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We consider a Markov process X (t) with extended generator A and domain D(A). Let fF tg be a

right-continuous history filtration and P t denote the restriction of P to F t. Let ~PP be another

probability measure on (�, F ) such that d~PP t=dP t ¼ Eh(t), where

Eh(t) ¼ h(X (t))

h(X (0))
exp �

ð t

0

(Ah)(X (s))

h(X (s))
ds

� 	

is a true martingale for a positive function h 2 D(A). We demonstrate that the process X (t) is a Markov

process on the probability space (�, F , fF tg, ~PP), we find its extended generator ~AA and provide

sufficient conditions under which D(~AA) ¼ D(A). We apply this result to continuous-time Markov chains,

to piecewise deterministic Markov processes and to diffusion processes (in this case a special choice of

h yields the classical Cameron–Martin–Girsanov theorem).

Keywords: Cameron–Martin–Girsanov theorem; diffusion process; exponential change of measure;

extended generator; local martingale; Markov additive process; Markov process; piecewise

deterministic Markov process

1. Introduction

The technique of exponential change of measure has been successfully applied in various

theories such as large deviations (Ridder and Walrand 1992; Schwartz and Weiss 1995),

queues and fluid flows (Asmussen 1994; 1995; Kulkarni and Rolski 1994; Palmowski and

Rolski 1996; 1998; Gautam et al. 1999), ruin theory (Dassios and Embrechts 1989;

Asmussen 1994; 2000; Schmidli 1995; 1996; 1997a; 1997b), simulation (Ridder 1996;

Asmussen 1998) and population genetics (Fukushima and Stroock 1986; Ethier and Kurtz

1993). The process of interest is typically Markovian and, under a suitably chosen new

probability measure, it is again a Markov process with some ‘nicer’ desired properties. To

know the parameters of the new process we need to find its generator. Although in some

cases determining the new generator is straightforward, there are many situations in which it

is more difficult. In such situations, a unified theory simplifies the calculations. In this paper

we present a detailed account of the change of probability measure technique for cadlag

Markov processes. We can also accommodate some non-Markovian processes that are

Markovian with a supplementary component, for example, piecewise deterministic Markov
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processes or Markov additive processes. For diffusion processes, a special case of the theory

presented is a Girsanov-type theorem.

Consider a Markov process X (t) on a filtered probability space (�, F , fF tg, P) having

extended generator A with domain D(A). In this paper we use the martingale approach of

Stroock and Varadhan (1979) to define generators. For each strictly positive function f ,

define

Ef (t) ¼ f (X (t))

f (X (0))
exp �

ð t

0

(A f )(X (s))

f (X (s))
ds

� 	
, t > 0: (1:1)

If, for some function h, the process Eh(t) is a martingale, then it is said to be an exponential

martingale. In this case we call h a good function. Using this exponential martingale as a

likelihood ratio process, we will define a new probability measure ~PP on (�, F ). In Theorem

4.2 we prove that under some mild assumptions, X (t) is a Markov process on

(�, F , fF tg, ~PP) having extended generator

~AA f ¼ 1

h
[A( f h)� f Ah] (1:2)

and D(~AA) ¼ D(A). Note that (1.2) can be rewritten using the opérateur carré du champ (see

Revuz and Yor 1991, Definition 3.2, p. 326) ~AA f ¼ A f þ h�1hh, f iA, where hh, f iA ¼
A(hf )� hA f � f Ah. Kunita (1969) and Ethier and Kurtz (1986) found that the two

generators ~AA and A are related by ~AA ¼ Aþ B, where B is a linear operator. However, the

domains in their papers are restricted to bounded functions. Under some additional

assumptions, Ethier and Kurtz (1986, Theorems 5.4 and 5.11c) show that B is the generator

of some Markov process and they refer to ~AA as a perturbation of A. If a good function h is

harmonic, that is, Ah ¼ 0 (or ~AAh�1 ¼ 0), then h(X (t))=h(X (0)) is a martingale. In this case
~AA f ¼ h�1A( fh)� f Ah ¼ h�1A( fh) – see Dynkin (1965, Chapter IX, (9.46)) for a similar

result expressed in terms of infinitesimal operators, or Doob (1984, Section 2.VI.13), where

the idea of h transforms was outlined.

In Section 5 we illustrate the theory, applying it to several cases of special interest. For

example, if X (t) is a diffusion, then, choosing the exponential function as a good function,

we obtain a Girsanov-type theorem (see Theorem 5.5). We also show that a piecewise

deterministic Markov process (PDMP) remains a PDMP under the new measure ~PP, and we

find its characteristics (see Theorem 5.3). Other explicit forms of ~AA are computed for

continuous-time Markov chains (CTMCs) in Proposition 5.1, and for Markov additive

processes in Proposition 5.6.

Related material on change of measure or Girsanov-type theorems can be found, for

example, in Revuz and Yor (1991), Küchler and Sørensen (1997) and Jacod and Shiryaev

(1987).
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2. Preliminaries

2.1. Basic set-up

Let E be a Borel space. Throughout this paper we denote the space of measurable functions

f : E! R by M(E) and the space of continuous functions by C(E). We add a subscript b to

denote the restriction to bounded functions. We consider stochastic process X (t) assuming

values in E and defined on a probability space (�, F , P), equipped with a filtration fF tg t>0.

