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1. Introduction

In the (ferromagnetic) Potts model, spins (or colours) from the set f1, . . . , qg are assigned

randomly to the vertices of a graph G ¼ (V , E) in such a way as to favour configurations

where many pairs of neighbouring vertices take the same spin value. More precisely, a spin

configuration � 2 f1, . . . , qgV is assigned probability proportional to

exp �2�
X

[x, y]2E

1f�(x) 6¼�( y)g

 !
,

where � > 0 is referred to as the inverse temperature parameter. The case q ¼ 2 is known as

the Ising model.

The Potts model has received considerable attention in the statistical mechanics and

probability literature for several decades. In the last decade, perhaps the most important tool

for analysing the Potts model has been the random-cluster model, which is a kind of edge

representation of the Potts model. It was introduced by Fortuin and Kasteleyn (1972), and

has been heavily exploited in the study of Potts models since the seminal papers by

Swendsen and Wang (1987), Edwards and Sokal (1988), and Aizenman, et al. (1988). One

of the main points of working with the random-cluster representation, rather than directly

with the Potts model, is that questions about spin correlations in the latter turn into

questions about connectivity probabilities in the former, thereby allowing powerful

Bernoulli 8(3), 2002, 275–294

1350–7265 # 2002 ISI/BS



percolation techniques to come into play. Another interesting aspect of the random-cluster

representation is that it also makes sense for non-integer q.

This paper is a contribution to the study of random-cluster and Potts models on infinite

lattices. After recalling some necessary prerequisites in Section 2, we come in Sections 3

and 4 to the two main purposes of this paper. In Section 3 we present a useful device for

the analysis of random-cluster and Potts models, namely an explicit pointwise dynamical

construction of random-cluster measures. The construction provides natural couplings

between random-cluster measures with different parameter values or different boundary

conditions. To some extent, this construction can be viewed as known and our presentation

of it can to the same extent be viewed as expository; it consists of putting together a few

well-known ingredients from Grimmett (1995), Propp and Wilson (1996) and Häggström

et al. (2000). In Section 4 we apply the dynamical construction from the preceding section

to show that the Potts model with fixed-spin boundary condition on Zd (and, more

generally, on amenable Cayley graphs) exhibits a rather strong mixing condition known as

Bernoullicity. Our proof appears to be the simplest to date, even in cases where the result

was known previously. Finally, some additional consequences of, and questions on, the

dynamical construction are discussed in Section 5.

2. Preliminaries

This section is devoted to recalling known material that will be used in later sections. The

random-cluster and Potts models are introduced in Sections 2.3 and 2.4, respectively. Before

that, however, we recall some graph terminology in Section 2.1 and some basics on stochastic

domination in Section 2.2. A general reference for this background material is Georgii et al.

(2001).

2.1. Some graph terminology

Let G ¼ (V , E) be a graph with vertex set V and edge set E. We shall always assume either

that the graph is finite, or that it is countably infinite and locally finite. An edge e 2 E will

often be denoted [x, y]. The number of edges incident to a vertex x is called the degree of x.

For W � V, we define the (inner) boundary @W of W as

@W :¼ fx 2 W : 9y 2 VnW such that [x, y] 2 Eg: (1)

A graph automorphism of G is a bijective mapping ª : V ! V with the property that for all

x, y 2 V, we have [ªx, ªy] 2 E if and only if [x, y] 2 E. Write Aut(G) for the group of all

graph automorphisms of G. To each ª 2 Aut(G), there is a corresponding mapping

~ªª : E! E defined by ~ªª[x, y] :¼ [ªx, ªy]. The graph G is said to be transitive if and only if

for some (any) x 2 V, one has that for any y 2 V there exists ª 2 Aut(G) such that ªx ¼ y.

One says that G is quasi-transitive if and only if for some finite subset fx1, . . . , xng of V,

one has that for any y 2 V there exists ª 2 Aut(G) such that ªxi ¼ y for some xi.
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A probability measure � on f0, 1gE is said to be automorphism invariant if for any n,

any e1, . . . , en 2 E, any i1, . . . , in 2 f0, 1g, and any ª 2 Aut(G) we have

�(fX 2 f0, 1gE : X (e1) ¼ i1, . . . , X (en) ¼ ing)

¼ �(fX 2 f0, 1gE : X (~ªª(e1)) ¼ i1, . . . , X (~ªª(en)) ¼ ing):

In what follows, we shall simplify the notation and omit the ‘fX 2 f0, 1gE : g’ as used in the

preceding equation.

A graph property that turns out to be important in many situations is amenability. An

infinite graph G is said to be amenable if

inf
j@W j
jW j ¼ 0,

where the infimum ranges over all finite W � V, and j � j denotes cardinality. There are

various alternative definitions of amenability of a graph that coincide for transitive graphs

(and, more generally, for graphs of bounded degree), but not in general.

For any graph G and x 2 V, define the stabilizer S(x) as the set of graph automorphisms

that fix x:

S(x) :¼ fª 2 Aut(G) : ªx ¼ xg:

For x, y 2 V, define

S(x)y :¼ fz 2 V : 9ª 2 S(x) such that ªy ¼ zg:

When Aut(G) is given the weak topology generated by its action on V, all stabilizers are

compact subgroups of Aut(G) because G is locally finite and connected. A transitive graph G

is said to be unimodular if, for all x, y 2 V, we have the symmetry

jS(x)yj ¼ jS(y)xj:

Another important class of graphs is that of Cayley graphs. If ˆ is a finitely generated

group with generating set fg1, . . . , g ng, then the Cayley graph associated with ˆ and that

particular set of generators is the (unoriented) graph G ¼ (V , E) with vertex set V :¼ ˆ,

and edge set

E :¼ f[x, y] : x, y 2 ˆ, 9i 2 f1, . . . , ng such that xgi ¼ yg:

Obviously, a Cayley graph is transitive; furthermore, it is not hard to show that it is

unimodular. Most graphs that have been studied in percolation theory are Cayley graphs.

