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Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France.

E-mail: Anne.Philippe@univ-lille1.fr
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In this paper, we consider an asymptotic Bayesian analysis for Gaussian processes with long memory.

First, we determine the asymptotic expansion of the posterior density based on a normal

approximation. This expansion leads to the construction of Bayesian confidence regions such as

highest posterior density regions and to the determination of matching prior. Then, we generalize

Clarke and Barron’s result in the long-memory set-up. More precisely, we establish the asymptotic

expansion of the Kullback–Leibler distance between the true density and the marginal density of the

observations. As in the independent and identically distributed case, this result gives an asymptotic

justification of Berger and Bernardo’s algorithm to obtain reference priors.
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1. Introduction

In this paper we consider a stationary Gaussian long-memory process (X n)n2N whose spectral

density has the following form:

fŁ(º) � jºj�Æ(Ł) LŁ(º), Ł 2 ¨ � Rk , as º ! 0, (1)

where Æ(Ł) 2 (0, 1), and LŁ is a slowly varying function around 0, continuous on the subset

[��, �] � f0g. For instance, the well-known autoregressive fractionally integrated moving

average (ARFIMA) processes are contained in this class of processes. The ARFIMA

processes satisfy equations of the form

P(B)(1 � B)d X n ¼ Q(B)En

where En is a Gaussian white noise, d 2 (�1
2
, 1

2
), B denotes the backward shift operator and P

and Q are polynomials whose roots are outside the unit circle (see Granger and Joyeux 1980;

and Hosking 1981). The spectral density of X n is then
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j1 � e�iºj�2d �
2

2�

jQ(eiº)j
jP(eiº)j : (2)

Thus, Ł ¼ (d, � , ł, �) where (ł, �) are the parameters of the ARMA process, Æ(Ł) ¼ 2d

and

LŁ(º) ¼ � 2

2�

jQ(eiº)j
jP(eiº)j :

An extensive literature is devoted to the analysis of stationary long-memory time series.

Many heuristic methods have been considered to estimate the long-memory parameter Æ(Ł)

(see Beran 1994, for a review). From a frequentist point of view, many authors have studied

the Gaussian maximum likelihood estimator as well as the Whittle estimator (see Dahlhaus

1989; Fox and Taqqu 1986; Giraitis and Surgalis 1990). In particular, the asymptotic

properties of these estimators, such as asymptotic normality, are well established.

Bayesian analysis was introduced for Gaussian long-memory processes, by Carlin et al.

(1985) in the special case of Gaussian ARFIMA models. More recently, Koop et al. (1994;

1997) and Pai and Ravishanker (1998) have proposed a different Bayesian analysis in the

same set-up using the exact likelihood to obtain the posterior distribution. We recall that in

the Gaussian case, the likelihood function is given by

pn
Ł(X ) ¼ e�X T��1

n X=2

det[
P

n]1=2(2�)n=2
,

where �n is the covariance matrix and X T denotes the transpose of X , as it does throughout

this paper. The difficulty here is to calculate ��1
n explicitly. Koop et al. (1997) use Sowell’s

method to calculate ��1
n recursively (see Sowell 1992). Pai and Ravishanker (1998)

incorporate latent variables to obtain the explicit form of the likelihood function. In both

studies, given the complexity of the models, Monte Carlo methods are used to evaluate the

properties of the posterior distribution. None of these studies give asymptotic results, such as

the convergence of their estimators. There are no results on the approximation of the

posterior density, which is a common way of constructing Bayesian confidence regions.

The choice of the prior distribution in the Bayesian set-up is important. When there is

no, or hardly any, prior information on the model, it is necessary to use default procedures

to determine the prior. Osiewalski and Steel (1993) study some priors in terms of robustness

with respect to the model considered. However, none of the papers mentioned previously

consider fully non-informative priors.

Two main procedures are often considered in the non-informative set-up: one of these

leads to the reference prior defined by Bernardo (1979) and Berger and Bernardo (1992a;

1992b); the other is the matching procedure, as defined by Welch and Peers (1963), for

instance. There is a vast literature on both types of non-informative prior in the independent

and identically distributed (i.i.d.) set-up. In particular, Clarke and Barron (1990) study very

carefully the asymptotic behaviour of the Kullback–Leibler divergence between the

posterior and the prior, when there are no nuisance parameters, which validates

asymptotically the reference prior algorithm. In a similar way, Ghosh and Mukerjee

(1992) obtain the same type of expansions in the nuisance parameter case. Other
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approaches, based on the same kind of ideas, are also considered; see, for instance, Clarke

and Sun (1997). The frequentist validation of priors, as used in the construction of matching

priors, is also a criterion for the choice of a non-informative prior. Berger and Bernardo

(1989), in particular, use these matching priors to choose a single prior among a certain

number of candidate reference priors; see Ghosh et al. (1995). There is a large literature on

the validation and determination of matching priors. Welch and Peers (1963) and Peers

(1965) study matching priors based on one-sided intervals in the one-dimensional and in the

nuisance parameter case respectively, when the observations are i.i.d. Their results are

improved by Tibshirani (1989), who gives the general form of such non-informative priors,

provided there is an orthogonal parametrization. Datta and Ghosh (1995) and Datta (1996)

study simultaneous and joint matching priors in the multidimensional set-up; Mukerjee and

Dey (1993) and Datta and Ghosh (1995) determine second-order matching priors in the

two-dimensional case and in the multidimensional case, respectively. Other types of

matching priors are also considered; see, for instance, Ghosh and Mukerjee (1992; 1993).

However, none of these studies consider dependent processes.

In Section 2, we determine an asymptotic expansion for the posterior density based on a

normal approximation. This is of primary interest since it allows for the construction of

confidence regions such as Bayesian intervals or highest posterior density regions. Another

important application of such expansions is the determination of matching priors, which is

done in Section 2.2.

In Section 3, we establish a result similar to that of Clarke and Barron (1990) in the

long-memory set-up. In other words, we obtain a first-order asymptotic expansion of the

relative entropy (or the Kullback–Leibler distance) between the true distribution and the

mixtures of distributions (or the marginal distribution of the sample). The applications

considered by Clarke and Barron (1990) can therefore be obtained in the long-memory

case, and, in particular, the asymptotic validation of the reference priors.