We assume that F ¼
W

t>0F t, that is, F is the smallest �-field generated by all subsets of F t

for all t > 0. We denote by F the pair (F , fF tg t>0). We call (�, F) a filtered space and

(�, F, P) a filtered probability space. For a probability measure P we denote by P t its

restriction to F t. All stochastic processes considered here are cadlag.

Let M(t) be a positive cadlag martingale defined on a filtered probability space (�, F, P)

such that EM(0) ¼ 1. We define a family of measures ~PP t by

d~PP t

dP t

¼ M(t): (2:3)

It can be proved that ~PP t is a consistent family, that is, for s < t we have ~PP t(A) ¼ ~PPs(A) for

all A 2 F s.

We say that the standard set-up is satisfied if:

(i) the filtered probability space (�, F, P) has a right-continuous filtration fF tg;
(ii) there exists a unique probability measure ~PP such that ~PP t ¼ ~PPjF t

, where ~PP t is defined

by (2.3).

The standard set-up may not be satisfied if the filtration fF tg is not separable (Parthasarathy

1967, Definition 2.1 and Theorem 4.2); see, for example, the example of Rogers and

Williams (1987, p. 83) and Karatzas and Shreve (1988, p. 193) concerning the augmented

filtration of Brownian motion.

We now describe a canonical model for the standard set-up. Assume that � � E[0,1) is

the space DE[0, 1) of cadlag functions from [0, 1) into E (in some cases we can also use

CE[0, 1), the space of continuous functions into E) and consider the canonical process

X (t) on (�, F, P) defined by X (ø, t) ¼ ø(t). The filtration is defined by fF t ¼ F X
tþg,

where F X
t ¼ �fX (s), s < tg is the natural filtration generated by the process X (t). We

define a new family of probabilities via (2.3). By Kolmogorov’s theorem (see Stroock 1987,

Theorem 4.2, p. 106; Stroock and Varadhan 1979, Theorem 1.3.5, p. 34; Parthasarathy

1967, Theorem 4.2, p. 143), there exists a unique probability measure ~PP on (�, F) such

that ~PP t ¼ ~PPjF t
, where ~PP t satisfies (2.3). The above considerations are, of course, true if we

take the natural filtration fF X
t g instead of fF X

tþg, but in applications one often needs the

right-continuity assumption to define certain stopping times (e.g. moment of ruin in risk

theory).
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2.2. Markov processes

The following theorem was proved by Kunita and Watanabe (1963, Propositions 3 and 5). See

also Dynkin (1965) and Küchler and Sørensen (1997, Proposition 6.3.5).

Theorem 2.1. Let X (t) be a Markov process on (�, F, P). Assume that standard set-up is

satisfied. We define a new probability measure ~PP by (2.3), where the martingale M(t) is a

non-negative multiplicative functional for which E(M(0)) ¼ 1. Then on the new filtered

probability space (�, F, ~PP), the process X (t) is Markovian.

For a Markov process X (t) with values in E we define a full (extended) generator A by

A ¼ f( f , f �) 2M(E) 3M(E) : D f (t) is a (local) martingaleg,
where D f (t) ¼ f (X (t))�

Ð t

0
f �(X (s))ds, t > 0, is Dynkin’s (local ) martingale and the

function s! f �(X (s)) is integrable P-almost surely on [0, t] for all t > 0. From now on we

will identify all versions of the function f � and we denote all these versions by A f if

( f , f �) 2 A.

By D(A) we denote the set of measurable functions f 2M(E) such that A f 2M(E)

exists, and such that
Ð t

0
jA f (X (s))j ds ,1 P-a.s. for all t > 0. Thus

D f (t) ¼ f (X (t))�
ð t

0

A f (X (s))ds (2:4)

is an F-(local) martingale for f 2 D(A). The space D(A) is called the domain of the full

(extended) generator A. If we restrict the domain of the extended or the full generator to a

subset D � D(A), then to avoid cumbersome notation we also denote this subset by D(A).

Remark 2.1. We will also use the notation D f (t) for the process given in (2.4) for any linear

operator A : M(E)!M(E) for which s! A f (X (s)) is integrable P-a.s. on [0, t] for all

t > 0.

Remark 2.2. If D f (t) is a local martingale with respect to the augmented fFP
t g, and fFP

t g-
stopping times in a fundamental sequence are fF X

tþg-stopping times, then D f (t) is also an

fF X
tþg-martingale. In this case, the extended generator and its domain do not change under

augmentation.

Remark 2.3. Note that for f 2 D(A) the process
Ð t

0
A f (X (s))ds is a continuous process of

finite variation. Thus the process f (X (t)) is a semimartingale. In particular, since the local

martingale D f (t) is cadlag this process is also cadlag.

3. Exponential martingale

Consider a Markov process X (t) defined on a filtered probability space (�, F, P). For a

linear operator A : M(E)!M(E) we define
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M�(A) ¼ f 2 M(E) : f (x) 6¼ 0 for all x,

�
ð t

0





 (A f )(X (s))

f (X (s))





 ds ,1 and

ð t

0

jA f (X (s))j ds ,1 for all t > 0, P-a:s:

 
:

Moreover, for an extended generator A, we let

D�(A) ¼M�(A) \ D(A):

Thus, Ef (t) defined in (1.1) makes sense for f 2M�(A). The following result is slight

extension of Proposition 3.2 in Ethier and Kurtz (1986, p. 175).