Examples include Zd (which, with a slight abuse of notation, is short for the graph with

vertex set Zd and edges connecting pairs of vertices at Euclidean distance 1 from each other),

and the regular tree Tn in which every vertex has exactly nþ 1 neighbours. The graph Zd is

amenable, while Tn is non-amenable for n > 2. Also studied are certain non-amenable tilings

of the hyperbolic plane (see Benjamini and Schramm 2001; Häggström et al. 2001), and

further examples can be obtained, for example, by taking Cartesian products of two or more

Cayley graphs.
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2.2. Stochastic domination

Let E be any finite or countably infinite set. (In our applications, E will be an edge set; hence

the notation.) For two configurations �, �9 2 f0, 1gE, we write � d �9 if �(e) < �9(e) for all

e 2 E. A function f : f0, 1gE ! R is said to be increasing if f (�) < f (�) whenever � d �.

For two probability measures � and �9 on f0, 1g, we say that � is stochastically dominated

by �9, writing �d
D
�9, if ð

f0,1gE

f d� <

ð
f0,1gE

f d�9 (2)

for all bounded increasing f .

By a coupling of � and �9, or of two random objects X and X 9 with distributions � and

�9, we simply mean a joint construction of two random objects with the prescribed

distributions on a common probability space.

By Strassen’s theorem (see Lindvall 1992), �d
D
�9 is equivalent to the existence of a

coupling P of two random objects X and X 9 with distributions � and �9, such that

P(X d X 9) ¼ 1. We call such a coupling a witness to the stochastic domination (2).

A useful tool for establishing stochastic domination is the well-known inequality due to

Holley. For E9 � E and � 2 f0, 1gE, we let �(E9) denote the restriction of � to E9.

Lemma 2.1 (Holley’s inequality). Let E be finite, and let � and �9 be probability measures

on f0, 1gE that assign positive probability to all elements of f0, 1gE. Suppose that � and �9
satisfy

�(X (e) ¼ 1 j X (Enfeg) ¼ �) < �9(X (e) ¼ 1 j X (Enfeg) ¼ �9)

for all e 2 E, and all �, �9 2 f0, 1gEnfeg such that � d �9. Then �d
D
�9.

This is not the most general form of Holley’s inequality, but one that is sufficient for our

purposes. For a proof, see Georgii et al. (2001, Theorem 4.8).

We shall also need the notion of weak convergence of probability measures on f0, 1gE,

when E is countably infinite. For such probability measures �1, �2, . . . and �, we say that �
is the (weak) limit of �i as i!1 if limi!1 �i(A) ¼ �(A) for all cylinder events A.

2.3. The random-cluster model

Let G ¼ (V , E) be a finite graph. An element � of f0, 1gE will be identified with the

subgraph of G that has vertex set V and edge set fe 2 E : �(e) ¼ 1g. An edge e with

�(e) ¼ 1 (�(e) ¼ 0) is said to be open (closed). A central quantity to the random-cluster

model is the number of connected components of �, which will be denoted k�k. We

emphasize that in the definition of k�k, isolated vertices in � also count as connected

components.

The random-cluster measure RC :¼ RCG
p,q (sub- and superscripts will be dropped when-
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ever possible) with parameters p 2 [0, 1] and q . 0, is defined as the probability measure

on f0, 1gE which assigns to each � 2 f0, 1gE probability

RC(�) :¼ qk�k

Z

Y
e2E

p�(e)(1� p)1��(e) , (3)

where Z :¼ ZG
p,q :¼

P
�2f0,1gE qk�k

Q
e2E p�(e)(1� p)1��(e) is a normalizing constant making

RC a probability measure.

When q ¼ 1, we see that all edges are independently open and closed with respective

probabilities p and 1� p, so that we get the usual independent and identically distributed

(i.i.d.) bond percolation model on G. All other choices of q yield dependence between the

edges. Throughout this paper, we shall assume (as in most studies of the random-cluster

model) that q > 1. The main reason for doing so is that when q > 1, the conditional

probability in (4) below becomes increasing not only in p but also in �, and this allows

some very powerful stochastic domination arguments, based on Holley’s inequality (Lemma

2.1), to come into play; these are not available for q , 1. Furthermore, it is only random-

cluster measures with q 2 f2, 3, . . .g that have proved to be useful in the analysis of Potts

models.

It is immediate from the definition that if X is a f0, 1gE-valued random object with

distribution RC, then we have, for each e ¼ [x, y] 2 E and each � 2 f0, 1gEnfeg, that

RC(X (e) ¼ 1 j X (Enfeg) ¼ �) ¼
p if x$ y,

p

pþ (1� p)q
otherwise,

8<
: (4)

where x$ y is the event that there is an open path (i.e. a path of open edges) from x to y in

X (Enfeg). As a first application of Holley’s inequality, we obtain from (4) that

RCG
p,q(X 2 � j X (E9) ¼ �)d

D
RCG

p,q(X 2 � j X (E9) ¼ �9) (5)

whenever E9 � E and � d �9.
Our next task is to define the random-cluster model on infinite graphs. Let G ¼ (V , E)

be infinite and locally finite. The definition (3) of random-cluster measures does not work in

this case, because there are uncountably many different configurations � 2 f0, 1gE. Instead,

there are two other approaches to defining random-cluster measures on infinite graphs: one

via limiting procedures, and the other via local specifications, also known as the

Dobrushin–Lanford–Ruelle (DLR) equations. We shall sketch the first approach.

Let V1, V2, . . . be a sequence of finite vertex sets increasing to V in the sense that

V1 � V2 � . . . and
S1

i¼1 Vi ¼ V . For any finite K � V, define

E(K) :¼ f[x, y] 2 E : x, y 2 Kg,

set Ei :¼ E(Vi) and note that E1, E2, . . . increases to E in the same sense that V1, V2, . . .
increases to V . Let @Vi be the (inner) boundary of Vi (defined as in (1)). Also set

Gi :¼ (Vi, Ei), and let FRCG,i
p,q be the probability measure on f0, 1gE corresponding to

picking X 2 f0, 1gE by letting X (Ei) have distribution RCGi
p,q and setting X (e) :¼ 0 for all

e 2 EnEi. Since the projection of FRCG,i
p,q on f0, 1gEnEi is non-random, we can also view
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FRCG,i
p,q as a measure on f0, 1gEi , in which case it coincides with RCGi

p,q. Applying (5) to the

graph Gi with E9 :¼ EinEi�1 and � � 0 gives

FRCG,i�1
p,q d

D
FRCG,i

p,q,

so that

FRCG,1
p,q d

D
FRCG,2

p,q d
D

. . . : (6)

This implies the existence of a limiting (as i!1) probability measure FRCG
p,q on f0, 1gE.