The asymptotic results obtained in Sections 2 and 3 are formally the same as in the i.i.d.

case, although the techniques used are different. The main tools used here are central limit

theorems for quadratic forms and uniform convergence theorems for products of Toeplitz

matrices, instead of the usual law of large numbers and central limit theorems for sums of

i.i.d. random variables.

In this paper we confine ourselves to Gaussian processes; this condition is particularly

important in a Bayesian framework. The Bayesian inference is obtained from the posterior

distribution, which follows from an application of Bayes’s rule. Therefore, it requires a

closed form of the likelihood function. In general, a closed form of the likelihood function

is not available for long-memory processes unless the Gaussian assumption holds. Note that

there is work on Bayesian inference (via simulation) without an explicitly available

likelihood for other types of process; see, for instance, Geyer (1999) for point processes.

Moreover, in this paper we study processes which follow the same kind of assumptions as

those of Dahlhaus (1989). We assume that if Ł 6¼ Ł9 then f fŁ(º) 6¼ fŁ9(º)g has positive

Lebesgue measure. We denote the covariance function of the process by ªŁ(n), n 2 N, where

ªŁ(n) ¼
ð�
��

eiºn fŁ(º)dº:
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We also need the following assumptions:

Assumption 1. fŁ(º) is s þ 1 times continuously differentiable with respect to Ł, where s > 3,

and each derivative is continuous in (º, Ł), º 6¼ 0. In addition, fŁ(º)�1 is continuous in (º, Ł)

for all (º, Ł).

Assumption 2. The derivatives (@=@º) fŁ(º)�1 and (@2=@º2) fŁ(º)�1 are continuous in (º, Ł)

for º 6¼ 0 and

@

@º

� �k

fŁ(º)�1 ¼ O(jºjÆ(Ł)�k��),

for k ¼ 0, 1, 2 and all � . 0.

Assumption 3. For all � . 0, for all ( j1, . . . , jm), m < s þ 1, and for º 2 (0, �),

@m fŁ(º)�1

@Ł j1 . . . @Ł jm

¼ O jºjÆ(Ł)��
� �

:

Assumption 4. In differentiating ªŁ(n) with respect to Ł, the derivatives indicated in

Assumption 3 may be taken inside the integral sign.

Assumption 5. Over any compact subset ¨� � ¨, the constants implied by the order bounds

in Assumptions 2 and 4 may be chosen independently of Ł.

Assumption 6. The function Æ(Ł) is continuous in Ł.

These assumptions are fairly classical; the classical ARFIMA and fractional exponential

(FEXP) models satisfy them. Note that FEXP models are presented in Section 3.2 to

illustrate the construction of the reference priors.

In the following section we prove that the posterior density is approximately Gaussian

and that it allows for a Laplace expansion to the order s. We then use this result to

determine matching priors.

2. Laplace expansion for long-memory processes

Laplace expansions of posterior distributions have many applications: among others, the

construction of Bayesian confidence regions and the asymptotic performance of Bayes

estimates. An asymptotic expansion such as the one obtained in Theorem 1 below enables us

to approximate terms like
Ð

h(Ł)�(ŁjX n)dŁ. This leads to the posterior mean, for instance, if

h(Ł) ¼ Ł. If h(Ł) is an indicator function of a set, we obtain a posterior coverage and we can

then construct a good approximation of Bayesian confidence regions. Moreover, this can also

be used to calculate Edgeworth expansions of frequentist coverages of confidence sets, by
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using the shrinkage argument as developed by Sweeting (1995). Another application of this

expansion is the determination of matching priors, which is developed in Section 2.2.

Let j and � denote respectively the density and the cdf of a standard Gaussian random

vector, and jV the density of a Gaussian random vector with zero mean and covariance

matrix V . We denote

D
 g(Ł) ¼ @j
j g(Ł)

@Ł
1

1 . . . @Ł
 k

k

where 
 ¼ (
1, . . . , 
k) and j
j ¼
Pk

i¼1
i. We also write Dj1... j r
g(Ł) for the rth derivative of

g with respect to (Ł j1 , . . . , Ł j r
), ( j1, . . . , jr) 2 f1, . . . , kgr, i.e.

Dj1... j r
g(Ł) ¼ @ r g(Ł)

@Ł j1 . . . @Ł j r

:

Finally, ln(Ł) is the log-likelihood function, and Ł̂Ł the maximum likelihood estimator.

2.1. Expansion of the posterior distribution

Theorem 1. Let Ł0 be fixed in the interior of ¨ � Rk , and X be a Gaussian process

satisfying Assumptions 1–6. In this section, we denote X n ¼ (X1, . . . , X n). Let � be a prior

on ¨ with compact support, and such that �(Ł0) . 0. Assume that � is s � 2 times

continuously differentiable. Then, for any smooth Borel subset A of ¨,ð
A

�(ŁjX n)dŁ ¼
ð ffiffiffi

n
p

(A�Ł̂Ł)

jJ�1
n

(u) 1 þ
Xs�2

j¼1

Pj(u, X n)

n j=2

24 35du þ oP n
Ł0

(n�(s�2)=2), (3)

where the Pj(u, X n) are polynomial functions of u whose coefficients depend only on X n and

J n is the observed information matrix calculated at Ł̂Ł, i.e.

(J n)r,s ¼ � @ 2 ln(Ł̂Ł)

@Łr@Łs

, r, s < k:

The above result is uniform over all compact subset of ¨.

Proof. The proof follows the same ideas as in Johnson (1970). We have

ln(Ł) ¼ ln(Ł̂Ł) � n(Ł� Ł̂Ł)J
n
(Ł� Ł̂Ł)

2
þ . . . þ 1

s!

Xk

j1,..., js¼1

(Ł� Ł̂Ł) j1 . . . (Ł� Ł̂Ł) js
Dj1... js

l n(~ŁŁ),

where ~ŁŁ 2 (Ł, Ł̂Ł). Similarly, if we write ł(Ł) ¼ log(�(Ł)), we obtain

ł(Ł) ¼ ł(Ł̂Ł) þ . . . þ
Xk

j1,..., js�2¼1

(Ł� Ł̂Ł) j1 . . . (Ł� Ł̂Ł) js�2

(s � 2)!
Dj1... js�2

ł(Ł),
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where Ł 2 (Ł, Ł̂Ł).