Lemma 3.1. Let f 2M�(A). Then the process fD f (t), t > 0g is a local martingale if and

only if fEf (t), t > 0g is a local martingale.

Proof. Assume that the process D f (t) is a local martingale. For f 2 M�(A), the processÐ t

0
(A f )(X (s))= f (X (s)) ds is continuous of finite variation. Hence by Jacod and Shiryaev

(1987, Proposition 2.1.3, p. 75)

f (X (t)), exp �
ð t

0

(A f )(X (s))

f (X (s))
ds

� 	� �
t

¼ 0,

where [:, :] t is a quadratic covariation. Using the integration by parts formula for

semimartingales, we have

dEf (t) ¼ 1

f (X (0))
exp �

ð t

0

(A f )(X (s))

f (X (s))
ds

� 	
dD f (t): (3:5)

Thus, by Dellacherie and Meyer (1982, Theorem VIII.3.e, p. 314), the process Ef (t) is a local

martingale. Now, assume that Ef (t) is a local martingale. By (3.5) we also have that

dD f (t) ¼ f (X (0))exp

ð t

0

(A f )(X (s))

f (X (s))
ds

� 	
dEf (t),

which completes the proof. h

Proposition 3.2. Suppose that either one of the following two conditions holds for a positive

function h 2 D(A):

(M1) h 2Mb(E) and h�1Ah 2 Mb(E);

(M2) h, Ah 2 Mb(E) and inf x h(x) . 0.

Then h is a good function.

Proof. A criterion of Protter (1990, Theorem 47, p. 35), and Lemma 3.1 justify the above

statement. h
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4. Main theorem

In this section we consider the Markov process from Section 3. Throughout this section, h is

a good function and we define a new family of probabilities f~PP t, t > 0g by

d~PP t

dP t

¼ Eh(t), t > 0:

We now assume that the standard set-up holds and thus there exists a unique probability

measure ~PP such that ~PP t ¼ ~PPjF t
. The Markovian property of X (t) on the filtered probability

space (�, F, ~PP) follows from Theorem 2.1.

We now quote the following useful lemma (Liptser and Shiryaev 1986, Lemma 4.5.3, p.

188):

Lemma 4.1. An adapted process Z(t) on a filtered space (�, F) is a ~PP-local martingale if

Z(t)Eh(t) is a P-local martingale.

For the operator ~AA defined in (1.2), let

DA ¼ f 2 D(A) : hf 2 D�(A) and

ð t

0

j~AA f (X (s))jds ,1 for all t > 0, ~PP-a:s:

�  
:

For f 2 DA we have f (x) 6¼ 0. Note also that if f 2 DA, thenð t

0

(~AA f )(X (s))

f (X (s))
ds ¼

ð t

0

(A( fh))(X (s))

fh(X (s))
ds�

ð t

0

(Ah)(X (s))

h(X (s))
ds

is well defined. Thus for f 2 DA we can define the processes

~EE f (t) ¼ f (X (t))

f (X (0))
exp �

ð t

0

(~AA f )(X (s))

f (X (s))
ds

 !
(4:6)

and

~DD f (t) ¼ f (X (t))�
ð t

0

(~AA f )(X (s))ds:

We have

~EE f (t)Eh(t) ¼ f (X (t))h(X (t))

f (X (0))h(X (0))
exp �

ð t

0

(~AA f )(X (s))

f (X (s))
þ (Ah)(X (s))

h(X (s))

" #
ds

 !

¼ fh(X (t))

fh(X (0))
exp �

ð t

0

(A( fh))(X (s))

fh(X (s))
ds

� 	
:

Applying Lemma 3.1 to f 2 DA and Lemma 4.1 to Z(t) ¼ ~EE f (t), we have that ~DD f (t) is

a local martingale. Thus ~AA is an extended generator of the process X (t) on (�, F, ~PP) and

DA � D(~AA). Unfortunately, with this approach, we cannot easily identify the domain D(~AA)

of the extended generator ~AA.
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Let

Dh
A ¼ f 2 D(A) : fh 2 D(A) and

ð t

0

j~AA f (X (s))jds ,1 for all t > 0, ~PP-a:s:

�  

and

Dh�1

~AA
¼ f 2 D(~AA) : fh�1 2 D(~AA) and

ð t

0

jA f (X (s))jds ,1 for all t > 0, P-a:s:

�  
:

Remark 4.1. Note that if inf x h(x) . 0 or h 2 C(E), then by the inequality

j~AA f j < jA( fh)j
jhj þ

jAhj
jhj ,

we have

Dh
A ¼ f f 2 D(A) : fh 2 D(A)g:

Similarly, if h 2Mb(E) or h 2 C(E), then

Dh�1

A ¼ f f 2 D(~AA) : fh�1 2 D(~AA)g:

Theorem 4.2. Suppose that Dh
A ¼ D(A) and Dh�1

A ¼ D(~AA). Then on the filtered probability

space (�, F, ~PP) the process X (t) is Markovian with extended generator ~AA and D(~AA) ¼ D(A).