This limit is independent of the choice of fVig1i¼1, and we call it the random-cluster measure

on G with free boundary condition (hence the F in FRC) and parameters p and q.

Next, define WRCG,i
p,q as the probability measure on f0, 1gE corresponding to first setting

X (EnEi) � 1, and then picking X (E) in such a way that

WRCG,i
p,q(X (Ei) ¼ �) ¼ qk�k

�

Z

Y
e2Ei

p�(e)(1� p)1��(e),

where k�k� is the number of connected components of � that do not intersect @Vi, and Z is

again a normalizing constant. Similarly as in (6), we obtain

WRCG,1
p,q f

D
WRCG,2

p,q f
D

. . .

(with the inequalities reversed compared to (6)), and thus also a limiting measure WRCG
p,q

that we call the random-cluster measure on G with wired boundary condition and parameters

p and q.

Note that the free and wired random-cluster measures FRC and WRC are both automor-

phism invariant. This follows from their construction, in particular from the independence

of the choice of fGi ¼ (Vi, Ei)g1i¼1.

2.4. The Potts model

Fix a finite graph G ¼ (V , E) and the inverse temperature parameter � > 0. We define the

Gibbs measure for the q-state Potts model on G at inverse temperature �, denoted Pt :¼ PtG
q,�,

as the probability measure which assigns to each ø 2 f1, . . . , qgV probability

Pt(ø) :¼ 1

Z
exp �2�

X
[x, y]2E

1fø(x) 6¼ø( y)g

 !
,

where Z is yet another normalizing constant. The main link between random-cluster and

Potts models is the following well-known result (see Swendsen and Wang 1987).

Proposition 2.2. Fix a finite graph G, an integer q > 2 and p 2 [0, 1]. Pick a random edge

configuration X 2 f0, 1gE according to the random-cluster measure RCG
p,q. Then, for each

connected component C of X , pick a spin uniformly from f1, . . . , qg, and assign this spin to

all vertices of C. Do this independently for different connected components. The f1, . . . , qgV -

valued random spin configuration arising from this procedure is then distributed according to
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the Gibbs measure PtG
q,� for the q-state Potts model on G at inverse temperature � :¼

�1
2

log(1� p).

This provides the way (mentioned in Section 1) to reformulate problems about pairwise

dependencies in the Potts model into problems about connectivity probabilities in the

random-cluster model. Aizenman et al. (1988) were the first to exploit such ideas to obtain

results about the phase transition behaviour of the Potts model, and the technique has been

of much use since then.

The case of infinite graphs is slightly more intricate. Let G ¼ (V , E) be infinite and

locally finite, and let fGi :¼ (Vi, Ei)g1i¼1 be as in Section 2.3. For q 2 f2, 3, . . .g and

� > 0, define probability measures fFPtG,i
q,�g

1
i¼1 on f1, . . . , qgV in such a way that the

projection of FPtG,i
q,� on f1, . . . , qgV i equals PtG,i

q,�, and the spins on VnVi are i.i.d. uniformly

distributed on f1, . . . , qg and independent of the spins on Vi. Using Proposition 2.2, one

can show that FPtG,i
q,� has a limiting distribution FPtG

q,� as i!1.

Furthermore, for a fixed spin r 2 f1, . . . , qg, define WPtG,i
q,�,r

to be the distribution

corresponding to picking X 2 f1, . . . , qgV by letting X (VnVi) � r, and letting X (Vi) be

distributed according to PtG,i
q,� conditioned on the event that X (@Vi) � r. Again, it turns out

that WPtG,i
q,�,r

has a limiting distribution as i!1, and we denote it by WPtG
q,�,r.

Results on the existence of the limiting distributions FPtG
q,� and WPtG

q,�,r are non-trivial

and in fact the shortest route to proving them goes via random-cluster arguments: first carry

out the stochastic monotonicity arguments for the random-cluster model outlined in Section

2.3, and then use Propositions 2.3 and 2.4 below.

A probability measure � on f1, . . . , qgV is said to be a Gibbs measure (in the DLR

sense) for the q-state Potts model on G at inverse temperature �, if it admits conditional

distributions such that for all v 2 V, all r 2 f1, . . . , qg, and all ø 2 f1, . . . , qgVnfvg, we

have

�(X (vg) ¼ rjX (Vnfvg ¼ ø) ¼ 1

Z
exp �2�

X
[v, y]2E

1fø( y) 6¼rg

 !
, (7)

where the normalizing constant Z may depend on v and ø but not on r. The limiting

measures FPtG
q,� and WPtG

q,�,r are both Gibbs measures in this sense.

The following extensions of Proposition 2.2 provide the relations between FRC and WRC

on the one hand, and FPt and WPt on the other.

Proposition 2.3. Let G be an infinite locally finite graph, and fix q 2 f2, 3, . . .g and

p 2 [0, 1]. Pick a random edge configuration X 2 f0, 1gE according to FRCG
p,q. Then, for

each connected component C of X independently, pick a spin uniformly from f1, . . . , qg and

assign this spin to all vertices of C. The f1, . . . , qgV -valued random spin configuration

arising from this procedure is then distributed according to the Gibbs measure FPtG
q,� for the

q-state Potts model on G at inverse temperature � :¼ �1
2

log(1� p).

Proposition 2.4. Let G, p and q be as in Proposition 2.3. Pick a random edge configuration

X 2 f0, 1gE according to the random-cluster measure WRCG
p,q. Then, for each finite
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connected component C of X independently, pick a spin uniformly from f1, . . . , qg and

assign this spin to all vertices of C. Finally, assign value r to all vertices of infinite connected

components. The f1, . . . , qgV -valued random spin configuration arising from this procedure

is then distributed according to the Gibbs measure WPtG
q,�,r for the q-state Potts model on G

at inverse temperature � :¼ �1
2

log(1� p).