Denote

k n(Ł) ¼ � n(Ł� Ł̂Ł)J n(Ł� Ł̂Ł)

2
þ . . . þ 1

(s � 1)!

Xk

j1,..., js�1¼1

(Ł� Ł̂Ł) j1 . . . (Ł� Ł̂Ł) js�1
Dj1... js�1

ln(Ł̂Ł):

The idea of the proof is to integrate the above Taylor expansions. To do so we need the

following lemmas, whose proofs are given in the Appendix. These lemmas are along the lines

of Johnson’s (1970), but the proofs are typical of Gaussian long-memory processes and differ

from those of the i.i.d. case.

Lemma 1. For all Ł0 in the interior of ¨, for any � . 0 (such that fjŁ� Ł0j < �g � ¨),

there exist M > 0 and S1 � Rn such that, for any j
j < s,���� D
 ln(Ł9)

n

���� < M , 8jŁ9� Ł0j , �, 8X 2 S1

with Pn
Ł0

[Sc
1] ¼ o(n�h), for all h > 0.

Lemma 2. Let K be a compact subset of ¨, and let � . 0. For all Æ 2 (0, 1) and all E . 0,

there exists a set SÆ such that, for all X 2 SÆ,

l n(Ł) � ln(Ł0) < �nÆE, 8Ł 2 K \ N c
�,

and

Pn
Ł0

[Sc
Æ] ¼ o(n�h), 8h . 0:

Let S2 ¼ fjŁ0 � Ł̂Łj < �=2g \ S1(�). Then, according to Lieberman et al. (1999),

Pn
Ł0

[jŁ̂Ł� Ł0j . �=2] ¼ o(n�h), 8h . 0:

Therefore, Lemma 1 implies that Pn
Ł0

[Sc
2] ¼ o(n�h), for all h . 0, and when jŁ� Ł0j , �=2,

j~lln(Ł) � ~lln(Ł̂Ł) � k n(Ł)j < Mn�(s�2)=2

on S2, where ~lln ¼ ln þ ł. Let X be in S2. We haveð�
��
jexpf[~lln(Ł) � ~lln(Ł̂Ł)]g � expfk n(Ł)gjdŁ , M1 n�(s�2)=2: (4)

Let z ¼ ffiffiffi
n

p
(Ł� Ł̂Ł). Since

k n(z) ¼ �zT J nz=2 þ
Xs�3

i¼1

n�i=2 Pi(z; D
 ln(Ł̂Ł)=n),

where the Pi are polynomial functions of z with coefficients depending only on terms such as

D
 ln(Ł̂Ł)=n which are bounded on S2,
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exp[k n(z)] ¼ e�zT Jn z=2 1 þ
Xs�3

j¼1

Qj(z; D
 ln(Ł)=n)

n j=2
þ Rn(z)

n(s�2)=2

0@ 1A,

where Rn(z) is an infinite sum of powers of the Pj, and the Qj are polynomial functions of z

similar to the Pj. When jŁ� Ł0j , �, each term appearing in the Pj is bounded by a constant

M , thus there exists M3 such that on S2,����Xs�3

i¼1

n�i=2 Pi(z; D
 ln(Ł̂Ł)=n)

���� < M3, 8jzj < n1=2�:

The infinite sum Rn(z) converges uniformly on jzj < ffiffiffi
n

p
�; therefore, there exists M2 such

thatð�
��

exp[k n(Ł)] � e�n(Ł�Ł̂Ł)T J n(Ł�Ł̂Ł)=2 1 þ
Xs�3

j¼1

Qj(
ffiffiffi
n

p
(Ł� Ł̂Ł); D
 ln(Ł̂Ł)=n)

n j=2

 !�����dŁ < M2 n�(s�2)=2:

�����
(5)

Lemma 2 and equations (4) and (5) imply that there exist b1, . . . , bb(s�3)=2c such that

b j ¼ OP n
Ł0

(1) andð
¨

e l n(Ł)þł(Ł) dŁ ¼ e l n(Ł̂Ł)(2�)k=2det[J n]�1=2 1 þ b1

n
þ . . . þ

bb(s�3)=2c

nb(s�3)=2c þ OP n
Ł0

(n�(s�2)=2)

� �
,

and Theorem 1 follows. h

2.2. Application to the determination of matching priors

We apply this result to the determination of priors matching the frequentist and the Bayesian

coverage of one-sided intervals. Let Ł ¼ (Ł1, . . . , Łk). We consider one-sided intervals for Ł1,

the nuisance parameter being (Ł2, . . . , Łk):

P�[fŁ1 < k n(Æ)gjX ] ¼ Æ:

Let I(Ł) be the asymptotic Fisher information matrix:

I(Ł) ¼ lim
n!1

I n(Ł), (I n(Ł))r,s ¼ � 1

n
EŁ

@2 ln(Ł)

@Łr@Łs

$ %
, r, s < k:

We thus obtain

(I(Ł))r,s ¼
1

4�

ð�
��

Dr fŁ(º)Ds fŁ(º)

f 2
Ł(º)

dº, r, s < k:

We have the following theorem:

Theorem 2. Under Assumptions 1–6, the frequentist coverage of fŁ1 < k n(Æ)g has

Edgeworth expansion
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Pn
Ł[Ł1 < k n(Æ)] ¼ Æþ j(��1(Æ))ffiffiffi

n
p I1(Ł)D log�(Ł)ffiffiffiffiffiffiffiffiffiffiffiffi

I11(Ł)
p � DT (I1(Ł))T=

ffiffiffiffiffiffiffiffiffiffiffiffi
I11(Ł)

p� �( )

þ P2(Ł, �, Æ)

n
þ . . . þ Ps�2(Ł, �, Æ)

n(s�2)=2
þ o(n�(s�2)=2), (6)

where I1 denotes the first row of the inverse of I , and P2, . . . , Ps�2 are continuous functions

of Ł and are formally the same as in the i.i.d. case.

