A, but no other aspects of the model were estimated.

The results in Table 3 show that the bootstrap adjustment of the simple point estimate of
intensity works extremely well when the fitting process is correct but, as one might expect,
adopting an underdispersed process leads to overcorrection, and adopting an overdispersed
process leads to undercorrection. The coverage of the resulting confidence intervals is
generally lower than the nominal value. The one-sided intervals have coverages much closer
to their nominal values than the two-sided intervals. In both one- and two-sided settings, the
intervals based on 7; generally have higher coverage than those based on 7, and so have
better coverage accuracy. The most accurate coverage for two-sided intervals, and upper
intervals, is obtained by adopting an overdispersed Neyman—Scott model, whereas the best
coverage for lower intervals is in most cases obtained by adopting an underdispersed
Neyman—Scott model.

Finally, we applied our methodology to a real, mapped data set, which appears to follow
a homogeneous Poisson process. The data represent locations of plants from a Western
Australian species, and are obtainable from the authors. They were drawn from two separate

Table 3. Performance of simulation-based bias-corrected, simple estimator ibc for clustered point
processes. We used a cone semi-angle of 6 = 7/4, and employed the bootstrap to adjust for clustering.
The data were generated from Neyman—Scott processes with clustering parameter o = 0.1 and
intensity A = 4. The first column gives the model number. For models 1 and 2 the mean cluster size
was 0 = 2 and 0 = 4, respectively. The fitted process used for the bootstrap was either a homogeneous
Poisson process (indicated by ‘Poisson’ in the second column) or a Neyman—Scott process with the
parameter values given in the second column. The third and fourth columns give average values (i..
empirical approximations to expected values) of Asm, and 4,q;, respectively. The fifth column gives the
standard deviation of A.qj. Notation for all other columns is as for Table 1

No. Fitted process Agmp Abe  SD(Ane) Ti T, LT UM) L) U

1 Poisson 378 345 151 842 805 938 90.4 90.2 90.3
0,0/2) 378 424 185 833 817 969 86.3 95.5 86.2
0, o) 378 401 1.72 88.8 86.0 959 92.9 93.6 92.5
9, 20) 378 375 1.6l 89.2 86.8 927 96.4 90.8 96.0
(6/2, 0) 378 378 1.64 84.0 819 89.1 94.9 87.1 94.8
(29, 0) 3.78 437 187 853 833 987 86.3 97.2 86.2
2 Poisson 326 292 154 774 722 844 929 79.3 92.9
0,0/2) 326 430 234 788 769 978 80.9 96.1 80.8
0, o) 326 391 206 869 844 970 90.0 94.9 89.5
9, 20) 326 345 179 915 87.6 949 96.4 91.2 96.4
(06/2, 0) 326 339 176 84.8 813 894 953 86.0 953

(29, 0) 326 453 255 719 758 977 79.3 95.5 80.3
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geographical regions. Although our methodology is intended for field surveys rather than
mapped data, the use of mapped data allows us to draw repeated samples and hence further
evaluate our methodology. R

For both regions we applied the estimator A,q, which performed well and was not
computationally burdensome. Performance is summarized in Table 4. Coverage accuracies
of intervals based on 7 are better than for intervals based on 75, for both regions. Values
of the mean v and standard deviation t of the numbers of observations N are approximately
(v, 1) = (5.54, 1.82) and (5.79, 1.93) for regions A and B, respectively.

Appendix: Outline proofs

A.1. Notes on the proof of Theorem 4.1

Our arguments include Taylor expansions of smooth functions of random variables, where we
assume that the expected value of the function, conditional on N =1, may be well
approximated by a term-by-term expectation of the Taylor expansion — see, for example,
(A.1). We may justify such steps by considering separately the cases where the argument in
the expansion is small, and where it is large. For example, in (A.1) we may define
Q=N""Yi<n(Z — 1), and for 0 < ¢ <1 consider the cases |Q| < w™* and |Q| > w. The
latter event has probability O(w=C) for all C > 0, and a Taylor expansion is valid when the
former event holds. By choosing ¢ appropriately, and going to a larger number of terms than
actually shown in the expansion, we may justify formulae such as (A.1). In some of our
arguments we shall do no more than identify values of coefficients in expansions, rather than
compute the concise orders of terms. The expansions are invariably in powers of w~!, as may
be verified using the aforesaid methods.