3. A dynamical construction

Let G ¼ (V , E) be infinite and locally finite, and let fGi :¼ (Vi, Ei)g1i¼1 be as in Section 2.

We know from Section 2.3 that

FRCG,1
p,q d

D
FRCG,2

p,q d
D � � � dD FRCG

p,q d
D

WRCG
p,q d

D � � � dD WRCG,2
p,q d

D
WRCG,1

p,q: (8)

Other well-known stochastic inequalities are that for p1 < p2 and i 2 f1, 2, . . .g, we have

FRCG,i
p1,q d

D
FRCG,i

p 2 q, (9)

FRCG
p1,q d

D
FRCG

p 2,q, (10)

WRCG,i
p1,q d

D
WRCG,i

p 2 q, (11)

WRCG
p1,q d

D
WRCG

p 2,q: (12)

For all of the above stochastic inequalities, it is desirable to find some natural construction of

couplings that witness them. What we shall construct in this section is a coupling of all of the

above probability measures (for all p 2 [0, 1], q > 1 and i 2 f1, 2, . . .g) simultaneously that

provides witnesses to stochastic inequalities (8)–(12) above. Some additional useful aspects

of the construction are the following.

(A1) Not only are FRC and WRC automorphism invariant separately, but also their joint

behaviour in our coupling is automorphism invariant. This remains true if we

consider the realizations simultaneously for different parameter values. See Section

5.1, where we describe an application where this property is crucial.

(A2) If G is obtained as an automorphism-invariant percolation process on another graph

H , then the construction is easily set up in such a way that the joint distribution of

G and the random-cluster measures on G becomes an automorphism-invariant

process on H . (See Häggström et al. (2000) for an example where an analogous

property turns out to be important in the context of Ising models with external field

on percolation clusters.)

Nevertheless, there are still some desirable aspects of couplings of random-cluster processes

for which we do not know whether or not they hold for our construction; see Conjecture 5.1

and Question 5.2 below.

The construction is based on time dynamics for the random-cluster model. Such time

dynamics have previously been considered, for example, by Bezuidenhout et al. (1993) and

Grimmett (1995) for the random-cluster model on Zd . To some extent our construction will
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resemble Grimmett’s analysis. However, one feature of our construction that differs from

Grimmett’s is that the dynamics are run ‘from the past’ rather than ‘into the future’, along

the lines of the very fashionable coupling from the past (CFTP) algorithm of Propp and

Wilson (1996); see also Thorisson (1988) for an early treatment of dynamics from the past,

and Diaconis and Freedman (1999) for a survey putting the ideas in a more general

mathematical context. For the case of finite graphs, CFTP was applied to simulate the

random-cluster model in Propp and Wilson (1996). Simulation on infinite graphs would

require additional arguments, but our purpose is not simulation; rather, it is to gain some

theoretical information. For models other than the random-cluster model, CFTP ideas have

been extended to the setting of infinite graphs in van den Berg and Steif (1999), Häggström

and Steif (2000) and Häggström et al. (2000), but in all those cases the interaction of the

dynamics had a strictly local character, which is not the case in our context. Another

feature of our construction is the simultaneity in the parameter space. Such simultaneity,

which is related to the level-set representations of Higuchi (1991), appears in both

Grimmett (1995) and Propp and Wilson (1996); Propp and Wilson use the term

‘omnithermal’ to denote this particular feature of the construction.

Let us start with a simple finite case: how do we construct a f0, 1gEi -valued random

element with distribution RCGi
p,q (equivalently, with distribution FRCG,i

p,q)? If we are content

to obtain something that has only approximately the right distribution, then the following

dynamical approach works fine. Define some ergodic Markov chain whose unique

equilibrium distribution is RCGi
p,q, and run it for time T starting from an arbitrary initial

state �. If T is large enough, then the distribution of the final state is close to RCGi
p,q,

regardless of the choice of �.

In particular, we may proceed as follows. To each edge e 2 Ei, we independently assign

an i.i.d. sequence (�e
1, �e

2, . . .) of exponential random variables with mean 1, and an

independent i.i.d. sequence (U e
1, U e

2, . . .) of uniform [0, 1] random variables. For e 2 Ei

and k ¼ 1, 2, . . . , let �e
k :¼ �e

1 þ . . . þ �e
k , so that (�e

1, �e
2, . . .) are the jump times of

a unit-rate Poisson process. Now define a f0, 1gEi -valued continuous-time Markov chain

f�X
Gi

p,q(t)g t>0 with starting state �X
Gi

p,q(0) :¼ � and evolution as follows. For

e :¼ [x, y] 2 Ei, the value of �X
Gi

p,q(t)(e) does not change other than (possibly) at the

times �e
1, �e

2, . . . , at which times it takes the value

�X
Gi

p,q(�e
k)(e) :¼

1 if U e
k , p and x$ y in �X

Gi

p,q(�e
k)(Einfeg),

1 if U e
k , p=[ pþ (1� p)q] and � (x$ y in �X

Gi

p,q(�e
k)(Einfeg)),

0 otherwise,

8>><
>>:

(13)

where � denotes negation. (Note that �e
k 6¼ �e9

j almost surely for all j, k when e 6¼ e9.) It is

easy to see that this Markov chain is irreducible and reversible with RCGi
p,q as stationary

distribution, so that indeed �X
Gi

p,q(t) converges in distribution to RCGi
p,q as t!1. Note also

that since p > p=[ pþ (1� p)q], the chain preserves the partial order d on f0, 1gEi ; in

other words, for all t > 0 we have
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�X
Gi

p,q(t) d �X
Gi

p,q(t) whenever � d � : (14)

To obtain a f0, 1gEi -valued random object whose distribution is precisely RCGi
p,q, we need to

consider some limit as t!1. On the other hand, �X
Gi

p,q(t) does not converge in any a.s.

sense, so this may appear not to be feasible.