Proof. The proof follows from Theorem 1 and the result of Lieberman et al. (1999) result on

the existence of the Edgeworth expansion. h

Therefore, matching priors are the solutions of

I1(Ł)D log�(Ł)ffiffiffiffiffiffiffiffiffiffiffiffi
I11(Ł)

p � DT (I1(Ł))T=
ffiffiffiffiffiffiffiffiffiffiffiffi
I11(Ł)

p� �
¼ 0: (7)

In the one-dimensional case, we obtain Jeffrey’s prior. In the multivariate case, however, the

determination of the solutions of (7) can be very difficult. Consider, for instance, an

ARFIMA(1, d, 1); some terms in I1 are defined as infinite sums and the solutions, if they

exist, would also be defined as infinite sums. However, in the case of ARFIMA(0, d, 0), it is

possible to determine the matching priors in closed form. In this case the spectral density is

equal to

fŁ(º) ¼ � 2

2�
e�d log[2(1� cos º)]:

The parameter is then (d, � ). Suppose that d is the parameter of interest. Then the matching

priors are in the form

�(d, � ) ¼ �e�c1 d h(� 2e�c1 d),

where h is any real function twice continuously differentiable and the constant c1 is given by

c1 ¼
1

4�

ð�
��

log[2(1 � cos º)]2 dº: (8)

For ARFIMA( p, d, q) models, Pai and Ravishanker (1998) and Koop et al. (1997) use

the prior �(Ł) ¼ � �1. In the particular case of the ARFIMA(0, d, 0) model, this prior is a

matching prior by taking h(x) ¼ x. However, it does not satisfy equation (7) in other

ARFIMA( p, d, q) processes ( p or q . 0) and therefore it is not a matching prior for these

models.

We will see in Section 4 that these priors lead to proper posteriors, except on a subset

with null Lebesgue measure, if h is integrable on Rþ or if h(u) / u� p, p . 0. In particular

�(d, � ) / � �1 is obtained by considering h(u) ¼ u�1.
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3. Information-theoretic asymptotics

Another type of asymptotics is important in the Bayesian framework, namely the information-

theoretic asymptotics. This was studied in the i.i.d. case by Clarke and Barron (1990) and can

be applied to many set-ups. In particular, they give an information interpretation to Berger

and Bernardo’s reference priors.

In this section, we state the validity of the expansion of the Kullback–Leibler divergence

between the distribution Pn
Ł0

and the marginal distribution of X , M n, i.e.

K[Pn
Ł0
jM n] ¼ EP n

Ł0
(log( pn

Ł0
(X )=m(X ))),

where m(X ) and pn
Ł0

are the densities of M n and Pn
Ł0

respectively, with respect to Lebesgue

measure. We prove that the expansion is formally the same as in the i.i.d. case. We then use

this result to validate asymptotically Berger and Bernardo’s reference priors.

3.1. Main theorem

Theorem 3. Let Ł0 be fixed in the interior of ¨, and suppose that the Gaussian process

satisfies Assumptions 1–6 with s ¼ 3. Let � be a prior on ¨ continuously differentiable with

�(Ł0) . 0 and compact support. Then, uniformly in Ł0 over all compact subsets of ¨,

lim
n!1

K[Pn
Ł0
jM n] � k

2
log

n

2�

� �
¼ �log�(Ł0) þ 1

2
log det[I(Ł0)] � k

2
: (9)

In L1(Pn
Ł0

) as well as in probability,

lim
n!1

log
pn
Ł0

(X )

m(X )
þ 1

2
ST

n I(Ł0)�1Sn �
k

2
log

n

2�

� �
¼ �log�(Ł0) þ 1

2
log det[I(Ł0)], (10)

where Sn ¼ n�1=2 Dln(Ł0).

Proof. The proof is essentially the same as that of Clarke and Barron in the sense that the

decomposition of Rn is the same. However, the control of lim sup E[Rn] differs.

Let

Rn ¼ log
pn
Ł0

(X )

m(X )
� k

2
log

n

2�
� log�(Ł0) þ log det[I(Ł0)]

2
� ST

n I(Ł0)�1Sn

2

� �
:

The idea is to prove that lim EjRnj ¼ 0. Let

N� ¼ fŁ; jŁ� Ł0j < �g,

An(�, E) ¼
ð

N c
�

pn
Ł(X )�(Ł)dŁ < E

ð
N�

pn
Ł(X )�(Ł)dŁ

( )
,

Bn(�, E) ¼ (1 � E)(Ł� Ł0)T I(Ł0)(Ł� Ł0) < (Ł� Ł0)T J n(~ŁŁ)(Ł� Ł0)
'
< (1 þ E)(Ł� Ł0)T I(Ł0)(Ł� Ł0), 8Ł, ~ŁŁ 2 N�g,
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where J n(Ł) ¼ �D 2 ln(Ł)=n and

Cn(�) ¼ fn�1Sn(Ł0)T I(Ł0)�1Sn(Ł0) < �2g

for � . 0 and E . 0. Using the same kind of argument as Clarke and Barron, we obtain that

if Pn
Ł0

[Ac
n] ¼ o(log n�1) and Pn

Ł0
[Bc

n] ¼ O(n�1), then

lim inf E[Rn] > 0:

We also have

Rn <
E

2(1 þ E)
ST

n I(Ł0)�1Sn þ
k

2
log(1 þ E) þ r(�, Ł0) � log[1 � 2k=2 e�E2 n�2=8]

þ I[Bn\C n]c log
pn
Ł0

(X )

m(X )

� �þ
þ
���� k

2
log

n

2�
� log�(Ł0) þ log det[I(Ł0)]=2

����
" #

þ I(Bn\C n)c ST
n I(Ł0)�1Sn: (11)

We need only look at the first term on the right-hand side of (11), which we will denote by

A1. Let En ¼ fpn
Ł0

(X )=m(X ) . 1g. Then, by restricting the integral in the definition of m(X )

to N�,

EŁ0
[A1] < �EŁ0

I(Bn\C n)c\En
log

ð
N�

e l n(Ł)� l n(Ł0) �(Ł)

�(N�)
dŁ

 !" #
� Pn

Ł0
[(Bn \ Cn)c \ En]log�(N�)

< EŁ0
[I(Bn\C n)c\En

]1=2

ð
N�

En
Ł0
jln(Ł) � ln(Ł0)j2�(Ł)dŁ

� �1=2

� Pn
Ł0

[(Bn \ Cn)c]log�(N�),

and

En
Ł0
jln(Ł) � ln(Ł0)j2 ¼ 1

4
En
Ł0

(X T(��1
n (Ł) � ��1

n (Ł0))X )2

(

� 2EŁ0
(X T(��1

n (Ł) � ��1
n (Ł0))X )log

det[�n(Ł)]

det[�n(Ł0)]