Proof. Let f 2 D(A). Thus f 2 Dh
A and the process ~DD f (t) is well defined. Moreover, it is

cadlag because, by Remark 2.3, the process f (X (t)) is cadlag. We will show that the process
~DD f (t) is a ~PP-local martingale. In that case we also prove the inclusion D(A) � D(~AA). To

prove the reverse inclusion, it suffices to change the measure by

dP t

d~PP t

¼ Eh(t)�1,

which can be done since h is positive. Note that h~AAh�1 ¼ �h�1Ah and hence

~EEh�1

(t) ¼ h�1(X (t))

h�1(X (0))
exp �

ð t

0

h~AAh�1(X (s))ds

�  
¼ (Eh(t))�1 (4:7)

is a ~PP-martingale. Note also that f ¼ 1 2 D(~AA). So by the equality Dh�1

~AA
¼ D(~AA), we have

that h�1 2 D�(~AA).

We now prove that the process ~DD f (t) is a local martingale. Following Lemma 4.1, it

suffices to show that the process Eh(t) ~DD f (t) is a P-local martingale. By the integration by

parts formula for semimartingales, we obtain

~DD f (t)Eh(t) ¼
ð t

0

~DD f (s�)dEh(s)þ
ð t

0

Eh(s�)d ~DD f (s)þ [Eh, ~DD f ] t:

However, from the definition of the process ~DD f (t) and the operator ~AA, we have
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~DD f (t) ¼ D f (t)�
ð t

0

h f , hiA(X (s))

h(X (s))
ds:

Hence

~DD f (t)Eh(t) ¼
ð t

0

~DD f (s�)dEh(s)þ
ð t

0

Eh(s�)dD f (s)þ [Eh, ~DD f ] t �
ð t

0

Eh(s�)
h f , hiA(X (s))

h(X (s))
ds:

(4:8)

The first two components are local martingales. We now consider the third component. Let

X c be the continuous component, and X d be the pure-jump component of the process X (t),

and let ˜ f (X (t)) ¼ f (X (t))� f (X (t�)). Then we have

d[Eh, ~DD f ] t ¼ d[ f (X ), Eh] t � d

ð t

0

~AA f (X (s))ds, Eh(t)

� �
t

:

Note that
Ð t

0
~AA f (X (s))ds is continuous of finite variation and hence that

[
Ð t

0
~AA f (X (s))ds, Eh(t)] t ¼ 0. Thus d[Eh, ~DD f ] t ¼ d[ f (X ), Eh] t, which by (3.5) is equal to

d f (X (t)),

ð t

0

Eh(s�)

h(X (s�))
dh(X (s))

" #
t

�d f (X (t)),

ð t

0

Eh(s�)

h(X (s�))
Ah(X (s))ds

" #
t

: (4:9)

Note that

ð t

0





 1

h(X (s�))
Eh(s�)Ah(X (s))





 ds <
1

h(X (0))
exp

ð t

0





Ah(X (s))

h(X (s))





 ds

( )ð t

0

jAh(X (s))j ds,

which is finite P-a.s. for all t > 0. Thus process
Ð t

0
(1=h(X (s�)))Eh(s�)Ah(X (s))ds is

continuous of finite variation and the second component of (4.9) is equal to 0. We have

d[Eh, ~DD f ] t ¼ d f (X c(t))þ f (X d(t)),

ð t

0

1

h(X (s�))
Eh(s�)d(h(X c(s))þ h(X d(s)))

� �
t

¼ 1

h(X (t�))
Eh(t�)d[ f (X d(t)), h(X d(t))] t

¼ 1

h(X (t�))
Eh(t�)d[ f (X (t)), h(X (t))] t:

Using the integration by parts formula for semimartingales again, one obtains

d[Eh, ~DD f ] t
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¼ 1

h(X (t�))
Eh(t�)d f (X (t))h(X (t))�

ð t

0

f (X (s�))dh(X (s))�
ð t

0

h(X (s�))d f (X (s))

� 	

¼ 1

h(X (t�))
Eh(t�)dD fh(t)� 1

h(X (t�))
Eh(t�) f (X (t�))dDh(t)

� 1

h(X (t�))
Eh(t�)h(X (t�))dD f (t)

þ 1

h(X (t�))
Eh(t�)((A( fh))(X (t))� f (X (t�))(Ah)(X (t))

� h(X (t�))(A f )(X (t)))dt:

The first three components above are all local martingales since they are the integrals with

respect to local martingales. The last component is a Riemann differential, and is equal to

h f , hiA(X (t))

h(X (t))
Eh(t�)dt,

which completes the proof in view of (4.8). h

5. Examples

5.1. Continuous-time Markov chain

The simplest case we can analyse is when X (t) is a CTMC. We will only consider CTMCs

with a finite state space. The modification to a countable state space is straightforward, but it

would require many additional assumptions.