The solution, which turns the convergence in distribution into a.s. convergence, is to run

the dynamics from the past up to time 0, rather than from time 0 into the future. For

T > 0, define the f0, 1gEi -valued continuous-time Markov chain

ffree
�T X Gi

p,q(t)g t2[�T ,0]

with starting state free
�T X Gi

p,q(�T ) � 0 and the following evolution, similar to that of �X
Gi

p,q. The

value at an edge e :¼ [x, y] 2 Ei changes only at times (. . . , ��e
2, ��e

1), when it takes the

value

free
�T X Gi

p,q(��e
k)(e)

:¼
1 if U e

k , p and x$ y in free
�T X Gi

p,q(��e
k)(Einfeg),

1 if U e
k , p=[ pþ (1� p)q] and � (x$ y in free

�T X Gi
p,q(��e

k)(Einfeg)),
0 otherwise,

8><
>: (15)

as in (13). We have, for 0 < T1 < T2, that

free
�T1

X Gi

p,q(0) d free
�T2

X Gi

p,q(0)

(essentially because of (14)), so by monotonicity free
�T X Gi

p,q(0) has an a.s. limit
free X Gi

p,q 2 f0, 1gEi , defined by setting freeX Gi
p,q(e) :¼ limT�1

free
�T X Gi

p,q(0)(e) for each e 2 Ei.

Clearly, free
�T X Gi

p,q(0) has the same distribution as �X
Gi

p,q(T ) with � � 0, so free
�T X Gi

p,q(0) converges

in distribution to RCGi
p,q as T !1. Hence, free X Gi

p,q has distribution RCGi
p,q, and if we further

define free X G,i
p,q 2 f0, 1gE by setting

free X G,i
p,q(e) :¼

free X Gi
p,q(e) for e 2 Ei,

0 otherwise,

(

for each e 2 E, then free X G,i
p,q has distribution FRCG,i

p,q.

Now suppose that we have defined the random variables (�e
1, �e

2, . . .) and (U e
1, U e

2, . . .)
for all e 2 E (and not just all e 2 Ei) in the obvious way. By another application of the

order-preserving property (14), we obtain that

free X G,1
p,q d free X G,2

p,q d . . . ,

so that the limiting object free X G
p,q, defined by taking free X G

p,q(e) :¼ limi!1
free X G,i

p,q(e), exists.

For any cylinder set A 2 f0, 1gE, we have

P free X G
p,q 2 A

� �
¼ lim

i!1
P free X G,i

p,q 2 A
� �

¼ lim
i!1

FRCG,i
p,q(A) ¼ FRCG

p,q(A) (16)

so that free X G
p,q has distribution FRCG

p,q. Thus, to summarize the construction so far, what we
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have is a coupling of f0, 1gE-valued random objects free X G,1
p,q, free X G,2

p,q, . . . and free X G
p,q that

witnesses the stochastic inequalities in the first half of (8).

Next, we go on to construct, in analogous fashion, the corresponding objects for wired

random-cluster measures. For T > 0, define the f0, 1gE-valued continuous-time Markov

chain

fwired
�T X G,i

p,q(t)g t2[�T ,0]

with starting configuration wired
�T X G,i

p,q(�T ) � 1. Edges e 2 EnEi remain in state 1 for ever,

while the value of an edge e :¼ [x, y] 2 Ei is updated at times (. . . , ��e
2, ��e

1), when it takes

the value

wired
�T X G,i

p,q(��e
k)(e) :¼

1 if U e
k , p and A(x, y, i, p, q, e, k),

1 if U e
k , p=[ pþ (1� p)q] and �A(x, y, i, p, q, e, k),

0 otherwise;

8><
>: (17)

here, A(x, y, i, p, q, e, k) is the event fx !@Vi
y in wired

�T X G,i
p,q(��e

k)(Einfeg)g, where, in turn,

x !@Vi y denotes the event that either

(a) there is an open path from x to y (not using e), or

(b) both x and y have open paths (not using e) to @Vi.

It is immediate from the definition of WRCG,i
p,q that the conditional WRCG,i

p,q-probability

that an edge e :¼ [x, y] 2 Ei is open, given the status of all other edges, is p or

p=[ pþ (1� p)q], depending on whether or not the event x !@Vi
y happens. It follows that

the distribution of wired
�T X G,i

p,q(0) tends to WRCG,i
p,q as T !1. Moreover, the dynamics in (17)

preserve d similarly as in (14), implying that

wired
�T1

X G,i
p,q d wired

�T2
X G,i

p,q

whenever 0 < T1 < T2. This establishes the existence of a limiting f0, 1gE-valued random

object wired X G,i
p,q defined by wired X G,i

p,q(e) :¼ limwired
T!1 X G,i

p,q(0)(e) for each e 2 E. Clearly,
wired X G,i

p,q has distribution WRCG,i
p,q. Another use of the d -preserving property of the

dynamics (17) shows that

wired X G,1
p,q f wired X G,2

p,q f . . . ,

so that we have a limiting object wired X G
p,q 2 f0, 1gE defined by setting

wired X G
p,q(e) :¼ limi!1

wired X G,i
p,q(e) for each e 2 E. By arguing as in (16), we obtain that

wired X G
p,q has distribution WRCG

p,q. The random objects wired X G,1
p,q, wired X G,2

p,q, . . . and wired X G
p,q

witness the stochastic inequalities in the second half of (8).

In order to fully establish that we have a witness to (8), it remains to show that free X G
p,q

and wired X G
p,q witness the middle inequality in (8), that is we need to show that

free X G
p,q d wired X G

p,q. From the observations that the right-hand sides of (15) and (17) are

increasing in the configurations on Einfeg, and that for each such configuration the right-

hand side of (17) is greater than that of (15), we obtain that

free
�T X G,i

p,q(t) d wired
�T X G,i

p,q(t)
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for any i 2 f1, 2, . . .g, T > 0 and t 2 [�T , 0]. By taking t :¼ 0, letting T !1 and then

i!1, we obtain

free X G
p,q d wired X G

p,q (18)

as desired. Hence, our coupling is a witness to all the inequalities in (8).

It remains to be demonstrated that the coupling is also a witness to inequalities (9)–(12).