þ log
det[�n(Ł)]

det[�n(Ł0)]

$ %2
)
:

Using the same argument as in the proof of Theorem 1, we obtain that

En
Ł0
jln(Ł) � ln(Ł0)j2 < nM�(n�3=2 þ 2),

where M does not depend on Ł (when Ł varies in a compact), which implies that

En
Ł0

[A1] < n1=2 M�1=2 n�3=2 þ 2
� �1=2

Pn
Ł0

[(Bn \ Cn)c \ En]1=2 � Pn
Ł0

[(Bn \ Cn)c]log�(N�):

Hence, to obtain (9) and (10) it only remains to prove
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Pn
Ł0

[Ac
n] ¼ o(log n�1), Pn

Ł0
[Bc

n] ¼ o(n�1), Pn
Ł0

[Cc
n] ¼ o(n�1),

uniformly over any compact subset of ¨. First, Theorem 1 implies that

Pn
Ł0

[Ac
n] ¼ Pn

Ł0

ð
N c

�

�(ŁjX )dŁ . E(1 þ E)�1

" #
<

Mffiffiffi
n

p ,

with M independent of Ł on a compact. Further, if J ij(Ł) is the (i, j)th component of J n(Ł),

we have,

Pn
Ł0

[Bc
n] < max

i, j
Pn
Ł0

sup
Ł2N�

jJ ij(Ł) � I ij(Ł)j . E=2k

" #
þ Pn

Ł0
sup
Ł2N�

jI ij(Ł) � I ij(Ł0)j . E=2k

" #( )
:

Similarly as in the proof of Lemma 1, we obtain that

Pn
Ł0

sup
Ł2N�

jJ ij(Ł) � I ij(Ł)j . E=2k

" #
¼ o(n�h),

for all h . 0 and all i, j < k. Since I ij(Ł) is continuous in Ł, there exists �0 . 0 such that,

for all �0 . � . 0, for all i, j < k,

sup
Ł2N�

jI ij(Ł) � I ij(Ł0)j , E=2k,

therefore,

Pn
Ł0

[Bc
n] ¼ o(n�h), 8h . 0:

We prove in the same way that

Pn
Ł0

[Cc
n] ¼ o(n�h), 8h . 0:

uniformly on compacts, and Theorem 3 is proved. h

This result can be applied to the asymptotic justification of Berger and Bernardo’s

algorithm. Indeed, � has compact support, thus expansion (9) can be integrated:ð
�(Ł) K[Pn

Ł jM n] � k

2
log

n

2�

$ %
dŁ ¼ � k

2
�
ð

log �(Ł)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det[I(Ł)]

p� �
�(Ł)dŁþ o(n�1):

Moreover, ð
�(Ł)K[Pn

Ł jM n]dŁ ¼ E[log(�(ŁjX )=�(Ł))],

therefore this term is maximised asymptotically with

�(Ł) /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det[I(Ł)]

p
,

as in the i.i.d. case.

The extension to the nuisance parameter case can thus be done exactly as in the i.i.d.

case.

Non-informative priors in Gaussian long-memory processes 461



We now present Berger and Bernardo’s algorithm. For simplicity’s sake, we confine

ourselves to the case of a two-bloc parameter. Consider Ł ¼ (Ł1, Ł2), where Ł1 2 R p is the

parameter of interest and Ł2 2 Rk� p is the nuisance parameter. According to Berger and

Bernardo (1992a; 1992b), the construction of the reference prior proceeds as follows:

1. �(Ł2jŁ1) /
ffiffiffiffiffiffiffiffiffiffi
jI2,2j

p
, where I2,2 is the lower right (k � p, k � p) corner of I(Ł1, Ł2).

2. �(Ł1) / expf1
2
E[log(jS�1

p, p(Ł)j)jŁ1]g, where S p, p is the upper left ( p, p) corner of I�1

and E[g(Ł)jŁ1] ¼
Ð

g(Ł)�(Ł2jŁ1) dŁ2.

3. �(Ł) ¼ �(Ł2jŁ1)�(Ł1).

We use this algorithm, in the following subsection, to determine reference priors for

ARFIMA and FEXP models.

3.2. Application to the determination of reference priors

3.2.1. ARFIMA models

Consider for instance the ARFIMA(0, d, 0) case. d is the parameter of interest and w ¼ � 2

is the nuisance parameter. The Fisher information matrix is

I(Ł) ¼ c1 �c2w�1

�c2w�1 w�2

� �
,

where c1 is given by (8) and

c2 ¼
1

4�

ð�
��

log[2(1 � cos º)]dº: (12)

Note that the Fisher information matrix does not depend on d. The reference prior is of the

form �(d, w) ¼ �(wjd )�(d ), with

�(wjd ) /
ffiffiffiffiffiffi
1

w2

r
¼ w�1,

�(d ) / 1,

according to Bernardo and Berger’s algorithm and the reference is given by �(d, w) ¼ w�1.

Note that the reference prior is contained in the class of matching priors; recall that this was

the prior used by Pai and Ravishanker (1998) and Koop et al. (1997) in ARFIMA( p, d, q)

models.

In the ARFIMA(1, d, 1) case, we have not obtained any explicit form for matching

priors, but we derive a reference prior below. The spectral density is

fŁ(º) ¼ we�d log[2(1�cos º)] j1 � �eiºj2
j1 � łeiºj2

and the Fisher information matrix is
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I(Ł) ¼

c1 �c2=w I13 I14

�c2=w w�2=2 0 0

I13 0 I33 I34

I14 0 I34 I44

0BB@
1CCA,

where I13, I14 depend only on (�, ł) and I33 ¼ 1=(1 � �2), I44 ¼ 1=(1 � ł2),

I34 ¼ �1=(1 � ł�).

If d is the parameter of interest and ø, �, ł the nuisance parameters, we obtain

�(djø, �, ł) /

w�2=2 0 0

0 I33 I34

0 I34 I44

���������

���������
1=2

/ w�1�J (�, ł),

�(d ) / 1,

where

�J (�, ł) / 1

(1 � ł2)(1 � �2)
� 1

(1 � ł�)2

� �1=2

is Jeffreys prior for an ARMA(1, 1) process when the variance of the white noise is known

and equals 1. We obtain

�(d, w, �, ł) / w�1 1

(1 � ł2)(1 � �2)
� 1

(1 � ł�)2

� �1=2

:

Thus, for this ARFIMA(1, d, 1) model, the prior used by Pai and Ravishanker (1998) and

Koop et al. (1997) does not coincide with the reference prior.