Let Q ¼ (qij)i, j¼1,...,‘ be the intensity matrix of the process, which, in the case of the

finite state space, is also the generator of the process. Here, functions f, h are column

vectors. We define fh ¼ ( f 1 h1, . . . , f ‘h‘)
T. Let h be positive. Now we have the following

proposition (see also Rolski et al. 1999, Lemma 12.3.3).

Proposition 5.1. The new generator is ~QQ ¼ (~qqij), where

~qqij ¼
qij

hj

hi

, i 6¼ j,

�
X
k 6¼i

qik

hk

hi

, i ¼ j:

8>><
>>:

Proof. By inspection. h

Corollary 5.2. If Q is irreducible and reversible with the stationary probability vector �, then

the stationary vector ~�� for ~QQ is given by
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~��i ¼ C
�i hiY

j 6¼i
hj

,

where C is a constant such that
P‘

j¼1
~�� j ¼ 1.

5.2. Piecewise deterministic Markov process

We follow Davis’s (1993) description of PDMPs. Let E be a state space consisting of pairs

x ¼ (�, z), where � assumes a finite number of values from a set I and z belongs to an open

subset O� of Rd(�) (note that E is a Borel space). The process X (t) is determined (see Davis

1993, p. 62) by the following:

(i) X ¼
Pd�

i¼1 g�,i(x)@=@zi, a vector field determining the flow ��(t, z) (we assume that

g�,i are locally Lipschitz continuous);

(ii) º(:), a force of transitions;

(iii) Q(:, :), a transition kernel.

Denote by @O� the boundary of O� and let

@�O� ¼ fz 2 @O� : z ¼ ��(t, z9) for some (t, z9) 2 Rþ 3O�g,

ˆ ¼ f(�, z) 2 @E : � 2 I , z 2 @�O�g,

t�(�, z) ¼ supft . 0 : ��(t, z) exists and �(t, z) 2 O�g:

The set ˆ is called an active boundary. It is the set of boundary points of E, which can be

reached from E via integral curves in finite time. For each point (�, z), t�(�, z) is the time

needed to reach the boundary from (�, z). We will assume that ��(t�(�, z), z) 2 ˆ if

t�(�, z) ,1, which means that the integral curves cannot ‘disappear’ inside E. Assume that

lim
n!1

Tn ¼ 1, P-a:s:, (5:10)

where Tn denotes the consecutive jumps of the process X (t). To obtain (5.10) we can assume

that º is bounded and that one of the following conditions is satisfied: t�(x) ¼ 1 for each

x ¼ (�, z) 2 E, that is, there are no active boundary points (e.g. ˆ ¼ ˘), or for some E . 0,

we have Q(x, BE) ¼ 1 for all x 2 ˆ, where BE ¼ fx 2 E : t�(x) > Eg. The last condition

means that the minimal distance between consecutive boundary hitting times is not smaller

than E (see Davis 1993, Proposition 24.6, p. 60).

From Davis (1993, Proposition 26.14, p. 69), the formula for the extended generator is

A f (x) ¼ X f (x)þ º(x)

ð
E

( f (y)� f (x))Q(x, dy),

where x 2 E and the domain D(A) consists of every function f that is the restriction to E of a

measurable function f : E [ ˆ! R satisfying three conditions:

(i) For each (�, z) 2 E the function t! f (�, ��(t, z)) is absolutely continuous on

(0, t�(�, z)).
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(ii) For each x 2 ˆ,

f (x) ¼
ð

E

f (y)Q(x, dy): (5:11)

(iii) For n ¼ 1, 2, . . . ,

E
Xn

i¼1

j f (X (Ti))� f (X (Ti�))j
 !

,1: (5:12)

From (1.2) we have

(~AA f )(x) ¼ (X f )(x)þ º(x)H(x)

h(x)

ð
E

( f (y)� f (x))
h(y)

H(x)
Q(x, dy),

where H(x) ¼
Ð

E h(y)Q(x, dy). We assume that

lim
n!1

Tn ¼ 1, ~PP-a:s: (5:13)

This condition holds if, for example, º(x) is bounded, inf x h(x) . 0 and ˆ ¼ ˘. We can now

conclude with the following theorem.

Theorem 5.3. Assume that h is a good function satisfying H(x) ,1 for all x 2 E. Suppose

that (5.13) holds, and that Dh
A ¼ D(A) and Dh�1

~AA
¼ D(~AA). Then on the new probability space

(DE[0, 1), F, ~PP), the process X (t) is a PDMP with the unchanged differential operator X
and the following jump intensity and transition kernel:

~ºº(x) ¼ º(x)H(x)

h(x)
, ~QQ(x, dy) ¼ h(y)

H(x)
Q(x, dy): (5:14)

The domain does not change: D(~AA) ¼ D(A).

Remark 5.1. Assume that condition (M1) or (M2) of Proposition 3.2 holds. Then h is a good

function and H(x) ,1 for all x. Moreover, if, for each f 2 D(A), the function fh satisfies

condition (5.11) (e.g. if there are no active boundary points: ˆ ¼ ˘), then Dh
A ¼ D(A) and

Dh�1

~AA
¼ D(~AA) by Remark 4.1. Thus, if (5.13) holds additionally, then all assumptions of

Theorem 5.3 are satisfied. In particular, this is the case when ˆ ¼ ˘, º(x) is bounded and h is

an absolutely continuous, bounded function such that inf x h(x) . 0.