Note first that the right-hand sides of (15) and (17) are increasing not only in the

configurations on Einfeg, but also in p. It follows that for p1 < p2 we have

free
�T X G,i

p1,q(t) d free
�T X G,i

p2,q(t)

and

wired
�T X G,i

p1,q(t) d wired
�T X G,i

p2,q(t)

for all i 2 f1, 2, . . .g, T > 0 and t 2 [�T , 0]. Taking t :¼ 0 and letting T !1 yields

free X G,i
p1,q d free X G,i

p2,q

and

wired X G,i
p1,q d wired X G,i

p2,q,

witnessing (9) and (11). Letting i!1, we obtain

free X G
p1,q d free X G

p2,q (19)

and

wired X G
p1,q d wired X G

p2,q , (20)

finally witnessing (10) and (12). In fact, examination also shows that as long as p1 < p2 and

p1=[(1� p1)q1] < p2=[(1� p2)q2], we have

free X G
p1,q1

d free X G
p2,q2

, (21)

wired X G
p1,q1

d wired X G
p2,q2

, (22)

free X G
p1,q1

d wired X G
p2,q2

, (23)

witnessing more general well-known stochastic inequalities (Fortuin 1972).

Property (A1) of the coupling is obvious from the construction. In order for (A2) to be

true, we need only define random variables f�e
k , U e

kge2E( H),i¼1,2,... for all edges in H and to

take them to be independent of the percolation process that yields G from H .

4. Bernoullicity

Let ˆ be a closed subgroup of Aut(G), with G ¼ (V , E) being any connected graph. We shall

be most interested in two cases: (1) that G is the Cayley graph of ˆ with respect to some

finite generating set of ˆ; and (2) that ˆ ¼ Aut(G) and G is quasi-transitive. Let S and T be
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arbitrary state spaces. For ª 2 ˆ, define the map Łª : SV ! SV (or Łª : T V ! T V ) by setting

Łªø(x) :¼ ø(ª�1x) for each x 2 V . A measurable mapping f : (SV , �)! (T V , 
) is said to

be ˆ-equivariant if it commutes with these actions of ˆ, that is, if f (Łªø) ¼ Łª( f (ø)) for all

ª 2 ˆ and �-a.e. ø 2 SV ; it is called measure-preserving if 
 ¼ � s f �1. The action of ˆ on

(T V , 
) is called free if, for 
-a.e. x 2 T V , the only element in ˆ that leaves x fixed is the

identity.

We say that a probability measure 
 on T V is a ˆ-factor of an i.i.d. process if there

exists a T V -valued random element X with distribution 
, a state space S, an SV -valued

random element Y with distribution �, and a ˆ-equivariant measure-preserving mapping

f : (SV , �)! (T V , 
) such that

(i) Y is an i.i.d. process, and

(ii) X ¼ f (Y ).

When G is the Cayley graph of ˆ, if S can be taken to be finite and f can be taken to be an

invertible mapping, then (ˆ, 
) is said to be Bernoulli, a mixing property of fundamental

importance in ergodic theory. Ornstein and Weiss (1987, p. 127) show that the following

definition is a proper extension of the preceding definition: an action (ˆ, 
) is said to be

Bernoulli if it is a free ˆ-factor of a Poisson process on ˆ. We shall prove, using the

dynamical construction in Section 3, that Bernoullicity holds for the wired Potts model on

Zd , and more generally on many amenable quasi-transitive graphs. We shall need the

following condition. Let Sn(x) denote the set of points at distance n from a vertex x.

Consider the condition on ˆ that

8x 2 V , 8y 2 ˆxnfxg, 9 infinitely many n with Sn(x) 6¼ Sn(y): (24)

Theorem 4.1. Let G be a Cayley graph of any amenable group ˆ or be any amenable graph

with a closed automorphism group ˆ acting quasi-transitively on G and satisfying (24). Let

q 2 f2, 3, . . .g, r 2 f1, . . . , qg, and � > 0. Then the Gibbs measure WPtG
q,�,r is Bernoulli

with respect to the action of ˆ.

For the Zd case, this was previously known only for the cases where either q ¼ 2 (the

Ising model) or � is sufficiently small; see, Ornstein and Weiss (1973), di Liberto et al.

(1973) and Steif (1991). For the Ising model result on amenable graphs, see Adams (1992),

while for a proof of a stronger property than Bernoullicity in the case of � small, using

CFTP ideas, see Häggström and Steif (2000). Häggström et al. (2000) uses ideas similar to

ours to prove that the Ising model is Bernoulli.

Remark 4.2. Actually, we shall prove a slightly stronger result, which is the best possible.

That is, we shall show that as long as i.i.d. variables on the vertices of G yield a free action

of ˆ, then WPtG
q,�,r is Bernoulli. It is not clear when the full automorphism group Aut(G)

satisfies this freeness condition, so we have supplied condition (24).

We call an i.i.d. process (SV , �) standard if S is a standard Borel space and the marginal

of � on S is Borel. Ornstein and Weiss (1987) show that when ˆ is amenable and discrete,
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then (ˆ, 
) is Bernoulli if and only if it is a free ˆ-factor of a standard i.i.d. process. More

generally, we have the following result:

Lemma 4.3. Let V be a countable set and ˆ be a closed subgroup of the symmetric group on

V. Suppose that all orbits of the ˆ-action on V are infinite and that ˆ is amenable,

unimodular, and not the union of an increasing sequence of compact proper subgroups of

ˆ. Further, suppose that for each x 2 V, the ˆ-stabilizer of x is compact. Then every free

ˆ-factor of a standard i.i.d. process (SV , �) is Bernoulli.

Proof. Assume that there is some free ˆ-factor 
 of a standard i.i.d. process (SV , �), since

otherwise there is nothing to prove. Let Z n be i.i.d. Poisson point processes on ˆ with Haar

measure as the underlying intensity measure. By (Ornstein and Weiss 1987, Theorem III.6.5),

the product process hZ n : n > 1i is Bernoulli. We shall show that 
 is a ˆ-factor of

hZ n : n > 1i, whence it is a factor of a Poisson process, whence it is Bernoulli.

Let W be a selection of one point from each orbit of the action of ˆ on V . Given v 2 V,

let X n(v) be the number of points in Z n that take o to v for v 2 V, where fog ¼ W \ ˆv.