A.2. Outline derivation of (4.1)

By Taylor expansion,
R N N 2
A simp = 1= N7 (Zi— ) + {Nl > (Zi- 1)} + ...,
i=1 i—1

Table 4. Performance of the bootstrap-corrected, adjusted estimator ;Iadj for plant data. We used a
cone semi-angle of 6 = m/4, and employed the bootstrap correction for edge effects. Notation for
columns is as in the case of Table 1. Intensities were A = 0.0193 for region A and A = 0.0232 for
region B

Region Mean Std dev. T, T, L(Ty) Uu(T)) L(Ty) U(T»)

A 0.0210 0.0277 854 84.4 89.0 96.4 88.7 95.8
B 0.0239 0.0130 81.7 81.2 93.1 88.6 92.7 88.6
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whence it may be shown that
E'(2 Asimp) = 1 — E { lZ(z 1)}+v + 0™, (A1)

A heuristic argument leading to the v~! term on the right-hand side of (A.1) is that
E'{N"'Y;=n(Z; — 1)}? is approximately equal to its value when N is replaced by v, that is,
to v~! (assuming temporarily that v is an integer), plus terms of order v~2. This may be made
rigorous using the methods leading to (A.3). Also, defining u = E(V), 02 = var(V),

wi = (w— iw)/(io?)'/2,

X;cosO; —

Si = (i0?) ' (Xjcos ©; — ), A; = G Deie

J=1

and F; and f; to be the distribution and density functions respectively of §;, we have

N N N
E'{N1 > (Zi- 1)} = le’{Z(Z,- - 1)} - VZE’{(N - (Zi— 1)} + 0™,
i=1 i=1 i=1

(A2)

N 00 i
E’{E(Z,—l)} :ZZE (t'x2 - 11 Zlchos@ij
= = Jj=

E{(t7'X? = )P(Si_1 < wi — Ai|A)}

M i

E[(t 1X2 - 1){F, 1(w) = Aifioa(wi) + lAzft 1w+ .. }]

||
S}

= —iE{(ﬂX% — DAY fioi(w) + O(v™h) (A.3)
i=2

as w— oo. Here we define ) »<;<y to equal zero if N =1. Using a non-uniform
approximation to f; in the central limit theorem for §;, and writing ¢ for the standard normal
density, we may prove that

Z{(z Do?} 21 (w)~J (x0%)” 1/2¢<(v:0§;f§)dx~ul-

A longer argument will show that the left-hand side equals u~!+ O(v~'). Moreover,
w1 = EB{(t7'X? - 1)(Xcos® — u)} = %E( V). It may also be proved, using the argument in
(A.3), that
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N
E’{(N -0 (Zi - 1)} =0(1)
i=1

as w— oo. Heuristically, this is true because E’'{> ;<y(Z; — 1)|N} = const. +
O,(N ! +v71) as w — co. Combining the results from (A.2) down, we deduce that

N
E’{N‘ > (zi- 1)} = —(w) 'y + 0w ) = —w iy + O(w™).
i=1

From this formula and (A.1) we see that
E'(A Agmp) = 1+ (4 u)w™ 4+ 0(w™?) = 1 +3uw™" + 0(w™), (A4)
which proves (4.1).

A.3. Outline derivation of (4.2)

The main departure from the proof of (4.1) is that (A.1) should be replaced by
N

E'(A %) =E'(1 =3N7H — E'{N1 > (zi - 1)} +v L+ 0ow™?).
i=1

The first term on the right-hand side equals 1 — %v’l +O(w™?) or, equivalently,
1 —3uw™" + O(w™?), whence we obtain instead of (A.4) the result

E'(A " Aag) = 1+ (u+ = 30w + 0(w™2) =1+ O(w™?),

which is equivalent to (4.2).