3.2.2. FEXP models

The FEXP process is defined in Beran (1994). Let g : [��, �] ! Rþ be a positive

symmetric function satisfying g(º) � º, as º goes to zero. Define f 0 ¼ 1 and let f 1, . . . , f p

be smooth and symmetric functions on [��, �]. Assume that there exists an integer n� such

that the matrix in R p3n� , with (i, j)th element f i(2� j=n) is non-singular. The spectral density

of an FEXP process is given by

g(º)1�2 H exp
Xp

i¼0

�i f i(º)

 !
, (13)

where H 2 [1
2
, 1) and �k 2 R for k 2 f0, . . . , pg. We assume that the functions f i and g are

known explicitly and thus the set of parameters to estimate is Ł ¼ (H , �0, . . . , � p) with

Æ(Ł) ¼ 1 � 2H , H being the parameter of interest. It is easy to show that the Fisher

information matrix I(H , �0, . . . , � p) does not depend on the parameter (H , �0, . . . , � p).

Therefore, the reference prior is the Lebesgue measure (i.e. �(H , �0, . . . , � p) / 1).

To our knowledge there are no other Bayesian analyses for these models.
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4. Posterior distributions

In this section, we study the propriety of the posterior distribution in some special cases.

Generally speaking, the likelihood function is

pn
Ł(X ) ¼ e�X T��1

n X=2

det[�n]1=2(2�)n=2
:

Suppose that the spectral density can be expressed as

fŁ(x) ¼ � 2

2�
(1 � cos x)�d LŁ2

(x), (14)

where LŁ2
is continuous in x on [��, �], and Ł ¼ (d, � , Ł2), Ł2 2 Rk�2.

Consider a prior of the form

�(Ł) ¼ � �Æ p(d, Ł2)

or bounded by a function in this form. Integrating over � leads to

�(d, Ł2jX ) / (X TS(d, Ł2)�1 X )�(nþÆ�1)=2

det[S]�1=2
p(d, Ł2), (15)

where �n ¼ � 2S with S independent of � . A proper prior on (d, Ł2) is not enough to obtain

the propriety of the posterior, since the right-hand side of (15) is not integrable as a function

of X . Therefore, it is necessary to specify the behaviour of (15), in the neighbourhood of the

boundaries of the stationary domain of X : f(d, Ł2); 8� . 0, such that the process X is

stationaryg. For example, in the case of an ARFIMA( p, d, q), defined by (2), these

boundaries are defined by d ¼ 1
2

or the norm of at least one of the roots of P and Q is equal

to 1. In the case of a FEXP process defined by (13) the boundaries are defined by d ¼ 1=2 or

�i ¼ 1 for at least one of the i in f1, . . . , pg.

Assume that ¨ ¼ [0, 1
2
[3Rþ 3¨2, where ¨2 is an open subset of Rk�2. Let LŁ2

be

continuously differentiable on [��, �], for all Ł2 2 ¨2. We then have the following result:

Lemma 3. Uniformly over all compact subsets of ¨2,

S ¼ r
(1
2
� d )

J þ ˆþ O(1
2
� d ), (16)

where J is the matrix in Rn whose components are all equal to 1 and ˆ is a non-singular

matrix with elements î, j ¼ g(i � j), where

g(k) ¼ � 1

2�

ð�
��

1 � eikxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cos x

p LŁ2
(x)dx,

and r ¼ r0 þ tr1, with r0 . 0.

Let X ¼
Pn�1

i¼1 xiˆUi þ xnUn, where the Ui are vectors whose components are null apart

from the ith component which is equal to 1 and the (i þ 1)th component which is equal to
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�1 and Un ¼ (1, 1, . . . , 1)T. Then ˆU1, . . . , ˆUn�1, Un are linearly independent and, as

d ! 1
2
,

(X TS(d, Ł2)�1 X )�(nþÆ�1)=2

det[S]1=2

¼

ffiffiffiffiffiffiffiffiffiffiffi
1
2
� d

q Xn�1

i, j¼1

xixjU
T
i ˆU j þ (1=2 � d )x 2

n=r

0@ 1A�(nþÆ�1)=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rtr[Cof(ˆ)J ]

p (1 þ O(1
2
� d )):

This implies in particular that, for ARFIMA (0, d, 0) models, priors of the form

�(d, � ) ¼ � �Æ�(d ),

where �(d ) ¼ O((1
2
� d )�3=2þE) lead to proper posteriors, except on a subset with null

Lebesgue measure.

For more complex models, one would also have to consider the behaviour of

[X TS�1 X ]�(nþÆ�1)=2=det[S]1=2 in a neighbourhood of the boundaries of ¨2. However, the

techniques would be very similar to those used in the following proof.

Proof. Let k > 1. Consider ~gg(k) ¼ ª(k) � ª(0). Then

~gg(k) ¼ � 1

2�

ð�
��

1 � eikx

(1 � cos x)d
LŁ2

(x)dx,

¼ �k r (0) � 2
Xk�1

p¼1

(k � p)r ( p) þ (1
2
� d )R(d, k)

¼ g(k) þ (1
2
� d )R(d, k),

where

r ( p) ¼
ð�
��

ei px
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � cos x)

p
LŁ2

(x)dx,

and R(d, k) converges to a constant depending on k and Ł2, as d goes to 1
2
.

The matrix ˆ given in the lemma is non-singular. Indeed, transformations of the form

row (i) ¼ row (i) � row (i þ 1), for i ¼ 1, . . . , n � 1, and column (i) ¼ column (i) �
column (i þ 1), i ¼ 1, . . . , n � 1, lead to the matrix
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M ¼

�2r (0) �2r (1) . . . �2r (n � 2) r (0) þ
Xn�2

i¼1

r (i)

�2r (1) �2r (0) . . . �2r (n � 3) r (0) þ 2
Xn�3

i¼1

r (i)

. . . . . . . . . . . . . . .