Since ˆ is a countable union of translates of stabilizers, each stabilizer has positive finite

Haar measure, so that X n(v) is a non-trivial Poisson random variable. Also, the random

variables hX n(v) : n > 1, v 2 Vi are mutually independent. Since X n is a ˆ-factor of Z n, it

follows that hX n : n > 1i is a ˆ-factor of hZ ni. Since every standard i.i.d. process (SV , �)

is a ˆ-factor of hX n : n > 1i and 
 is a factor of (SV , �), we obtain the required result.

h

We also need the following fact:

Lemma 4.4. If G is a quasi-transitive amenable graph, then Aut(G) is amenable,

unimodular, and not the union of an increasing sequence of compact proper subgroups.

Proof. Aut(G) is amenable and unimodular by results of Soardi and Woess (1990) and

Salvatori (1992); Benjamini et al. (1999) give another proof. Furthermore, in this case

Aut(G) is generated by, say, the compact set ˜ :¼ fª 2 Aut(G) : d(o, ªo) < 2r þ 1g, where

r is such that every vertex of G is within distance r of some vertex in Aut(G)o and d(�, �)
denotes distance in G. Thus, if ˆn are compact increasing subgroups of Aut(G) whose union

is Aut(G), we have
T

n>1(˜nˆn) ¼ ˘, whence, for some n, we have ˜ � ˆn. Since ˜
generates Aut(G), it follows that ˆn ¼ Aut(G). h

Because of the above, Theorem 4.1 is established once the following lemma is proved:

Lemma 4.5. For any graph G, any subgroup ˆ of Aut(G), any q 2 f2, 3, . . .g and

r 2 f1, . . . , qg, and any � > 0, the Gibbs measure WPtG
q,�,r is a ˆ-factor of a standard i.i.d.

process. If either (i) ˆ is countable and every element of ˆ other than the identity moves an

infinite number of vertices, or (ii) ˆ satisfies condition (24), then the action of ˆ on WPtG
q,�,r

is free.
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Proof. Let the degree of G be d. For each x 2 V, let Nx ¼ fZx
1, . . . , Zx

dg be the set of

neighbours of x in any fixed order.

Take

S :¼ f[0, 1) 3 [0, 1]gf1,2,:::g3f1,:::,dg 3 [0, 1]d 3 [0, 1] 3 f1, . . . , qg:

Let

f� j
k(x), U

j
k(x), U j

�(x), U�(x), � (x) : k ¼ 1, 2, . . . , j ¼ 1, . . . , d, x 2 Vg

be independent random variables with � j
k(x) exponential of mean 1, U

j
k(x), U j�(x) and U�(x)

uniform [0, 1], and � (x) uniform on f1, . . . , qg. For each x 2 V, put

Y (x) :¼ ((� j
k(x), U

j
k(x))k¼1,2,:::, j¼1,:::,d , (U j

�(x)) j¼1,:::,d , U�(x), � (x)):

Set p :¼ 1� e�2�, and construct a f0, 1gE-valued edge configuration X G
p,q with

distribution WRCG
p,q by the dynamical construction in Section 3, where for each e 2 E

we take

(�e
k , U e

k)k¼1,2,... :¼ (� j
k(x), U

j
k(x))k¼1,2,..., (25)

where x 2 V and j 2 f1, . . . , dg are chosen in such a way that e ¼ [x, Zx
j], and, if we denote

x 2 V and j 2 f1, . . . , dg are chosen in such a way that e ¼ [x, Zx
j], and, if we denote

y :¼ Zx
j and j9 is such that x ¼ Z

y

j9, then U
j
�(x) , U

j9
�(y). This choice of x and j is almost

surely unique.

From X G
p,q, we obtain the desired spin configuration X 2 f1, . . . , qgV with distribution

WPtG
q,�,r by assigning spins to the connected components of X G

p,q as in Proposition 2.4: all

vertices in infinite connected components in X G
p,q are assigned value r, whereas the vertices

of each finite connected component C are assigned value � (x), where x is the vertex in C
that minimizes U�(x). It is obvious that this mapping Y 7! X from SV to f1, . . . , qgV is

Aut(G)-equivariant, and that the resulting spin configuration has distribution WPtG
q,�,r.

Hence, WPtG
q,�,r is a factor of a standard i.i.d. process.

To see that the action of ˆ on WPtG
q,�,r is free under the additional hypotheses (i) stated

in the lemma, it suffices to show that for any ª 2 ˆ other than the identity,

P[ŁªX ¼ X ] ¼ 0. From the hypotheses, we may find an infinite set W of vertices such

that ªx =2 W for all x 2 W and ªx 6¼ ªy for distinct x, y 2 W . Because of (7), by repeated

conditioning we see that there is some c , 1 such that for any x1, . . . , xn 2 W, we have

P[X (xi) ¼ X (ª�1xi) for all i ¼ 1, . . . , n] < cn. Therefore P[ŁªX ¼ X ] ¼ 0.

Now consider hypothesis (ii). Again because of (7), there is some c , 1 such that if A

and A9 are two finite sets of vertices that are not identical, then the chance is at most c that

the number of spins in A equal to 1 is the same as the number of spins in A9 equal to 1,

even given all spins outside A [ A9. Suppose that x 6¼ y and x and y are in the same orbit.

Let W (x, y) be the set of spin configurations such that, for some n, the number of spins in

Sn(x) equal to 1 differs from the number in Sn(y). By our assumption and the fact just

noted, it follows that W (x, y) has probability 1. Hence, so does W :¼
T

x, y W (x, y). It is

clear that ˆ acts freely on W . h
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5. Further remarks on the coupling construction

5.1. Critical behaviour of the random-cluster model

Let us mention another application of the pointwise construction in Section 3. Consider the

random-cluster model on an infinite quasi-transitive graph G at some fixed value of q. We

shall let p vary. Clearly, by stochastic monotonicity, the FRCG
p,q- and WRCG

p,q-probabilities

of having some infinite open cluster are increasing in p. Furthermore, by ergodicity, these

probabilities must be 0 or 1 for any given p (although the FRCG
p,q-probability does not

necessarily equal the WRC
G
p,q-probability). Hence, there exist critical values pfree

c :¼
pfree

c (G, q) and pwired
c :¼ pwired

c (G, q) such that

FRCG
p,q(9 at least one infinite cluster) ¼

0 for p , pfree
c ,

1 for p . pfree
c

(
(26)

and

WRCG
p,q(9 at least one infinite cluster) ¼

0 for p , pwired
c ,

1 for p . pwired
c :

(
(27)

it is natural to ask whether or not there is an infinite cluster at criticality. In Häggström et al.