Remark 5.2. Consider a positive function h 2 D(A) which is harmonic (typically unbounded

so that conditions (M1) and (M2) of Proposition 3.2 do not hold) and which belongs to the

domain of the full generator of the process X (t). That is, h is a good function and by Davis

(1993, Remark 26.17, p. 70), it satisfies a condition stronger than (5.12), namely

E
X
Tn< t

jh(X (Ti))� h(X (Ti�))j
 !

,1, (5:15)

for all t > 0. Assume that (5.13) holds, H(x) ,1 for all x 2 E and fh satisfies (5.11) (e.g.

Exponential change of measure for Markov processes 777



ˆ ¼ ˘). We restrict the domains of the extended generators A and ~AA to the bounded

measurable functions satisfying (i) and (ii) and we also denote these sets by D(A) and D(~AA),

respectively. Then by Theorem 5.3, the process X (t) on (DE[0, 1), F, ~PP) is a PDMP with

the parameters given in (5.14) and D(~AA) ¼ D(A). Such a framework is often used in risk

theory (see Rolski et al. 1999, p. 460).

5.3. Diffusion processes

Let a ¼ (aij)i, j¼1,...,d and b ¼ (b1, . . . , bd)T be functions of x 2 Rd satisfying the following

conditions:

(i) bi 2 C(Rd) and, for some L . 0,

jbi(x)j < L(1þ kxk), x 2 Rd : (5:16)

(ii) a(x) is a strictly positive definite matrix and

aij 2 Cb(Rd): (5:17)

In this subsection we assume that X (t) is a Markov diffusion process on the state space

E ¼ Rd with a given initial state X (0). We consider here � ¼ CRd [0, 1) and

X (ø, t) ¼ ø(t) with the right-continuous filtration fF t ¼ F X
tþg t>0. The extended generator

A of the diffusion process is

(A f )(x) ¼ 1

2

Xd

i, j¼1

aij(x)
@2 f (x)

@xi@xj

þ
Xd

i¼1

bi(x)
@ f (x)

@xi

, (5:18)

where x 2 Rd and the family of twice continuously differentiable functions f 2 C2(Rd) is

included in the domain of this generator D(A); see Karatzas and Shreve (1988, Proposition

4.2, p. 312) or Rogers and Williams (1987, Theorem 24.1, p. 170). We will write

D(A) ¼ C2(Rd). Let c(x) ¼ (c1(x1), . . . , cd(xd))T : Rd ! Rd , where

ci 2 C1
b(R), i ¼ 1, . . . , d: (5:19)

For x0 ¼ (x0,1, . . . , x0,d), x ¼ (x1, . . . , xd) and y ¼ (y1, . . . , yd), we defineðx

x0

c(y)dy ¼
Xd

j¼1

ðx j

x0, j

cj(yj)dyj:

We use the following function h : Rd ! Rþ:

h(x) ¼ exp

ðx

x0

c(y)dy

 !
: (5:20)

For d ¼ 1, we have h(x) ¼ exp(
Ð x

x0
c(y)dy). Note that the function h(x) satisfies

1

h(x)

@h(x)

@xj

¼ cj(xj): (5:21)
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Moreover, we have that h 2 D(A) and h(x) 6¼ 0. Hence h 2 D�(A) and thus by Lemma 3.1,

the process Eh(t) is a local martingale. However, a stronger result is also true. We adopt the

convention that

(cTb)(x) ¼ c(x)Tb(x), (ac)(x) ¼ a(x)c(x), (cTac)(x) ¼ c(x)Ta(x)c(x):

Lemma 5.4. We have

Eh(t) ¼ exp

ð t

0

c(X (s))dX (s)�
ð t

0

(cTb)(X (s))ds� 1

2

ð t

0

(cTac)(X (s))ds

� 	
, (5:22)

where

ð t

0

c(X (s))dX (s) ¼
Xd

j¼1

ð t

0

cj(X j(s))dXj(s):

Proof. From (5.18) and (5.21) we have

Ah(x)

h(x)
¼ 1

2

Xd

i¼1

aii(x)c9i(xi)þ
1

2
(cTac)(x)þ (cTb)(x), (5:23)

where

c9i(t) ¼ d

dz
ci(z)jz¼ t:

Then

Eh(t) ¼ exp

ðX ( t)

X (0)

c(x)dx

 !
exp � 1

2

ð t

0

Xd

i¼1

aii(X (s))c9i(X i(s))ds

 !