�2r (n � 2) �2r (n � 3) . . . �2r (0) r (0)

r (0) þ 2
Xn�2

i¼1

r (i) r (0) þ 2
Xn�3

i¼1

r (i) . . . r (0) 0

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
:

Denote by V the (n � 1) 3 (n � 1) upper left part of the above matrix. Then V can be

interpreted as �2 times a covariance matrix, since �2V ¼ T (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1 � cos x)

p
LŁ2

(x)), where T

denotes the Toeplitz operator. Then, MX ¼ 0 if and only �2V ~XX þ Hxn ¼ 0 and HT ~XX ¼ 0,

where X ¼ ( ~XX T, xn)T and

H ¼ (r (0) þ 2(r (1) þ . . . þ r (n � 2)), r (0) þ 2(r (1) þ . . . þ r (n � 3)), . . . , r (0))T:

This implies that HT ~XX ¼ HTV�1 Hxn=2 ¼ 0 if and only if xn ¼ 0, which also implies

that X ¼ 0. Moreover, Un is linearly independent of (ˆU1, . . . , ˆU n�1), therefore

(ˆU1, . . . , ˆUn�1, Un) is a basis, and for j ¼ 1, . . . , n � 1,

(J þ t=rˆ)�1ˆU j ¼
r
t

U j:

So let X ¼
Pn�1

i¼1 ˆUi þ xnU n;

X T[J þ t=rˆ]�1 X ¼ r
t

Xn�1

i, j¼1

xixjU
T
i ˆU j þ x 2

nU T
n[J þ t=rˆ]�1Un:

Let [J þ trˆ]Vn ¼ Un, with Vn ¼
Pn

i¼1viUi;

U T
n[J þ t=rˆ]�1Un ¼ U T

nVn ¼ vnU T
nUn:

We have

nvnUn þ
t

r

Xn

i¼1

viˆUi ¼ U n:

Let ˆUn ¼ Æ1ˆU1 þ . . . þ Æn�1ˆUn�1 þ ÆnU n; then nvn þ t=rvnÆn ¼ 1. Obviously

Æn 6¼ 0 and is independent of t, so

vn ¼ n þ tÆn

r

� ��1

¼ n � tÆn

r
þ O(t2):

Finally,
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X T[J þ t=rˆ]�1 X ¼ r
t

Xn�1

i, j¼1

xixjU
T
i ˆU j þ

x 2
n

r
1 � tÆn

nr

$ %
þ O(t2):

Moreover, U T
i ˆU j ¼ 2r (i � j), so the matrix (UT

i ˆU j)i, j¼1,...,n�1 is positive. We also have:

det[S] ¼ rn

t n
det[ˆ]det[ˆ�1 J þ t=rId]

¼ rn

t n
det[ˆ]

t n�1

rn�1
tr[ˆ�1 J ] þ t n

rn

 !

¼ rtr[Cof(ˆ)J ]

t
þ det[ˆ]:

ˆ is non-singular so rk[Cof(ˆ)J ] ¼ 1 and its trace is positive, and Lemma 3 is proved. h

Appendix

Proof for Lemma 1. Let S1 ¼ fX ; 81 < j
j < s, jD
 ln(Ł9)j=n < M ; jŁ9� Ł0j , �g, where

M will be specified later.

For all 1 < j
j < s,

D
 ln(Ł) ¼ � 1

2
X T D
 ��1

n

. /
X � 1

2
D
 log det �n½ �:

Thus this is a sum of quadratic forms associated with products of Toeplitz matrices in the

form

��1
n Tn(g1) . . . ��1

n Tn(g p)��1
n

and of traces of matrices such as

��1
n Tn(g1) . . . ��1

n Tn(g p),

where g1, . . . , g p are derivatives of the spectral density. Then, X 2 Sc
1 if and only if there

exists jŁ� � Ł0j , � such that ���� D
 ln(Ł�)

n

���� > M :

This implies that there exist (g1(Ł�), . . . , g p(Ł�)) such that either

n�1tr ��1
n Tn(g1) . . . ��1

n Tn(g p)(Ł�)
. /�� �� > cM
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or

n�1 X T��1
n Tn(g1) . . . ��1

n Tn(g p)(Ł�)��1
n (Ł�)X

�� �� > cM ,

where c is some positive constant depending only on 
. Since (see Lieberman et al. 1999)

sup
jŁ�Ł0j,�

n�1tr ��1
n Tn(g1) . . . ��1

n Tn(g p)(Ł)
. /

� 1

2�

ð�
��

fŁ(º) p
Yp

j¼1

g j,Ł(º)dº

�����
�����

goes to zero when n tends to infinity, if M is large enough (independently of n and Ł), we

only have to study

Pn ¼ Pn
Ł0

9jŁ� � Ł0j , �; X T��1
n Tn(g1) . . . ��1

n T n(g p)(Ł�)��1
n (Ł�)X

�� �� > cMn
. /

:

Let Ł be in a �-neighbourhood of Ł0. We denote by ˆn(Ł) the matrix

ˆn(Ł) ¼ ��1
n (Ł)Tn(g1(Ł)) . . . ��1

n Tn(g p)(Ł)��1
n (Ł):

Then, for 1
2
. a . 0, let

Z n ¼ n�1=2�a X T[ˆn(Ł) � ˆn(Ł0)]X � tr �n(Ł0)(ˆn(Ł) � ˆn(Ł0))½ �
' 1

We have that

Pn
Ł0

[jZ nj > Kn1=2�ajŁ� Ł0j] < e� tKn1=2�a

EŁ0
[e tZ n=jŁ�Ł0j þ e� tZ n=jŁ�Ł0j]

< 2e� tKn1=2�a
X1
k¼0

t k jEŁ0
[Z k

n]j
k!jŁ� Ł0jk

:

We proceed as in Dahlhaus’s (1989) proof of his Lemma 6.2. Let Id be the identity matrix.