(2001) we proved that when G is a unimodular non-amenable quasi-transitive graph, then the

answer is no for FRC. In other words,

FRCG
pfree

c,q
, (9 at least one infinite cluster) ¼ 0: (28)

The proof in Häggström et al. (2001) of (28) uses, as a key ingredient, the existence of an

automorphism-invariant coupling of the measures FRCG
p,q for different p that witnesses the

stochastic domination (10). Such a coupling was provided in Section 3 of the present paper.

It seems reasonable to expect that (28) extends to all quasi-transitive graphs (except those

for which the critical value is 1). For q ¼ 1, this was conjectured by Benjamini and

Schramm (1996). The situation for WRC seems to be more complicated. For instance, as

shown in Chayes et al. (1986) and Häggström (1996), when G is the regular tree Tn with

n > 2, we obtain that the WRCG
pwired

c ,q
-probability of seeing an infinite cluster is 0 or 1

depending on whether q 2 [1, 2] or q . 2.

5.2. Simultaneity statements

For quasi-transitive graphs, the famous finite-energy argument of Newman and Schulman

(1981) shows that the number of infinite clusters must (under either FRC or WRC, and for

fixed p and q) be an a.s. constant, and either 0, 1 or 1. For unimodular quasi-transitive

graphs, Lyons (2000) obtained the necessary uniqueness monotonicity statement for deducing

that (in addition to the critical values in (26) and (27)), there exist critical values pfree
u and

pwired
u such that
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FRCG
p,q(9 a unique infinite cluster) ¼

0 for p , pfree
u ,

1 for p . pfree
u

(
(29)

and

WRCG
p,q(9 a unique infinite cluster) ¼

0 for p , pwired
u ,

1 for p . pwired
u :

(
(30)

(For q ¼ 1 this goes back to Häggström and Peres (1999) and Schonmann (1999).) See

Häggström et al. (2001) for a detailed discussion of how the four critical values pfree
c , pwired

c ,

pfree
u and pwired

u relate to each other.

It is not obvious that, in the coupling of Section 3, (29) and (30) hold simultaneously for

all p and q. This is in fact an open problem, and we conjecture the following strengthening,

analogous to the simultaneous uniqueness results of Alexander (1995), Häggström and Peres

(1999), Häggström et al. (1999) and Schonmann (1999):

Conjecture 5.1. Let G ¼ (V , E) be connected and quasi-transitive. For a configuration

� 2 f0, 1gE, write N (�) for the number of infinite clusters in �. Let D be the set of

quadruples ( p1, p2, q1, q2) such that

p1 < p2 and
p1

(1� p1)q1

<
p2

(1� p2)q2

,

with at least one of these inequalities being strict. In the notation of Section 3 we have,

almost surely for all quadruples ( p1, p2, q1, q2) 2 D simultaneously, that each infinite cluster

of Y contains N (X ) infinite clusters of X , where X and Y may be any of the following three

pairs of random variables:

(i) X ¼ free X
G
p1,q1 and Y ¼ free X

G
p2,q2 ;

(ii) X ¼ wired X G
p1,q1

and Y ¼ wired X G
p2,q2

;

(iii) X ¼ free X G
p1,q1

and Y ¼ wired X G
p2,q2

.

5.3. Another open problem

Let us finally discuss another open problem concerning our coupling in Section 3. For

p1 , p2, define

˜q( p1, p2) :¼ min p2 � p1,
p2

p2 þ (1� p2)q
� p1

p1 þ (1� p1)q

� �

and note that ˜q( p1, p2) . 0. For e 2 E and � 2 f0, 1gEnfeg, write A(�, e, p, q) for the event

that free X G
p,q(Enfeg) ¼ �. From the fact that FRCG

p,q is a DLR random-cluster measure, it

follows that for any e 2 E and almost any (�, �) 2 (f0, 1gEnfeg)2 with respect to the law of

(free X G
p1,q(Enfeg), free X G

p2,q(Enfeg)) under our coupling (which implies that � d �), we have
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P(free X G
p2,q(e) ¼ 1 j A(�, e, p2, q))� P(free X G

p1,q(e) ¼ 1 j A(�, e, p1, q)) > ˜q( p1, p2) (31)

(and similarly for wired random-cluster measures; everything we say in relation to Question

5.2 applies as well to the wired case as well as to the free. From this, one is easily seduced

into thinking that

P(free X G
p2,q(e) ¼ 1 , free X G

p1,q(e) ¼ 0 j A(�, e, p2, q) \ A(�, e, p1, q)) > ˜q( p1, p2) , (32)

but to conclude this directly from (31) is unwarranted, because conditioning on � and �
jointly is not the same as conditioning on them separately. It is nevertheless natural to ask

whether something like (32) is true. In particular, the following question asks for a weaker

property.

Question 5.2. For p1 , p2 and q > 1, does there exist an � . 0 (depending on p1, p2 and q)

such that, for any e 2 E and almost any (�, �) 2 (f0, 1gEnfeg)2, we have

P(free X G
p2,q(e) ¼ 1 , free X G

p1,q(e) ¼ 0 j A(�, e, p2, q) \ A(�, e, p1, q)) > �?

A positive answer to this question (for our coupling or for some other automorphism-

invariant witness to the stochastic inequality FRCG
p1,q d

D
FRCG

p2,q) is precisely the missing

ingredient that prevented Häggström and Peres (1999) from extending their uniqueness

monotonicity result for i.i.d. percolation (q ¼ 1) for unimodular quasi-transitive graphs to

the more general case q > 1 – that is, from proving the relations (29) and (30) that were

later obtained by Lyons (2000). Such a positive answer might perhaps also be an ingredient

in applying the reasoning of Schonmann (1999) in order to remove the unimodularity

assumption in these results.
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Häggström, O., Schonmann, R.H. and Steif, J.E. (2000) The Ising model on diluted graphs and strong

amenability. Ann. Probab., 28, 1111–1137.
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