3 exp � 1

2

ð t

0

(cTac)(X (s))dX (s)�
ð t

0

(cTb)(X (s))ds

� 	
:

Thus it suffices to show that

Xd

i¼1

ðX i( t)

X i(0)

ci(z)dz ¼
Xd

i¼1

ð t

0

ci(X i(s))dX i(s)þ 1

2

ð t

0

Xd

i¼1

aii(X (s))c9i(Xi(s))ds: (5:24)

From Stroock (1987, p. 75), we have

d Xi(t)�
ð t

0

bi(X (s))ds

& '
t

¼ aii(X (t))dt:

Now (5.24) follows from Itô’s formula applied to the function g(x) ¼
Ð x

x0
ci(z)dz:
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ðX i( t)

X i(0)

ci(z)dz ¼
ð t

0

ci(Xi(s))dX i(s)þ 1

2

ð t

0

d

dx
c9i(X i(s))dhXi(s)is

¼
ð t

0

ci(Xi(s))dX i(s)þ 1

2

ð t

0

c9i(X i(s))d Xi(s)�
ð s

0

bi(X (v))dv

& '
s

(5:25)

¼
ð t

0

ci(Xi(s))dX i(s)þ 1

2

ð t

0

aii(X (s))c9i(Xi(s))ds,

where (5.25) follows from the fact that
Ð t

0
bi(X (s))ds has a finite variation (bi 2 C(Rd)).

h

Note that by (5.17), (5.19) and Stroock (1987, p. 75) we haveð t

0

c(X (s))dX (s)�
ð t

0

c(X (s))b(X (s))ds

& '
t

¼
ð t

0

(cTac)(X (s))ds < Kt, (5:26)

for some constant Kt. Thus from Rogers and Williams (1987, Theorem 37.8, p. 77), the

process Eh(t) is a true martingale, that is, h is a good function.

As an illustration of our Theorem 4.2, we give another proof of the Cameron–Martin–

Girsanov theorem. In this theorem, we consider the new probability measure ~PP defined by

the martingale d~PP t=dP t ¼ Eh(t), where h is a good function of the form (5.20). We have

(~AA f )(x) ¼ 1

2

Xd

i, j¼1

aij(x)
@2 f (x)

@xi@xj

þ
Xd

i¼1

bi(x)þ
Xd

j¼1

aij(x)
1

h(x)

@h(x)

@xj

0
@

1
A @ f (x)

@xi

: (5:27)

Theorem 5.5. Suppose that h is a good function of the form (5.20). On the new probability

space (CRd [0, 1), F, ~PP), the process X (t) is a diffusion process with parameters

~aa ¼ a, ~bb ¼ bþ ac:

Proof. The assumptions of Theorem 4.2 are satisfied, that is, Dh
A ¼ D(A) ¼ Dh�1

~AA
¼

D(~AA) ¼ C2(Rd) and we deduce ~aa and ~bb from the form of the generator given in (5.27). h

Example 5.1. Take d ¼ 1 and ci(x) ¼ �Æ. In this case a diffusion process with infinitesimal

variance function a(x) and infinitesimal drift function b(x) has new parameters ~aa(x) ¼ a(x)

and ~bb(x) ¼ b(x)� Æa(x) after the exponential change of measure. In particular, if we

consider Brownian motion B(t), then after the exponential change of measure the process

B(t) is Brownian motion with drift �Æ (see Itô and Watanabe 1965).

Example 5.2. The second example concerns the so-called Gauss–Markov process X (t) (see

Karatzas and Shreve 1988, p. 355), which is the solution of the stochastic differential

equation

dX (t) ¼ mX (t)dt þ �dB(t),
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where m, � are d 3 d matrices and B(t) is d-dimensional Brownian motion. We assume that

all eigenvalues of m have strictly negative real parts. Then by Stroock (1987, Theorem 2.6,

p. 91) the process X (t) is a diffusion with

a(x) ¼ ��T, b(x) ¼ mx,

where x ¼ (x1, . . . , xd)T. After the exponential change of measure, the process X (t) is a

diffusion with parameters ~aa(x) ¼ a(x) and ~bb(x) ¼ mxþ ac(x), where c(x) ¼ (c1(x1), . . . ,

cd(xd))T and ci(xi) 2 C1
b(R). In particular, when d ¼ 1, m ¼ �Æ 2 R and � ¼ ffiffiffi

a
p 2 Rþ, then

the Gauss–Markov process is a one-dimensional Ornstein–Uhlenbeck process. Taking

c(x) ¼ c 2 R, after the exponential change of measure, the process X (t) is the diffusion with

infinitesimal drift changed from �Æx to �Æxþ ac; see Kulkarni and Rolski (1994).

5.4. Markov additive process

Following Asmussen and Kella (2000), we consider a Markov additive process X (t), where

X (t) ¼ X (1)(t)þ X (2)(t), and the independent processes X (1)(t) and X (2)(t) are specified by

the characteristics qij, Gi, � i, ai, �i(dx) which will be defined below. Let J (t) be a right-

continuous, irreducible, finite state space CTMC, with I ¼ f1, . . . , Ng, and with the

intensity matrix Q ¼ (qij). We denote the jumps of the process J (t) by fTig (with T0 ¼ 0).