The cumulant generating function, k n(t), is equal to

k n(t) ¼� t tr �n(Ł0)(ˆn(Ł) � ˆn(Ł0))½ �
n1=2þa

� 1

2
log det Id � 2t

n1=2þa
�1=2

n (Ł0)[ˆn(Ł) � ˆn(Ł0)]�1=2
n (Ł0)

$ %
;

unless otherwise specified, the covariance matrix �n is calculated at Ł0. So

k9n(t) ¼ � tr �n(Ł0)(ˆn(Ł) � ˆn(Ł0))½ �
n1=2þa

þ tr[(Id � tH n)�1 H n],

where H n ¼ 2n�1=2�a�n(Ł0)1=2[ˆn(Ł) � ˆn(Ł0)]�1=2
n and, for all j > 2,

d j k n(t)

dt j
¼ 2�1( j � 1)!tr[((Id � tH n)�1 H n)) j];
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therefore, the jth cumulant of Z n is equal to

C j(Z n) ¼ 2�1( j � 1)!tr[H j
n]:

As in Dahlhaus (1989), we denote

jAj2 ¼ tr[ATA],

for any matrix A, and

kAk2 ¼ sup
Y T Y¼1

Y TATAY :

Then,

tr[H j
n] ¼ tr �n(Ł0)(ˆn(Ł) � ˆn(Ł0))½ � j

' 1
n j=2þ ja

<
�1=2

n (Ł0)
�� ��2 �n(Ł0)1=2

� ��� �� j�2k(ˆn(Ł) � ˆn(Ł0))k j

n j=2þ ja

Since

�1=2
n (Ł0)

�� ��2¼ tr �n(Ł0)
. /

¼ nª(0)

and

�1=2
n (Ł0)

�� �� ¼ O(nÆ(Ł0)þE), 8E . 0,

we only have to study the behaviour of ˆn(Ł) � ˆn(Ł0). As in Dalhaus (1989), if each g j(Ł) is

continuously differentiable in Ł, then

kˆn(Ł) � ˆn(Ł0)k < jŁ� Ł0jk=ˆn(Ł9)k

where Ł9 2 (Ł, Ł0) and

kˆn(Ł) � ˆn(Ł0)k < KjŁ� Ł0jnb, 8b . 0:

Finally, we obtain that

jC j(Z n)j < K j( j � 1)!jŁ� Ł0j j n1þÆ(Ł0)( j�2)� j=2�ajþE j,

for all E . 0, where K depends only on E and �. Let a . Æ� 1
2
; then there exists c . 0 such

that

jC j(Z n)j < K j( j � 1)!n�cjjŁ� Ł0j j,

for all j > 2. So, for all Ł such that for all jŁ� Ł0j < �,

Pn
Ł0

jZ nj > Kn1=2�ajŁ� Ł0j
. /

< e� tKn1=2�a
X1
j¼1

(2Kt) j n� jc

< 2e� tKn1=2�a

(17)
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if 2Ktn�c , 1
2
. To obtain a bound for the supremum over T ¼ fjŁ� Ł0j < �g, we proceed

similarly to Pollard (1984); we thus construct a countable set T�, dense in T , such that

Pn
Ł0
jZ n(Ł)j . 5n1=2�a J (jŁ� Ł0j), for some Ł 2 T�
. /

< 2�1 expf�tn1=2�a log CgK, (18)

where J is a positive function on R satisfying J (�) , 1. Since Z n(Ł) is continuous in Ł,

sup
T

jZ n(Ł)j ¼ sup
T�

jZ nj,

and (4) becomes

Pn
Ł0

sup
T

jZ n(Ł)j . Kn1=2�a
$ %

< K9e�C9n1=2�a

where K, K9 and C9 are constants independent of n. Finally, since

n�1 X T��1
n Tn(g1) . . . ��1

n T n(g p)(Ł)��1
n (Ł)X ¼ n�1=2�a Z n(Ł) þ n�1tr �n(Ł0)ˆn(Ł)½ �

þ n�1=2 X Tˆn(Ł0)X � tr �n(Ł0)ˆn(Ł0)½ �
n1=2

,

there exist K and C such that

Pn < Ke�C9n1=2�a

if M is large enough. h

Proof of Lemma 2. We have

l n(Ł) � ln(Ł0) ¼ � 1

2
X T ��1

n (Ł) � ��1
n (Ł0)

. /
X þ 1

2
log det �n(Ł0)��1

n (Ł)
. /

:

Considering the same Taylor expansion as Dahlhaus (1989, p. 1754), we have

log det �n(Ł0)��1
n (Ł)

. /
¼ tr �n(Ł0)��1

n (Ł) � Id
. /

� 1

2

Xn

i¼1

(ºin � 1)2

[1 þ �(ºin � 1)]2
,

where � 2 (0, 1) and (º1n, . . . , ºnn) are the eigenvalues of �n(Ł0)��1
n (Ł). Therefore,

ln(Ł) � l n(Ł0) ¼� 1

2
X T ��1

n (Ł) � ��1
n (Ł0)

. /
X � tr �n(Ł0)��1

n (Ł) � Id
. /' 1

� 1

4

Xn

i¼1

(ºin � 1)2

[1 þ �(ºin � 1)]2
:

We first consider the second term on the right-hand side, dealing with it in a similar way

to Dalhaus (1989). If Æ(Ł) < Æ(Ł0), then 0 , ºin , [CjŁ� Ł0j þ 1] and

(ºin � 1)2

[1 þ �(ºin � 1)]2
> [CjŁ� Ł0j þ 1]�2(1 � ºin)2:
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Therefore, for all K � ¨ compact, there exists N . 0 such that, for all n > N , for all

Ł 2 K \ N c
�,

1

4

Xn

i¼1

(ºin � 1)2

[1 þ �(ºin � 1)]2
>

n[CjŁ� Ł0j þ 1]�2

8�

ð�
��

fŁ0
(x)

fŁ(x)
� 1

� �2

dx:

If Æ(Ł) > Æ(Ł0), then calculations of the same type imply that

1

4

Xn

i¼1

(ºin � 1)2

[1 þ �(ºin � 1)]2
>

n[CjŁ� Ł0j þ 1]�2

8�

ð�
��

fŁ(x)

fŁ0
(x)

� 1

� �2

dx:

Let

Z0
n ¼ X T ��1

n (Ł) � ��1
n (Ł0)

. /
X � tr �n(Ł0)��1

n (Ł) � Id
. /

:

Then

Pn
Ł0

[jZ nj . n1=2þÆ] <
EŁ0

[Z2k
n ]

nkþ2kÆ
<

Mk

n2kÆ

for all n > N and for all Ł 2 K (N depends only on k and K). Finally, for all Æ , 1, for all

n > N ,

Pn
Ł0

[ln(Ł) � ln(Ł0) > �nÆE] < Pn
Ł0

[jZ nj > nÆ(Ł) � nÆE] ¼ o(n�h),

for all h . 0. h
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