A.4. Outline derivation of (4.3)

Define the random variable A by A= j.simp(l + A), where Awi minimizes £(A), given in (2.2).
Put

2
s

N
W(a)) = Asimp0(cos a))_2 (w - Z X, cos @,-)
i=1

0
I = L W(w)Y exp{—W(w)}dw

and Jj = ]j/[()' Then,
R

. Ai']ia
i!

0

0 o0
J exp{—(1 + M)W (@)}dw = 1oy |
i=0
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whence it follows that
2 o - (_1)i i - (_l)i i
LAvL) = N iEZZiA — log ;ZOTA Ji |+ T,

where 7 denotes a random variable not depending on A. Differentiating with respect to A,
equating to zero and solving for A, we see that A = —J;N~!' 4+ O,(w™2). It may now be
shown that

E'(Amp) = E'(Asimp) + AE'(A) + O(w ™) = E'(Asimp) — AB'(J1 v~ + O(w ™). (A5)
Finally, E'(J;) = 7+ O(w™!), and so (4.3) follows from (4.1) and (A.5).

A.S. Outline derivation of (4.5)

Recall that Z; = 10X f, and let (Z, ®) denote a generic (Z;, ©;). Since the random variables
Z; and ©; are independent and have absolutely continuous distributions with all moments
finite, we may develop a local, non-uniform Edgeworth expansion of the distribution of

= (51, ) = (Z Zi, Z 7% cos ®i>.

i=1 i=1

Indeed, writing M for the covariance matrix of (Z, Zcos ®)T, defining
T=n'"PM S —E(S)},

and letting f be the density of 7, we may show that the Edgeworth expansion has the
property

m

OO = pa() =D n P (Dpa(d)

r=1

— 0(7[7<m+1)/2)

as n — oo, for any k£ > 0 and any integer m = 1. Here, ¢, is the bivariate standard normal
density, and 7, is a polynomial of degree 3r with parity identical to that of » — see, for
example, Bhattacharya and Rao (1976, Section 19).

Assume temporarily that A = 1. Using methods introduced in Section A.2, we may express
the joint distribution of N, E,<NX and > i<y X;cos O; relatively simply in terms of the
joint distribution of S, S, and S; + Z,, fl cos ©,.,1, and thereby prove that for the density g
of v'/2{Ag(v) — 1},

g() =Y v P gut) + Run(2), (A.6)
r=0

where the functions g, do not depend on v, gy is the density of a normal distribution, and the
remainder R, satisfies, for j = 2,



Bias correction and bootstrap methods for a spatial sampling scheme 845

sup (1 + |t|9)|Ryy()| = O ("+D/2) (A7)
—o0<t<oo
as v — oo.

Now we allow A to be any fixed positive number. Since the distribution of A(w)/l is
identical to that of Ag(A!/2w), then, taking v = A2y, we have immediately from (A.6) that
the density gpj of (A1/2w)!/2{A(w)A~! — 1} satisfies

m

gu(t) =D AW P g (0) + Rys(0), (A.8)
r=0

where the functions g, are as in (A.6) and the remainder term satisfies (A.7) with j = 3. The
same argument shows that if gp;; is the conditional density of 0'/2{Ao(D) — 1}, given y,
where 0 = A(w)'/?w, then

g =Y AW w g (1) + Ra(), (A9)
r=0

for the same functions g, and a stochastic remainder R,4(?) that satisfies (A.7), for j =4,
with O replaced by O, on the right-hand side. Taking m = 1, subtracting (A.8) and (A.9), and
noting that A(w) — A = Op(w‘l/z) as w — oo, which is a consequence of the mean and
variance properties noted in Section 4, we see that
sup (14 [19)[ gD — gu(d] = Op(w™),
—oo<t<oo

from which (4.5) follows.

The derivation of (4.4) is similar. Results (4.6) and (4.7) may be established by
modifying methods for proving such formulae in more conventional cases (see Hall 1992,
Chapter 3) along the lines of the argument for (4.5).
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