Let fU i
ng be i.i.d. random variables with distribution function Gi(:). Define the jump process

by

X (1)(t) ¼
X
n>1

X
i

U i
n1fJ (Tn�1)¼i,Tn< tg:

For each i 2 I , let X i(t) be a Lévy process such that

log EeÆX i(1) ¼ łi(Æ) ¼ aiÆþ
� 2

iÆ
2

2
þ
ð1
�1

(eÆ y � 1� Æy1[0,1](jyj))�i(dy),

where
Ð1
�1 eÆ y y1[0,1](jyj)�i(dy) ,1. Note that the process X i(t) has the Lévy characteristics

(Æi t, � 2
i t, �i(dx)). By X (2)(t) we denote the process which behaves in law like X i(t), when

J (t) ¼ i. Note that (X (1)(t), J (t)) is a PDMP with extended generator

(A(1) f )(x, i) ¼
XN

k¼1

qik

ð1
�1

( f (xþ y, k)� f (x, i))dGi(y) ¼
XN

k¼1

qik

ð1
�1

f (xþ y, k)dGi(y),

(5:28)

and domain D(A(1)) consisting of absolutely continuous functions for which the above

integrals are finite. By Çinlar et al. (1980, Theorem 7.14, p. 211) and Jacod and Shiryaev

(1987, Theorem 2.42, p. 86), the process X i(t) has extended generator

Ai f (x) ¼ aif 9(x)þ � i

2
f 0(x)þ

ð1
�1

( f (xþ y)� f (x)� 1[0,1](jyj)yf 9(x))�i(dy),

with domain C2(R) � D(Ai). By Palmowski (2002, Theorem 2.1), the process

(X (2)(t), X (1)(t), J (t)) has extended generator A such that, for h(x, y, i) ¼ g(x) p(y, i),
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A(gp)(x, y, i) ¼ g(x)A(1) p(y, i)þ p(y, i)Ai g(x),

for g 2 C2(R) � D(Ai) and p 2 D(A(1)) (i.e., A ¼ A(1) ' Ai and D(A(1)) � C2(R) � D(A)).

Letting Q � ĜG(Æ) ¼ (qijĜGi(Æ)), where ĜGi(Æ) ¼ E exp(ÆUi) is assumed to be finite, we define

F(Æ) ¼ Q � ĜG(Æ)þ diag(ł1(Æ), . . . , łN (Æ)):

The Perron–Frobenius eigenvalue and the corresponding right eigenvector of F(Æ) are

denoted by º(Æ) and h(Æ), respectively. Note that º(Æ) is real and h(Æ) is positive. As a good

function we propose h(x, y, i) ¼ g(x) f (y, i), where g(x) ¼ eÆx and p(y, i) ¼ eÆ y hi(Æ). Then

(Ah)(x, y, i) ¼ eÆ(xþ y)(łi(Æ)hi(Æ)þ (Q � ĜG(Æ)h(Æ))i) ¼ º(Æ)h(x, y, i)eÆ(xþ y): (5:29)

Proposition 5.6. The process

Eh(t) ¼ eÆX ( t)�º(Æ) t hJ ( t)(Æ)

hJ (0)(Æ)
, t > 0, (5:30)

is a mean-one martingale. Furthermore, the process X (t), after the exponential change of

measure, has the following characteristics:

~qqij ¼
hj(Æ)

hi(Æ)
qij

~GGi(Æ),

~GGi(dx) ¼ eÆx

ĜGi(Æ)
Gi(dx),

~�� i ¼ � i, (5:31)

~ÆÆi ¼ Æþ Æ� 2
i �

ð1
�1
jyj1[0,1](jyj)(1� eÆ y)�i(dy),

~��i(dx) ¼ eÆx�i(dx):

Proof. By Lemma 3.1, Eh(t) is a local martingale. Following Asmussen and Kella (2000), we

have EEh(t) ¼ 1 for all t > 0 and hence Eh(t) is a true martingale. To prove (5.31), we write

A( fh)(x, y, i) ¼ eÆ(xþ y) hi(Æ)
XN

k¼1

~qqik

ð1
�1

[ f (x, yþ z, k)� f (x, y, i)]d ~GGi(z)

þ eÆ(xþ y) hi(Æ)~AAi f (x, y, i)þ eÆ(xþ y)
XN

k¼1

qik f (x, y, i)hk(Æ)ĜGi(Æ)

þ eÆ(xþ y) hi(Æ) f (x, y, i)łi(Æ),

which completes the proof in view of (5.29) and the formula ~AA f ¼ h�1(A( fh)� f Ah). h

For a one-dimensional Lévy process (U i
n ¼ 0 and N ¼ 1), taking h(x, y, i) ¼ h(y) ¼ eÆ y,

hi(Æ) ¼ 1 and º(Æ) ¼ ł(Æ), we obtain the well-known Wald martingale
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Eh(t) ¼ eÆX ( t)�ł(Æ) t: (5:32)

After the exponential change of measure, the Lévy process changes its Lévy characteristics

from (a, � , �) to (~aa, � , ~��), where

~aa ¼ aþ Æ� 2 �
ð1
�1
jyj1[0,1](jyj)(1� eÆ y)�(dy) (5:33)

~��(dx) ¼ eÆx�i(dx)

(see Küchler and Sørensen 1997, Proposition 2.1.3, p. 11).

For a multidimensional Lévy process (X 1(t), . . . , Xd(t)) we take h(x) ¼ eÆ
T x, where

Æ, x 2 Rd . This yields the martingale Eh(t) ¼
Qd

k¼1 eÆ k X k�ł k (Æ k ) t; for further general-

izations of this result see Küchler and Sørensen (1997, Theorem A.10.1, p. 294), Jacod and

Mémin (1976, Theorem 3.3, p. 13) and Jacod and Shiryaev (1987, Theorem 3.24, p. 159).
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